
Embedded Coder® Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Embedded Coder® Release Notes
© COPYRIGHT 2011–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

R2023a

Code Generation from MATLAB Code . 1-2

instrumentCode: Add instrumentation to code you already generated for SIL
or PIL execution . 1-2

Analyze coverage of C/C++ code during SIL and PIL simulations 1-2
Generate execution time profile for custom code during SIL and PIL

simulations . 1-3
Debugging for PIL execution . 1-3
Code Profile Analyzer . 1-4
Generate C/C++ code with annotations to suppress known MISRA C: 2012

and AUTOSAR C++14 violations . 1-4
Reduction of violations for AUTOSAR C++14 rules in generated code . . . 1-5

Model Architecture and Design . 1-6

Unused variable and macro elimination for Variant blocks in generated code
. 1-6

Improve code readability of variant blocks and variant parameters by
placing utassert statements in a separate function 1-6

Group variant parameter values in a single structure array in generated
code . 1-7

Model Advisor checks for component deployment using a service interface
configuration . 1-7

Code Interface Configuration and Integration . 1-8

Component timer service interface enhancements 1-8
Improve code generated for functions that include blocks that request time

values by specifying target platform clock resolution 1-10
Use code definitions from packages in service interface configurations . . 1-10
Generate code using built-in FFTW library . 1-11
Coexisting code mapping configurations for data and service interfaces

. 1-11
Convert subsystems with service interface mappings to referenced models

. 1-11
Automatic deployment type for models with a service interface code
configuration . 1-12

Automatic code suggestions and completions for code mappings
programming interface . 1-12

Code Generation . 1-13

Example models attached to examples and renamed 1-13
Replacement of Simulink data types with C99 data types 1-15
Code interface report improvements for service interfaces 1-18

v

Contents

C++ code generation support for models configured with service interfaces
and nonreusable function code interface packaging 1-19

Optimized C code for reusable subsystems . 1-20
Code replacement validation check detects unspecified rounding modes for

multiplication . 1-21
Embedded Coder features available in Simulink Online 1-22
Functionality being removed or changed . 1-22

Deployment . 1-23

Embedded Coder Support Package for Linux Applications 1-23
Calibration file customization . 1-23
TLC function FULLFILE for full path of the file . 1-23
Support of coder.asap2.export API for DDS Blockset Models 1-23
Code Descriptor API service interface enhancements 1-23
Functionality being removed or changed . 1-24
Embedded Coder Support Package for STMicroelectronics STM32

Processors: Support for STM32L4xx, STM32L5xx, and STM32WBxx-
based boards . 1-24

Embedded Coder Support Package for STMicroelectronics STM32
Processors: Support for CAN Read, CAN Write, FDCAN Read, FDCAN
Write, SPI Receive, SPI Transmit, SPI Controller Transfer, and Digital to
Analog Converter blocks . 1-24

Embedded Coder Support Package for STMicroelectronics STM32
Processors: Support for I2S Audio Out, I2S Mic In, TCP Receive, TCP
Send, UDP Receive, and UDP Send blocks . 1-25

Performance . 1-26

Code Profile Analyzer . 1-26
Display of profiling results in Simulink Editor . 1-26
View additional code execution profiling results in Code view 1-28
Stack usage profiles for child functions of tasks 1-30
Memory allocation for execution-time profiling with XCP external mode

simulations . 1-30
SIMD code for integer operations for ARM Cortex-A 1-30
Generate SIMD code for FIR Interpolation and FIR Decimation blocks . . 1-30
Improved C code for models using parfor-loops . 1-31
Data store buffer reuse for referenced models irrespective of inplace
specifications . 1-31

Enhanced global data store reuse in the presence of referenced models
. 1-32

Change to reuse referenced model buffers model configuration parameter
settings . 1-33

Data copy reduction for referenced model buffers reuse optimization . . . 1-34
Improve code efficiency by using code efficiency tools and techniques . . 1-35

Verification . 1-36

Debugging for PIL simulations . 1-36
Initialization of model workspace parameters for Model block SIL/PIL

simulations . 1-36
Specify whether to open Code View automatically 1-36

Check bug reports for issues and fixes . 1-38

vi Contents

R2022b

Code Generation from MATLAB Code . 2-2

Removal of initialized but unused class properties in generated C/C++ code
. 2-2

Reduction of violations for MISRA C:2012 and AUTOSAR C++14 rules in
generated code . 2-2

Model Architecture and Design . 2-4

Deploy models as components that include comprehensive service interface
support . 2-4

Control interface of generated code using data and service interface
configurations in Embedded Coder Dictionary 2-6

Component service interface support for callable entry-point functions . . . 2-7
Component service interface support for target platform data receiver and

data sender services . 2-7
Component service interface support for target platform data transfer

service . 2-7
Component service interface support for target platform timer service . . . 2-8
Component service interface support for target platform parameter tuning

and measurement services . 2-8
Modeling guidelines and Model Advisor checks for component deployment

using a service interface configuration . 2-9

Code Interface Configuration and Integration . 2-10

Map model elements to service interfaces . 2-10
Dimension preservation of multidimensional arrays for GetSet and access

function storage classes . 2-10
Support for root level inports and outports as pointer members in C++

generated code . 2-11
Functionality being removed or changed . 2-11

Code Generation . 2-13

Select code interface configuration using new configuration parameter . 2-13
Generate an example main program parameter not available for models
configured with a service interface configuration 2-14

Generated C++11 example main program simplified 2-14
Include requirement comments in the generated code 2-15
Files and folders for target platform services . 2-15
Code interface report for service interfaces . 2-16
Generate code for Reusable custom storage classes with symbolic

dimension inputs . 2-16
New $X naming rule token . 2-16
Example models attached to examples and renamed 2-17
New Simulink Model Advisor check for numeric efficiency 2-18
Code replacement validation detects ambiguous overflow and rounding

modes . 2-18

Deployment . 2-20

vii

Retrieve metadata about service interface by using code descriptor
programming interface . 2-20

Target Language Compiler search functions for regular expressions 2-20
Introducing Embedded Coder Support Package for Linux Applications . . 2-21
Calibration File Customization . 2-21

Performance . 2-23

Data Store Memory block reuse in reusable subsystems inside While
Iterator subsystems . 2-23

Removed redundant multirate block output buffers 2-24
Buffer reuse optimization for referenced models 2-25
Improved cache efficiency of generated code containing loop distribution,

interchange, and reversal . 2-25
Generate SIMD code for Discrete FIR Filter block 2-28
Improved function argument generation eliminates extra global variable

assignment . 2-28
SIMD code for bitwise and shift operations . 2-30
Code replacement for lookup tables that support differently sized table and

breakpoint objects . 2-30
Code execution profiling for models that use GRT system target files . . . 2-31
Task scheduling visualization with XCP external mode simulations 2-31
Optimized bandwidth usage during XCP external mode profiling 2-31

Verification . 2-32

SIL or PIL block workflow . 2-32
Reusable subsystems with input signals that map to const variables 2-32

Check bug reports for issues and fixes . 2-33

R2022a

Code Generation from MATLAB Code . 3-2

Removal of unused class properties in generated C/C++ code 3-2
Reduction of violations for MISRA C:2012, MISRA C++:2008, and

AUTOSAR C++14 rules in generated code . 3-2
Stack usage profiling for code generated from MATLAB code 3-3
Identification of performance bottlenecks in generated code 3-3

Model Architecture and Design . 3-4

Symbolic dimension inputs for Squeeze block . 3-4
Embedded Coder Dictionary interface improvements 3-4

Code Interface Configuration and Integration . 3-5

Control code interface generated for models by specifying deployment types
. 3-5

Changes to class namespaces and default class name in C++ generated
code . 3-6

viii Contents

Calibration file customization . 3-6
Memory section mapping for grouped entry-point functions 3-6

Code Generation . 3-8

Regular expression token decorators to modify certain tokens 3-8
Improved comments for code that initializes instance-specific values for

model arguments . 3-8
New parentheses level for MISRA standard compliance and code readability

. 3-9
Improved code readability by adding "U" suffix to unsigned integer

constants . 3-10
Changes to initialization . 3-10
AUTOSAR C++14 Rule A12-4-2 violation resolution 3-10
AUTOSAR C++14 Rule A12-0-1 violation resolution 3-11
Removed redundant S-function output buffer . 3-11
C++ Code Generation for client-server interfaces 3-13
C++ code generation for new Message Triggered Subsystem and Message

Polling Subsystem blocks to control event-triggered execution of
messages . 3-13

CustomSymbolStrUtil parameter available for C++ and AUTOSAR code
generation . 3-13

Functionality being removed or changed . 3-13

Deployment . 3-15

TLC function STRNREP for string replacement . 3-15
Configuration Parameter dialog box no longer lists VxWorksExample as a

setting for parameter Target operating system 3-15
Texas Instruments C2000: Support for Texas Instruments F28003x

processor . 3-15
Texas Instruments C2000: Support for F28M35x (C28x), F28M36x (C28x),

and ARM Cortex-M3 Core . 3-15
Embedded Coder Support Package for STMicroelectronics Discovery Boards

renamed to Embedded Coder Support Package for STMicroelectronics
STM32 Processors . 3-16

Support for STMicroelectronics STM32F7xx, STM32G4xx, and STM32H7xx-
based Boards . 3-16

Performance . 3-17

SIMD code for reduction operations . 3-17
Code replacement for circular buffer index for Delay blocks 3-18
Code replacement for lookup tables by using index search algorithm

parameter . 3-18
Code generation by inlining redundant function calls 3-19
Stack usage profiling for code generated from Simulink models 3-20
Identification of performance bottlenecks in generated code 3-20
Code execution profiling for multiple Model blocks 3-20

Verification . 3-21

Unit-testing atomic subsystem code in AUTOSAR software component . . 3-21
Functionality being removed or changed . 3-21

Check bug reports for issues and fixes . 3-22

ix

R2021b

Code Generation from MATLAB Code . 4-2

Communication I/O information display during SIL or PIL execution 4-2
Visualization of task scheduling . 4-2
Reduction of violations for MISRA C++:2008 and AUTOSAR C++14 rules in

generated code . 4-2

Model Architecture and Design . 4-3

Built-in storage class for multi-instance data . 4-3
Symbolic dimension inputs for Bitwise Operator, Saturation, and Data Type

Propagation blocks . 4-3

Code Interface Configuration and Integration . 4-4

Storage class with pointer data access in Embedded Coder Dictionary . . . 4-4
Unstructured Embedded Coder Dictionary storage class application to

model reference root I/O . 4-4
Embedded Coder Dictionary storage class application to signals and

parameters with symbolic dimensions . 4-4
Changes to model hierarchy requirements . 4-4
Calibration file customization . 4-5
TLC code storage classes in default mapping . 4-5
Configure additional properties from the Code Mappings editor 4-5
View In Bus Element and Out Bus Element blocks in a hierarchy in the Code

Mappings editor . 4-6
Configuring C/C++ function prototypes for subsystems not recommended

. 4-6
Reusable storage class in Code Mappings editor . 4-7
Generated C++ model class name can be the model name 4-7

Code Generation . 4-8

Accessibility of step entry-point functions generated for models designed for
multitasking and concurrency streamlined . 4-8

Code view for MATLAB Function block . 4-9
Enhanced code to reduce MISRA C:2012 Rule 10.3 and Directive 4.1

violations . 4-10
Changes to generated C++ header files . 4-10
const member functions for C++ class interface 4-10
Minimized variable visibility for C++ code . 4-11
Image data by using OpenCV class cv::Mat . 4-12
Shared types and parameters storage in same header file 4-13
Bidirectional traceability in Code view by default 4-14

Deployment . 4-15

New TLC variable OverrideSampleERTMain for disabling generation of
example main program . 4-15

Texas Instruments C2000: Code generation support for Configurable Logic
Block (CLB) and CLB X-Bar in Embedded Coder Support Package for
Texas Instruments C2000 Processors . 4-15

x Contents

Texas Instruments C2000: External Mode Simulation Using XCP on CAN
Interface . 4-15

Support for STMicroelectronics STM32F4xx-based Boards 4-15

Performance . 4-16

Generation of SIMD code by using new configuration parameter 4-16
Image Processing Toolbox functions enhanced with multithreading and

algorithm improvements . 4-16
Reduced data copies for models that have Bus Creator blocks 4-17
SIMD optimization for more integer data types . 4-19
Root outport initialization code performance improvements 4-20
Readability improvement for root outport initialization code 4-21
Optimize code by unrolling parallel for-loops . 4-22
Improved common subexpression elimination . 4-22
Optimized SIMD code that performs fused multiply add operations 4-23
Redundant data copies elimination by reusing S-function block buffers . . 4-24
Optimized code for models containing referenced models 4-26
Nonstatic data class member initialization of instance-specific parameters

. 4-27
Code replacement for trigonometric functions that use lookup table

approximation . 4-28

Verification . 4-29

Communication I/O information display during SIL or PIL simulation . . . 4-29
Signal and state logging for SIL and PIL simulations 4-29
LDRA tool suite code coverage analysis . 4-29

Check bug reports for issues and fixes . 4-30

R2021a

Code Generation from MATLAB Code . 5-2

Multiple signature for software-in-the-loop (SIL) and processor-in-the-loop
(PIL) execution . 5-2

Reduction of violations for MISRA C++:2008 and AUTOSAR C++14 rules in
generated code . 5-2

Format generated code by using clang-format . 5-3

Model Architecture and Design . 5-4

Step entry-point functions generated for rate-based and concurrent
execution models declared in model.h . 5-4

Code Interface Configuration and Integration . 5-5

C++ class interface configuration by using a code mappings workflow . . . 5-5
Instance specific parameter support for C++ class interfaces 5-5
Auto data initialization for new storage classes . 5-5

xi

Dimension preservation of multidimensional arrays for Simulink.Bus object
. 5-6

Calibration file generation . 5-6
Code configuration for data dictionary defaults . 5-6
ASAP2 system target file being removed . 5-6
Functionality being removed or changed . 5-6

Code Generation . 5-8

Enhanced generated code to reduce MISRA C:2012 Rule 12.2 violations
. 5-8

Removal of typedef from C++ struct definitions . 5-8
Braced variable initialization for C++ 11 library . 5-8
Code generation and SIL or PIL simulations for protected models from

R2018b and later releases . 5-9

Performance . 5-10

Code execution profiling information in Code view 5-10
Visualization of task scheduling . 5-10
Removal of instrumentation overhead from execution-time profiling by using

target package . 5-10
Enhanced code for models containing mask blocks or Data Store Memory

blocks . 5-11
GCC ARM Cortex-A code replacement library contains other ARM libraries

. 5-11
Multithreading capabilities for more Image Processing Toolbox functions

. 5-12
Improved cache performance of generated code containing distributed loop

nests . 5-13
Improved expression folding in generated code 5-15
Improved root outport buffer reuse to reduce data copies 5-16
Reduced data copies for blocks with bus inputs and outputs 5-17

Verification . 5-19

PIL target connectivity with debugger . 5-19
Unit-tests for generated code from subsystems within code from parent

model . 5-19
Code view in SIL/PIL Manager . 5-19

Check bug reports for issues and fixes . 5-21

R2020b

Model Architecture and Design . 6-2

Determine programmatically if model or data dictionary contains Embedded
Coder Dictionary . 6-2

Symbolic dimension inputs for Add, Subtract, Sum of Elements, and Sum
blocks . 6-2

Improved readability for preprocessor conditionals in generated code . . . 6-2

xii Contents

Memory section configurations for atomic subsystems 6-3

Code Interface Configuration and Integration . 6-4

Streamlined model data configuration for code generation 6-4
Dimension preservation of multidimensional arrays for individual model

elements . 6-5
Custom data type configuration and modification 6-6
Functionality being removed or changed . 6-6

Code Generation . 6-12

Static code metrics for C99 and C++ libraries . 6-12
Code generation using multiple code replacement libraries 6-12
Static reusable subsystem functions for C++ class interface 6-12
Name mangling of functions inside MATLAB Function block code 6-13
Generated code enhanced to reduce MISRA C:2012 Rule 13.5 violations

. 6-13
Generate static code metrics report programmatically 6-13
Code generation and SIL or PIL simulations for protected models from

R2018b and later releases . 6-14
Cross-release code integration for non-finite numbers in shared utility code

. 6-14
Enhanced traceability between variables and modeling elements in Code

view . 6-14
Same name error message for Simulink.Bus object and data in C++ code

. 6-15
Standardization of header guards in header files 6-15

Deployment . 6-16

Texas Instruments C2000: Support of UDP and Hardware Interrupt Blocks
for F2838x (ARM Cortex-M4) Processor in Embedded Coder Support
Package for Texas Instruments C2000 Processors 6-16

Texas Instruments C2000: Support Code Generation for SDFM Module in
F2807x, F2837x, F28004x and F2838x Processors for Embedded Coder
Support Package for Texas Instruments C2000 Processors 6-16

Performance . 6-17

SIMD code generated using Intel AVX-512 code replacement library 6-17
Improved cache performance of generated code that has loop interchange

. 6-18
SIMD vectorization of loops in Simulink models 6-20
Generated code optimization through SIMD for integer data type 6-21
Enhanced Image Processing Toolbox functions in generated code 6-22
Distribution of execution times for generated code internal functions . . . 6-24
Hardware timer for code execution profiling during PIL simulations 6-24
Caching of array elements to scalar variables reduces computations in

generated code . 6-24

Verification . 6-26

Target connectivity for PIL simulations . 6-26
SIL and PIL testing of reusable library subsystems 6-26
Signal and state logging for SIL and PIL simulations 6-26

xiii

Removal of top-model SIL and PIL limitations . 6-27
SIL/PIL Manager settings . 6-27
Functionality being removed or changed . 6-28

Check bug reports for issues and fixes . 6-29

R2020a

Code Generation from MATLAB Code . 7-2

Model Architecture and Design . 7-3

Function arguments to match graphical block interface for nonreusable
subsystems . 7-3

External I/O visibility for C++ class interface . 7-3
C++ message-based communication provides length argument for service

functions . 7-3
Zero initialization code model configuration parameters disabled for C++

class interface . 7-4

Code Interface Configuration and Integration . 7-5

Alias property of Simulink.CoderInfo renamed Identifier 7-5
Model type definitions within class namespace . 7-5
Dimension preservation of multidimensional arrays for Data Store Memory

blocks, states, and signals . 7-5
Storage class change for model workspace parameter converted to

Simulink.Parameter . 7-6
Functionality being removed or changed . 7-7

Code Generation . 7-8

std::array support in C++ code generation . 7-8
Allow Arguments for non-reusable subsystems with C++ 7-8
$R token in Memory Sections of Embedded Coder Dictionary 7-8
Reduction in identifier collisions in model reference hierarchy 7-9
Static code metrics in Code view without code generation report 7-9
SIL or PIL simulations with protected model AUTOSAR code from R2018b

or later . 7-10
Storage classes on signal lines . 7-10
Removal of preprocessor guards in C++ code . 7-10
Removal of configuration parameter limitations for Simulink string code

generation . 7-10

Deployment . 7-12

FFT code replacement library (CRL) support for ARM Cortex-A and Cortex-
M processors . 7-12

Performance . 7-13

Data Store Memory block reuse to reduce data copies in subsystems . . . 7-13

xiv Contents

Buffer reuse optimization for multidimensional arrays 7-15
Logical operators conversion to bitwise operators in generated code . . . 7-16
Enhanced Image Processing Toolbox functions in generated code 7-17
Capture main code execution profiling metrics on target hardware 7-18
Efficient code for model-reference builds in presence of function prototype

control . 7-18
Symbolic dimension support for Reshape blocks 7-19

Check bug reports for issues and fixes . 7-20

R2019b

Code Generation from MATLAB Code . 8-2

Customize C/C++ code file names generated from MATLAB code 8-2
Custom type definitions from external header files 8-2
Disable generation of initialize function . 8-2
Function profiling for SIL and PIL execution . 8-2

Model Architecture and Design . 8-3

Symbolic dimension support for Stateflow Data . 8-3
Generate C++ Code for Software Compositions with Message-Based

Communication . 8-3
Cut, copy, and paste code definitions in Embedded Coder Dictionary 8-3
Configure Embedded Coder Dictionary programmatically 8-3

Data, Function, and File Definition . 8-5

Generated code calibration and monitoring through XCP and third-party
tools . 8-5

Argument specifications not required for Function Caller blocks that invoke
scoped Simulink functions . 8-5

Implicit validation occurs when configuring C function prototypes 8-5
Map storage classes defined in Embedded Coder Dictionary to nonreusable

subsystems with separate data . 8-5
Code Mappings Editor Changes . 8-6
Function rtw.asap2SetAddress extracts DWARF debug symbols from

binaries compiled using MinGW compiler . 8-6

Code Generation . 8-7

Optimized C++ generated code for reusable functions 8-7
Embedded Coder contextual tabs on the Simulink Toolstrip 8-7
Simulink strings through standard C++ string library 8-8
C++ static_cast in generated code . 8-10
Inline traceability for variable and type definitions 8-10

Deployment . 8-12

Performance . 8-13

xv

Improved Data Store Memory block reuse to reduce data copies 8-13
SIMD vectorization for loops . 8-14
Optimized code execution speed for Ceiling, Floor, Minimum and Maximum

SIMD intrinsic functions . 8-14
SIMD vectorization for loops without compile-time bounds 8-16
SIMD for row-major operations . 8-18
Specification of upper constraint limit for symbolic dimensions 8-19
Parameter expression saturation . 8-21
Changes to zero initialization code model configuration parameter default

settings . 8-21
Enhanced code execution profiling report . 8-22
Elimination of unused writes to global variables 8-23

Verification . 8-26

SIL/PIL Manager . 8-26
Code coverage information in Code view . 8-26
Data logging and signal viewer block support for export function models

. 8-26
SIL/PIL for AUTOSAR Classic Software Components containing referenced

models . 8-26
Traceability for hidden blocks . 8-27

Check bug reports for issues and fixes . 8-28

R2019a

Code Generation from MATLAB Code . 9-2

Custom Data Type Replacement: Specify custom data type names for
MATLAB data types . 9-2

Model Architecture and Design . 9-3

Library-based code generation for reusable subsystem function interfaces
. 9-3

AUTOSAR Blockset product replaces Embedded Coder Support Package for
AUTOSAR Standard . 9-3

MISRA C:2012 and Secure Coding checks to improve compliance of
generated code . 9-3

Data, Function, and File Definition . 9-5

Preserve array dimensions for root-level inports and outports in generated
code . 9-5

Custom storage class with different code generation settings for single-
instance and multi-instance data . 9-5

Code generation definitions in multiple packages from Embedded Coder
Dictionary . 9-6

Storage classes with get and/or set data access functions in Embedded
Coder Dictionary . 9-6

Code definitions from local and shared Embedded Coder Dictionaries 9-6

xvi Contents

Code packaging support for model arguments . 9-7
Model argument support for top models . 9-7
C entry-point function prototype preview and customization in the Code

Mapping Editor . 9-7

Code Generation . 9-9

Code metrics information in code view . 9-9
Cross-release code import without opening previous release 9-9
Import of code from previous release for code generation-only workflow

. 9-10
Maximum line width for generated code . 9-10
Symbolic dimension support for %roll directive 9-11
Embedded Coder contextual tabs on the Simulink Toolstrip Tech Preview

. 9-12

Deployment . 9-13

Embedded Coder Support Package for PX4 Autopilots: Generate, build and
deploy Simulink models on Pixhawk flight controllers 9-13

DSP System Toolbox Support Packages for ARM Cortex -A and ARM Cortex -
M Processors will be removed . 9-13

Performance . 9-14

Reusable custom storage classes across referenced models 9-14
Parallelization of execution of for-loops . 9-15
Subsystem output with internal signals for buffer reduction 9-16
Optimized code execution speed for Single Instruction, Multiple Data

(SIMD) intrinsic division operation . 9-17
Optimized code for Switch Case blocks . 9-19
Removal of instrumentation overhead from execution-time profiling 9-22
Improvement in execution speed through common subexpression

elimination . 9-22
Data copy reduction in function calls . 9-24
Code generation for lookup table optimization . 9-25

Verification . 9-26

Check bug reports for issues and fixes . 9-27

R2018b

Code Generation from MATLAB Code . 10-2

Column Limit in Generated Code: Generate more readable code by
controlling line wrapping . 10-2

Static Code Metrics On Demand: Run static code metrics analysis when
needed after code generation . 10-2

Single Instruction, Multiple Data (SIMD) Support: Generate Intel SSE/AVX
intrinsic in MATLAB Coder . 10-3

xvii

Model Architecture and Design . 10-4

Multi-Instance Code Generation: Generate multi-instance code for top and
referenced models that are based on rates, exported functions, or rates
and exported functions . 10-4

Code Preview in Embedded Coder Dictionary: Verify pseudocode preview as
you select data, function, and memory section properties 10-4

Embedded Coder Dictionary Mapping Control: Define storage classes that
restrict mappings to parameters or signals . 10-4

Embedded Coder Dictionary Version Handling: Use and export code
definitions saved in previous releases with models created in later
releases . 10-4

AUTOSAR Run-Time Calibration: Map internal signals, states, and model
workspace parameters to AUTOSAR component memory and internal
parameters for calibration . 10-5

AUTOSAR Memory Sections: Use SwAddrMethods to control memory
placement of AUTOSAR runnable functions and internal data 10-6

AUTOSAR XML Import and Export: Round trip imported arxml file structure
and control packaging of new elements . 10-6

AUTOSAR XML Import: Changes to ArTypedPerInstanceMemory and
StaticMemory import behavior . 10-7

Obsolete AUTOSAR signal and state map functions removed 10-7
MISRA C:2012 and Secure Coding Standards: Improve compliance of

generated code by using updated Model Advisor checks 10-8

Data, Function, and File Definition . 10-9

Individual Function Mappings in Code Mapping Editor: Override default
function mappings with individual function mappings 10-9

Function Interface Control: Access Configure C Step Function Interface
dialog box from Code Mapping Editor in code perspective 10-9

Function Interface Control: Configure step functions for multi-instance,
rate-grouped, single-tasking models . 10-10

Shared Default Code Configurations for Data and Functions: Share default
code configuration settings between models 10-10

Storage Class on Root-Level I/O: Access global data and functions in multi-
instance models . 10-10

Code Generation . 10-11

Code View in Code Perspective: View generated code directly in Code
Perspective . 10-11

Data Coherency: Generate one variable for each Data Store read and write
operation . 10-11

AUTOSAR Code Generation: Automatically generate AUTOSAR platform
data types in C code . 10-11

Data Type Replacement: Specify replacement types for 64-bit integers
. 10-12

Multi-Dimensional Arrays: Preserve array dimensions for parameters and
lookup tables in generated code . 10-12

Hardware Implementation Parameters: ProdHWDeviceType and
TargetHWDeviceType are case-insensitive . 10-14

Enumerated Types: Optimizations in generated code 10-14

Deployment . 10-16

xviii Contents

Texas Instruments C2000: Use DMA and CAN blocks for all supported C28x
devices with the addition of DMA for F28x7x/F28004x and CAN for
F28004x . 10-16

Code Generation Assumptions: Use standalone workflow to run checks
. 10-16

Build Process: Library and header files for model reference hierarchy are
not copied . 10-16

Build Process: MATLAB_INCLUDES is not required in custom template
makefiles . 10-17

STM32F7 Tuning and Monitoring: Perform external mode simulation on
STM32F7 for parameter tuning and signal monitoring by using XCP over
TCP/IP or UART (Serial) . 10-17

Performance . 10-18

Execution-Time Profiling: Specify profiling granularity through model-wide
and block-specific controls . 10-18

Global Variable Caching: Reduce access for global variable arrays with
custom storage classes . 10-18

Data Copy Reduction: Eliminate unnecessary data copies for Mux blocks
. 10-20

Enhanced Buffer Reuse: Buffer reuse across the boundary of an Iterator
subsystem . 10-22

Code Replacement: Optimize generated code with SIMD and row-major
order support and code replacement enhancements 10-24

Inplace Optimization for Assignment Blocks: Reduce data copies for
Assignment blocks . 10-25

Execution Speed: Eliminate redundant subexpressions 10-26
Single Instruction, Multiple Data (SIMD) Intrinsics: Generate code with

optimized load and store operations for multidimensional signals and
square root operations . 10-28

Code Generation Report: Generate static code metrics reports faster . . 10-30
Functionality Being Removed or Changed . 10-30
Cache Efficiency: Store global block signal and state data operating at the

same rate in one data structure . 10-30

Verification . 10-33

SIL and PIL Simulations: Advanced custom storage classes support . . . 10-33
SIL and PIL Simulations: Support for imported grouped custom storage

classes . 10-33
Model Block SIL and PIL: Accelerator mode SIM target is not built 10-33

Check bug reports for issues and fixes . 10-34

R2018a

Code Generation from MATLAB Code . 11-2

Interactive Traceability: Visualize mapping between MATLAB code and C
code . 11-2

xix

Polyspace Integration: Verify C/C++ code generated with MATLAB Coder by
using simplified workflow . 11-2

Changes to Setup for MISRA C Compliance: Disable dynamic memory
allocation and set C standard math library to C99 (ISO) 11-2

Model Architecture and Design . 11-4

Embedded Coder Dictionary: Create custom code generation definitions for
data and functions . 11-4

Multi-Instance Code Generation: Apply more control when generating
reusable, reentrant code . 11-4

Variant Blocks Usability Enhancement: Generate Preprocessor Conditionals
by using MATLAB variables as variant controls 11-5

MISRA C:2012 Compliance and Deviation Considerations: Guidance for
evaluating your generated code for compliance with MISRA C:2012
directives and rules . 11-5

Modeling Checks: Improve compliance of generated code by using Model
Advisor check for MISRA C:2012 . 11-6

AUTOSAR Release 4.3: Import and export AUTOSAR XML schema version
4.3 . 11-6

AUTOSAR Perspective: Map and configure software components by using
Code Mapping Editor and AUTOSAR Dictionary 11-6

AUTOSAR XML Import and Export: Round-trip ComSpecs, import bitfield
CompuMethods, export interface variation points, and automate more
element creation . 11-8

AUTOSAR Signal Invalidation Block: Specify invalidation policy and initial
value directly as block parameters . 11-11

AUTOSAR Basic Software: Use array and bus data types with
NvMServiceCaller operations . 11-11

Obsolete AUTOSAR functions removed . 11-12

Data, Function, and File Definition . 11-14

Function-Prototype Control: Configure step function name with void void
interface . 11-14

Default Code Configurations for Data and Functions: Apply default code
generation configurations for categories of model data and functions
across a model . 11-14

GetSet Custom Storage Class Enhancement: Improved readability for an
array of buses . 11-15

Local Storage Class: Preserve local variables with Localizable storage class
. 11-16

Accurate Header File Extension: Generate correct #include statements for
imported data types . 11-16

Macro Access: Get data through a macro that your code defines 11-16
Tokens for Memory Sections: Use $N token instead of identifier 11-17
Parameter Initialization: Statically initialize tunable parameters from

system constants and other macros . 11-17
Model-Scoped Parameter Objects: Use FileScope to prevent name clashes

between parameters in different models . 11-17
File Packaging of Generated Code for Global Simulink Function Blocks:

Code for function body placed in model.c . 11-18
Identifiers: Represent name of storage class in identifier naming rules by

using new token $G . 11-18
Functionality Being Removed or Changed . 11-19

xx Contents

Code Generation . 11-20

Code Perspective: Customize Simulink desktop for code generation
workflows . 11-20

Rate Transition Block Code Customization: Separate Rate Transition block
code and data from algorithm code and data 11-20

Generated Files: Customize generated file names with new token $E . . 11-21
Hardware Implementation Settings: Inaccurate values corrected 11-22
Cross-Release Code Integration: Reuse referenced model code with
instance-specific parameters . 11-22

Cross-Release Code Integration: Import and simulate AUTOSAR code . 11-22
Traceability Comments: Specify Simulink identifier in comments for

Simulink blocks, Stateflow objects, and MATLAB Function blocks . . . 11-22
Newline Style: Customize linefeed character irrespective of the operating

system . 11-23
Export Functions: Generate ScratchModel file containing a Model block

. 11-23

Deployment . 11-24

Build Process: Specify toolchain for template makefile 11-24
Build Process Status for Parallel Builds: View and interact with build

process status for parallel builds of referenced model hierarchies . . 11-24
TI C2000 IPC Block: Support for Inter-Processor Communications for

F2837xD in TI C2000 Support Package . 11-24
C2000 F28004x: Support for peripherals in Texas Instruments C2000

Support Package . 11-24
STM32F7 Audio: Multiple channel Mic-In, Line-In, and Speaker out for

STM32F769I-Discovery in STM32 Support Package 11-24
STM32F7 External Mode: Support for TCP/IP and Serial Communication for

STM32F769I-Discovery board in STM32 Support Package 11-24
External Mode Simulation: Upload execution-time metrics through XCP

transport layer . 11-25

Performance . 11-26

Single Instruction, Multiple Data (SIMD) Intrinsics: Generate code with
optimized load and store operations for use with Intel processors with
SSE/AVX support . 11-26

Preprocessor Conditionals: Obtain better readability of generated code for
variant systems . 11-27

Buffer Reuse: Prioritize buffer reuse based on signal labels in model
diagram . 11-28

Configuration Set: New location and layout for optimization model
configuration parameters . 11-29

Data Copy Reduction: Generate code with fewer data copies for writes to
structure fields and matrix elements and for control flow patterns . . 11-30

Code Size Reduction: Eliminate identical functions in the generated code
. 11-34

Code Replacement: Optimize generated code with SIMD and row-major
order support and improved library header file packaging 11-36

Execution Speed: Move invariant code containing global variables out of for
loops . 11-36

Verification . 11-39

xxi

PIL Simulation: Verify initial values of global variables 11-39

Check bug reports for issues and fixes . 11-40

R2017b

Code Generation from MATLAB Code . 12-2

Setup for MISRA C Compliance: Configure code generation parameters to
increase compliance with MISRA C:2012 guidelines 12-2

SIL/PIL Execution Performance: Speed up SIL or PIL execution by disabling
constant input checking and global data synchronization 12-2

Execution-Time Profiling: Display time units in code execution profiling
report . 12-2

Default Case for Switch Statements: Increase generated code compliance
with coding standards . 12-2

Model Architecture and Design . 12-3

Function Interfaces: Generate multi-instance functions from export-function
models and control scope of Simulink functions 12-3

AUTOSAR Compositions and Basic Software: Import AUTOSAR
compositions and simulate diagnostic and memory services 12-4

AUTOSAR Sender-Receiver Communication: Model AUTOSAR queued send
and receive using Simulink messages . 12-4

MISRA C: 2012 Modeling Checks: Improve compliance of generated code by
using new MISRA C: 2012 standards checks . 12-4

Modeling Support for Secure Coding Standards: Check model for
compliance with secure coding requirements in CERT C, CWE, ISO/IEC
TS 17961 standards to improve security of generated code 12-6

Code Reuse: Generate reusable code for subsystems that contain data
objects with imported custom storage classes 12-7

Data, Function, and File Definition . 12-8

Storage Class for Model Workspace Parameters: Apply custom storage
classes to parameter objects in a model workspace 12-8

Custom Storage Class Simplification: Default removed from drop-down lists
. 12-8

Code Generation . 12-9

Cross-Release Code Integration: Reuse code from models containing model
references, global I/O, data stores, and parameters 12-9

Cross-Release Code Integration: Run all workflow tasks from current
release . 12-9

AUTOSAR Run-Time Calibration: Measure and calibrate signal and discrete
state data using arTypedPerInstanceMemory 12-9

Stateflow Element Traceability: Obtain enhanced inline traceability . . . 12-10
Stateflow Objects and MATLAB User Comments: Configure comments
flexibly . 12-10

xxii Contents

Enhanced Shared Utilities Naming: Customize the names of shared utility
functions that are inside MATLAB Function blocks 12-11

Checksum Length: Specify the character length of the $C token 12-11
Code Style: Generate static keyword for locally scoped functions 12-11
Configuration Parameters Dialog Box: View your model and code generation
configuration parameters in unified dialog box with search capability
. 12-11

Improved Readability of the Generated Code: Include parentheses around
compound expressions containing right-shift operators 12-13

Deployment . 12-14

AUTOSAR Support Package: Run live-script examples for AUTOSAR
compositions and Basic Software . 12-14

Support Package renamed to Embedded Coder Support Package for Intel
SoC Devices . 12-14

Support Package renamed to Embedded Coder Support Package for Xilinx
Zynq Platform . 12-14

Removed Support for Wind River VxWorks Hardware 12-14

Performance . 12-15

RAM Reduction: Reduce data copies in For Each subsystems and reuse
buffers of different sizes . 12-15

Reusable Storage Class: Specify reusable custom storage classes anywhere
on a path . 12-18

Execution Speed: Eliminate redundant subexpressions 12-18
Execution Speed: Convert data copies to pointer assignments for more

modeling patterns . 12-19
Execution Speed: Move invariant code out of for loops 12-22
Block Reordering for Improved Execution Efficiency: Change block

execution order to enable buffer reuse and loop fusion 12-26
MATLAB Function Block Buffer Reuse: Perform inplace assignment with

root I/O . 12-26
Execution-Time Profiling: Display time units in code execution profiling

report and Simulation Data Inspector . 12-27
memcpy and memset Optimization: Generate more efficient code for

variable-size arrays . 12-27
Data Copy Reduction: Generate fewer data copies at function call sites

. 12-29
Code Replacement: Apply MustHaveZeroNetBias and

SlopesMustBeTheSame properties for fixed-point operator code
replacement . 12-30

Enumerated Data Types Optimization: Improve the efficiency of the
generated code for enumerated data types . 12-30

Verification . 12-33

Multiple Processor SIL/PIL Testing: Perform SIL or PIL component tests on
different processors simultaneously . 12-33

SIL Simulation: Simplified configuration of hardware implementation
settings . 12-33

SIL/PIL Configuration: Parent model code coverage, execution-time
profiling, and SIL debugging settings apply to Model blocks with Top-
model code interface . 12-33

xxiii

Hardware Implementation Settings: SIL checks relaxed for data type sizes
and byte ordering . 12-34

Check bug reports for issues and fixes . 12-35

R2017a

Code Generation from MATLAB Code . 13-2

SIL and PIL execution improvements for MATLAB Coder 13-2
Verification of PIL target connectivity configuration 13-2
Code Replacement for MATLAB Coder: Create code replacement library

entries for target implementations that require data alignment 13-2

Model Architecture and Design . 13-3

AUTOSAR arxml File Import: Flexibly model imported periodic,
asynchronous, and initialization runnables . 13-3

AUTOSAR DESC elements populate Simulink Description fields 13-3
External mode code generation for a model containing inline variant blocks

. 13-4
Code generation support for Variant Subsystems containing global signals

. 13-4
Preprocessor conditionals guard content inside and outside of function-call

site . 13-5

Data, Function, and File Definition . 13-7

Function Interface: Return nonvoid type for scalar output of reusable
functions . 13-7

Utility to generate Simulink representations of struct and enum types
defined by external C code . 13-9

Code Generation . 13-10

Cross-Release Code Integration: Reuse model reference code generated
from previous releases . 13-10

Code Replacement for Cast and Multiply Operations: Detect overflow and
rounding mode equivalence for increased matches and code efficiency
. 13-10

More information in code generation report summary 13-10
Code Interface Report: Includes entry-point function for code generated

from Reset Function block . 13-11
Shared utility memory section associated with subfunctions 13-11
Inline traceability for generated code . 13-11
Clear file section content from TLC file . 13-12
Identifier case control with token decorators and custom text token $U

. 13-12
Name change for AUTOSAR local temporary variables 13-13
Additional checks against MISRA C:2012 guidelines in Code Generation

Advisor . 13-13

xxiv Contents

Deployment . 13-14

TI Code Composer Studio (CCS): Generate projects for CCS versions 5 and
6 with Embedded Coder Target for TI C2000 13-14

Customize generated makefiles for S-Functions 13-14
Release notes and workflow overview documentation added to AUTOSAR

support package . 13-14
SPI and I2C blocks added to TI C2000 support package 13-14
CCS v3.3 IDE automation support for TI C2000 has been removed 13-15
Real-time multitasking profiling for TI C2000 . 13-15
TCP and UDP blocks added to STMicroelectronics STM32F746G-Discovery

board . 13-15
MATLAB Coder PIL with STMicroelectronics STM32F4-Discovery Board

. 13-15
External Mode and PIL supported over TCP/IP by STMicroelectronics

STM32F746G-Discovery board . 13-17
Linux Support: Connect to ARM Cortex-M processor on Linux platform

. 13-17
ARM Cortex-R optimized code . 13-17
Develop a Target for ARM Cortex-R processors 13-17
Support for Wind River VxWorks RTOS will be removed 13-18

Performance . 13-19

Data Copy Reduction: Generate fewer data copies and use less RAM for
buses, data stores, and model blocks . 13-19

Code Efficiency: Improve loop fusion for Sum of Elements blocks and
generate less code for temporal logic in Stateflow 13-26

Data copy reduction for Merge blocks . 13-28
More instances of buffer reuse for blocks and subsystems in a chain . . . 13-31
Improved buffer reuse due to changes in block execution order 13-34
More efficient code for Bus Creator blocks . 13-35
Buffer reuse for Variant Source blocks . 13-36

Verification . 13-38

SIL and PIL Testing: Log signals inside exported functions and stream
signals to Simulation Data Inspector during simulation 13-38

Verification of PIL target connectivity configuration 13-38

Check bug reports for issues and fixes . 13-40

R2016b

Code Generation from MATLAB Code . 14-2

Static code metrics report for C++ code . 14-2
Verification of size_t and ptrdiff_t hardware settings 14-2
Verification of PIL target connectivity configuration 14-2
Optimization for array indexing in loops . 14-2
Reduction of the Intel Performance Primitives (IPP) code replacement

libraries (CRL) . 14-3

xxv

Model Architecture and Design . 14-4

AUTOSAR Basic Software (BSW) Services: Simulate BSW including
Diagnostic Event Manager (DEM) and NVRAM Manager (NvM) 14-4

AUTOSAR Parameters: Model STD_AXIS and COM_AXIS lookup table
parameters, export SwRecordLayouts, and apply SwAddrMethods . . . 14-4

AUTOSAR startup, reset, and shutdown modeling 14-6
AUTOSAR external trigger event communication 14-6
AUTOSAR support for JMAAB model architecture 14-7
AUTOSAR ExplicitReceiveByVal data access mode for receiver ports . . . 14-8
AUTOSAR ModeSenderPorts and ModeSwitchPoints for application mode

management . 14-8
AUTOSAR reference element definitions for sharing among components and

services . 14-9
ERT Target Code Generation: Remove unreachable reset and disable

functions to reduce dead code . 14-9
Conditional compile time check for imported macros with ImportedDefine

custom storage class . 14-10
Additional guarding of global data for variant systems 14-11

Data, Function, and File Definition . 14-14

Simulink Function Code Interface: Configure generated C/C++ function
interfaces for Simulink Function and Function Caller blocks 14-14

ERT default value for configuration parameter ParameterTunabilityLossMsg
. 14-14

Code Generation . 14-16

Cross-Release Code Integration: Reuse code generated from earlier
releases . 14-16

Compound Operation Code Replacement: Replace "Multiply Shift Right
Arithmetic" and "Multiply Divide" in generated code with a single custom
operation . 14-17

ARXML import/export and C code generation for latest AUTOSAR 4.2 and
3.2 standard revisions . 14-17

AUTOSAR code replacement library enhancements 14-17
Static code metrics report for C++ code . 14-17
Static code metrics data produced by Polyspace 14-18
Streamlined report pane for easier model configuration 14-18
Improved traceability between model and code 14-18
Code replacement enhancements . 14-19
$I macro changed for argument names used as input and output 14-19
Improved compliance with MISRA C:2012 Rules 10.1, 10.5, and 10.8 . . 14-19
Improved compliance with MISRA AC AGC Rule 12.6 14-21
Use default installation folder on Windows system with ReFS file system

. 14-22

Deployment . 14-24

Cortex-M7 Target Support Package: Generate code for STM32F746G-
Discovery Board . 14-24

Added Embedded Coder Support Package for ARM Cortex-R Processors
. 14-24

Improved External mode over serial communication 14-25
New blocks added to TI’s C2000 support package 14-25

xxvi Contents

Change in name and the base product for the FRDM-K64F and the FRDM-
KL25Z support packages . 14-25

Support for TI's C5000 DSPs has been removed 14-25
Support for TI’s C6000 has been removed . 14-25
Support for Wind River VxWorks RTOS will be removed 14-25
Support for idelink_ert.tlc will be removed . 14-26

Performance . 14-27

Data Reuse and Memory Reduction: Reuse global data for nonreusable
subsystems and reduce data copies with user-specified buffers 14-27

Code Optimizations: Generate more efficient code with select-assign-
iterator pattern and matrix padding operations 14-29

Display of code execution times for model component 14-33
More efficient code for array element assignments 14-33
Loop fusion for nested for loops . 14-35
More efficient initialization code for root-level inports 14-36
More efficient code for Boolean expressions . 14-39

Verification . 14-41

Verification of size_t and ptrdiff_t hardware settings 14-41
Verification of PIL target connectivity configuration 14-41
Signal range checking in SIL and PIL simulations 14-41
SIL and PIL block support for Simulink Function and Function Caller blocks

. 14-41

Check bug reports for issues and fixes . 14-42

R2016a

Code Generation from MATLAB Code . 15-2

Export data by using ExportedDefine storage class 15-2
SIL execution returns standard output and standard error streams 15-2

Model Architecture and Design . 15-3

Compile-Time Dimensions: Generate compiler directives (#define) for
implementing signal dimensions . 15-3

Compile-Time Variants: Generate compiler directives (#if) for variant
choices specified with Variant Source and Variant Sink blocks 15-3

C++ Code Generation: Use referenced models with multitasking, export-
functions, and virtual buses . 15-4

MISRA C:2012 Compliance: Check block names and Assignment blocks by
using the Model Advisor . 15-4

AUTOSAR Round Trip: Automate model additions for update and merge of
ARXML files . 15-4

Comment change in generated code . 15-5
Variants in AUTOSAR component modeling . 15-5
AUTOSAR DataReceivedEvents for receiver ports in ImplicitReceive data

access mode . 15-7

xxvii

AUTOSAR LiteralPrefix for enumerations in IncludedDataTypeSets 15-7
Programmatic validation and synchronization of AUTOSAR model
configurations . 15-7

Data, Function, and File Definition . 15-8

In/Out Arguments: Specify same variable name for in/out arguments of
MATLAB Function and Model blocks . 15-8

Custom Storage Class Type AccessFunction . 15-11
Creation of custom storage classes for macros defined by compiler options

. 15-11
Generation of ERT S-functions that represent variant controls as

preprocessor conditionals . 15-11

Code Generation . 15-13

Default style C++ interface replaces the void-void style C++ interface
. 15-13

Compiler warning limitation removed for portable word sizes in SIL
simulations . 15-13

AUTOSAR arxml round trip . 15-14
Improved AUTOSAR library support for Mfx functions 15-15
AUTOSAR target no longer supports building wrapper subsystem as

AUTOSAR SW-Component . 15-15
Root model name in generated identifier for shared utility files 15-16
Improved configuration parameter defaults for Embedded Coder targets

. 15-16
Streamlined code generation panes for easier model configuration 15-17
Build button removed from Configuration Parameters dialog box 15-20
Improved web view for code generation report 15-21
Dependent parameters not added to custom code generation objective

. 15-21
Removal of leading underscore character in macro type definitions . . . 15-21

Deployment . 15-23

Hardware implementation parameters enabled by default 15-23
MATLAB Coder PIL With ARM Cortex-A: Verify and profile ARM optimized

code with Altera SoC and Xilinx Zynq hardware 15-23
Updates to support package for Texas Instruments C2000 processors . . 15-23
Support package for Freescale FRDM-K64F board 15-23
Support for TI’s C5000 DSPs will be removed . 15-24
Support for TI’s C6000 DSPs will be removed . 15-24
Change in base product for ARM Cortex-Based VEX Microcontroller support

package . 15-24

Performance . 15-25

Data Buffer Reuse: Use same variable for multiple signals in a path by using
the same Reusable storage class specification 15-25

Reuse input, output, and state of Delay block . 15-25
Initialization code occurs once after start code in model_initialize function

. 15-25
Reset function improves initialization code optimization 15-28
Removal of unnecessary rtmIsFirstInitCond flag 15-30
Optimized code for models containing logical operator blocks 15-32

xxviii Contents

Improved code for conditional expressions involving Boolean expressions
. 15-33

memset Optimization for more scenarios . 15-34
Changes to meaning of createCRLEntry wildcard syntax for fixed-point data

. 15-39
Code replacements involving root-level I/O variables and data alignment

. 15-40

Verification . 15-41

SIL/PIL Data Access: Use vector Get/Set custom storage class and C++
parameter access methods . 15-41

SIL/PIL support for variant condition propagation 15-41
SIL simulation returns standard output and standard error streams . . . 15-41
Linux SIL/PIL support for LDRA Testbed . 15-41

Check bug reports for issues and fixes . 15-42

R2015aSP1

Bug Fixes

Check bug reports for issues and fixes . 16-2

R2015b

Code Generation from MATLAB Code . 17-2

MATLAB Coder Storage Classes: Easily import and export data by using
storage classes . 17-2

MATLAB Coder PIL With ARM Cortex-A: Verify and profile ARM optimized
code with BeagleBone Black hardware . 17-3

Code generation assumptions verified during PIL execution 17-3
Control of signed right shifts in generated code 17-3
Detection of multiword operations . 17-4

Model Architecture and Design . 17-5

MISRA-C 2012: Comply with mandatory and required rules 17-5
AUTOSAR 4.1.3 and 4.2: Import and export ARXML and generate code for

latest AUTOSAR standard . 17-5
AUTOSAR sender-receiver modeling . 17-6
AUTOSAR client-server modeling . 17-8
AUTOSAR nonvolatile data communication modeling 17-9
AUTOSAR component behavior modeling . 17-11
AUTOSAR COM_AXIS lookup table modeling . 17-12
Embedded Coder model templates . 17-12
Removal of uncalled Disable functions from generated code 17-13

xxix

Enhancement to option for generating preprocessor conditionals 17-13

Data, Function, and File Definition . 17-15

Tokenized function names for custom storage class GetSet 17-15

Code Generation . 17-16

Embedded Coder Quick Start: Quickly configure model to generate reusable
and efficient code . 17-16

Internationalization: Generate and review code containing mixed languages
for different locales . 17-16

MISRA C:2012 code generation objective . 17-17
AUTOSAR arxml round-trip . 17-17
Toolchain controls for AUTOSAR code generation 17-19
AUTOSAR RTE file generation enhanced for SIL and PIL 17-19
Lookup table blocks with new even spacing specification generate

AUTOSAR compatible IFX library routines . 17-20
Control use of signed shifts in generated code 17-20
Code generation report with operator traceability 17-21

Deployment . 17-22

Hardware Implementation Selection: Quickly generate code for popular
embedded processors . 17-22

Code Replacement Tool uses simplified specification 17-23
Code replacement support for new lookup table breakpoint specification

. 17-24
Support for Analog Devices VisualDSP++ will be removed 17-24

Performance . 17-25

RAM/ROM Optimization Improvements: Generate more efficient code using
reusable storage class and converting data copies to pointer assignments
. 17-25

Live Execution Profiling: View PIL profile results during run-time 17-26
Enhanced support for buffer reuse at the root-level input and output ports

. 17-26
More efficient code for small subsystems . 17-29
More efficient code for Simulink.Bus objects . 17-30
Enhanced local variable reuse . 17-32
Enhanced consolidation of for loops . 17-33

Verification . 17-35

Faster SIL and PIL Verification Workflow . 17-35
Code generation assumptions verified during PIL simulation 17-35
SIL and PIL support for C++ class root-level I/O access methods 17-35
Removal of Generate code only parameter restriction 17-36
Removal of scheduling limitations that caused algebraic loops 17-36

Check bug reports for issues and fixes . 17-2

xxx Contents

R2015a

Code Generation from MATLAB Code . 18-2

Indent style and size control for generated C/C++ code 18-2
Improved MISRA-C compliance for bitwise operations on signed integers

. 18-2
Improved MISRA-C type cast compliance . 18-3

Model Architecture and Design . 18-5

AUTOSAR improvements including multi-runnable modeling and code
efficiency . 18-5

Combined input/output arguments with function prototype control 18-5
Improved MISRA-C compliance for bitwise operations on signed integers

. 18-5
AUTOSAR multi-runnable modeling using Simulink rate-based multitasking

. 18-6
Enhanced modeling with AUTOSAR system constants 18-6
AUTOSAR CompuMethod enhancements . 18-7
Preprocessor conditionals for single variant choice 18-7

Data, Function, and File Definition . 18-8

Control of Boolean and data type limit identifiers in generated code 18-8
Names of built-in storage classes reserved . 18-8

Code Generation . 18-10

Simplified Code Replacement Library specification plus more replacements
involving integer operations . 18-10

Improved readability for shared header file 'rtwtypes.h' 18-11
New and enhanced Model Advisor checks for MISRA-C compliance . . . 18-12
Improved traceability for AUTOSAR RTE implicit read 18-12
Configurable aliveTimeout value for AUTOSAR ports 18-13
AUTOSAR calibration parameter export for COM_AXIS lookup tables . . 18-13
Fixed-point scaling information in Code Interface Report 18-13
Unsigned integer minimum data limit identifiers 18-14
Default iteration variable data type . 18-14

Deployment . 18-16

Code Replacement Viewer enhanced . 18-16
Model configuration parameter considered for division operator code

replacements . 18-16
Lookup table algorithm parameter specification enhancements 18-16
Header file for Basic Linear Algebra Subroutine (BLAS) multiplication

function code replacement example changed 18-16
Code replacement detection of overflow and rounding mode equivalence

. 18-17
Feature being removed in a future release . 18-17

Performance . 18-18

xxxi

More efficient code involving model references, unit delays, and global data
references . 18-18

Conditional compilation of Data Store Memory block memory definition and
declaration . 18-23

Ternary Boolean expressions transformed into assignment statements
. 18-24

Verification . 18-25

SIL/PIL for protected models and SIL source code debugging using
Microsoft Visual Studio Express . 18-25

Model block SIL/PIL parameter renamed . 18-26
ERT S-Function block no longer supported for AUTOSAR 18-26
SIL/PIL support for replacing boolean data type with int8 18-26
SIL/PIL support for generated access methods for C++ model class root-

level I/O signals . 18-26

Check bug reports for issues and fixes . 18-27

R2014b

Code Generation from MATLAB Code . 19-2

Processor-in-the-loop (PIL) verification and execution profiling for MATLAB
code . 19-2

Software-in-the-loop verification improvements for MATLAB Coder 19-2
Additional options for custom banners and comments in C and C++ code

generated from MATLAB code . 19-3
Highlighting of potential data type issues in code generation reports . . . 19-3

Model Architecture and Design . 19-7

AUTOSAR targeting updates including 4.1 ARXML, client/server with
Simulink Functions, multi-instance components, and IFL/IFX libraries
. 19-7

AUTOSAR client and server modeling . 19-7
Global From and Goto blocks for AUTOSAR modeling 19-8
AUTOSAR IRV branch from outport signal allowed outside runnable 19-8

Data, Function, and File Definition . 19-9

Constant sample time limitation for AUTOSAR models 19-9
Iteration variable in For Iterator block uses signal name 19-9
Data type replacement specification can be used across models 19-9
Definition file for grouped custom storage classes 19-9
Type definition location for custom storage classes 19-9
GetFunction and SetFunction included in checks for identifier clash 19-9

Code Generation . 19-10

Enhanced reporting of eliminated blocks . 19-10
Improved MISRA-C type cast compliance . 19-10

xxxii Contents

Support Package for AUTOSAR Standard . 19-10
AUTOSAR help navigation enhancements . 19-11
Support for AUTOSAR Release 4.1 . 19-11
Multi-instance AUTOSAR atomic software components 19-12
AUTOSAR arxml import and export . 19-12
AUTOSAR addPackageableElement replaces add*Interface functions . . 19-16
Code generation report with enhanced navigation and integrated access to

code metrics data . 19-16
Updated license requirements for viewing code generation report 19-17
Option for doxygen style comments in generated code 19-17
Dynamic memory allocation parameters renamed 19-18
Template makefile compatibility with execution time profiling 19-18
Intel Performance Primitives (IPP) platform-specific code replacement

libraries for cross-platform code generation 19-18

Deployment . 19-20

Embedded Coder support packages for AUTOSAR, TI Concerto, and
Freescale FRDM-KL25Z . 19-20

Relational operator replacement . 19-20
Code replacement involving vector and matrix data 19-20
Algorithm specification for addition and subtraction operator replacement

. 19-21
Improved code replacement with output type cast absorption 19-21
Lookup table function code replacement extended to 30 dimensions . . . 19-22
Rounding mode support for lookup table function replacement 19-22
Algorithm parameter value sets in code replacement table entries 19-22
coder.replace support for functions specified with varargin input variable

. 19-23
Documentation installation with hardware support package 19-23
Support package for Altera SoC platform . 19-23
Support package for BeagleBone Black hardware 19-23
Support for Eclipse IDE has been removed . 19-23
Support for Green Hills MULTI IDE has been removed 19-24
Support for Texas Instruments C5000 DSPs will be removed 19-24

Performance . 19-25

Reduced RAM and faster execution for modeling patterns including select-
assign-iterate blocks, subsystem interfaces, and model references . . 19-25

Global variable localization optimizations . 19-30

Verification . 19-32

Top-model code testing with Model block SIL and PIL 19-32
SIL/PIL support for Simulink Function and Function Caller blocks 19-32
SIL debugging support for Linux . 19-32
PIL support for test hardware approach . 19-33
SIL/PIL support for model initialization dynamic memory allocation . . . 19-33

Check bug reports for issues and fixes . 19-34

xxxiii

R2014a

Code Generation from MATLAB Code . 20-2

Template to customize code generation output for MATLAB Coder 20-2
In-place function replacement with coder.replace in MATLAB 20-2
Single-line (//) comment style available for generated code 20-2
Software-in-the-loop verification for MATLAB Coder 20-3
Change of default value for MATLABFcnDesc . 20-4

Model Architecture and Design . 20-5

Capability to merge AUTOSAR authoring tool changes into Simulink models
as part of round-trip iterations . 20-5

AUTOSAR 4.0 static and constant memory, AUTOSAR-typed per-instance
memory, and VariationPointProxy . 20-7

Specify AUTOSAR runnable symbol name distinct from short-name 20-7
Improved AUTOSAR arxml support for measurement and calibration . . . 20-8
AUTOSAR data dictionary support . 20-8
Configure AUTOSAR Interface button removed from AUTOSAR Code

Generation Options . 20-9
Subsystem methods of AUTOSAR arxml.importer class removed 20-9

Data, Function, and File Definition . 20-10

Custom storage class and optimized class declarations for C++ class code
generation . 20-10

Constant sample time limitations for root-level Outport blocks 20-10
Example model rtwdemo_cppencap renamed to rtwdemo_cppclass 20-11
Unit Delay block optimization . 20-11

Code Generation . 20-12

In-place function replacement with coder.replace in MATLAB and lookup
table code replacement for Simulink . 20-12

Global variable usage available in the static code metrics report 20-12
Single-line (//) comment style available for generated code 20-12
Code indentation support for namespace declarations in generated code

. 20-13
AUTOSAR C code generation enhancements . 20-13
Static main program module for C++ class code generation 20-14
Error message for data type replacement and classic call interface conflict

. 20-14

Deployment . 20-15

ARM Cortex-A optimized code generation using Ne10 library 20-15
Lookup table code replacement for Simulink . 20-15
Replacement of functions that take vector and matrix arguments 20-15
Logical data type support for arguments of replaced functions 20-16
Code replacement data alignment for complex types 20-16
Intel IPP (ANSI) and Intel IPP (ISO) code replacement libraries are

combined . 20-16
Support for Eclipse IDE will be removed . 20-16

xxxiv Contents

Support for Green Hills MULTI IDE will be removed 20-17
Support package for ARM Cortex-A processors 20-17
Support package for Texas Instruments C6000 processors 20-17
Updates to support package for Texas Instruments C2000 processors . . 20-18
Updates to support package for Xilinx Zynq-7000 platform 20-18
Updates to support package for STMicroelectronics STM32F4 Discovery

board . 20-18
Wind River Tornado (VxWorks 5.x) example main program option to be

removed in future release . 20-19

Performance . 20-20

Additional options for reuse of global variables 20-20
Enhanced global variable optimization options 20-20
for loops used to initialize arrays to zero . 20-20

Verification . 20-21

Software-in-the-loop simulation for physical models 20-21
SIL verification for subsystem code generation 20-21
SIL and PIL support for fixed-point data type override 20-23
SIL and PIL support for Invoke AUTOSAR Server Operation block 20-23
SIL and PIL support for structure parameters with storage class

SimulinkGlobal . 20-23
Model block SIL and PIL with export-function and asynchronous function-

call models . 20-23
Model block SIL and PIL with disabled inline parameters 20-24
SIL and PIL block improvements . 20-24

Check bug reports for issues and fixes . 20-25

R2013b

Code Generation from MATLAB Code . 21-2

Software-in-the-loop verification for MATLAB Coder 21-2
Custom generated identifiers for emxArray utility functions 21-2

Model Architecture and Design . 21-3

Enhanced modeling of AUTOSAR runnables and modes, and improved
ARXML import of internal behavior . 21-3

Reorganization of Model Advisor Embedded Coder checks 21-5
Model Advisor fixed-point checks with additional coverage and optimization

awareness . 21-5
Protected model Web view . 21-5
RTW.AutosarInterface class to be removed in a future release 21-5
Subsystem methods of arxml.importer class to be removed in a future

release . 21-6

Data, Function, and File Definition . 21-7

xxxv

Simplified global types file rtwtypes.h with invariant content 21-7
C++ encapsulation support for name space control and template-based file

customization . 21-7
Shared utility naming control . 21-8
Expanded support for identifier names . 21-8
Terminate function setting honored for subsystems and referenced models

. 21-8

Code Generation . 21-10

Support for AUTOSAR release 4.0.3 XML and generated code 21-10
Indent style and size control for code generation 21-10
Subsystem functions return value in generated code 21-10
Model reference step function void input and output arguments 21-10

Deployment . 21-11

ARM Cortex-M optimized code with STM32F4-Discovery board example
. 21-11

Wind River VxWorks 6.9 support . 21-12
Support package for Texas Instruments C2000 processors 21-12
Coder Target pane in Configuration Parameters dialog box 21-13
ZedBoard hardware support . 21-14
Simplified multi-instance code interface and dynamic memory allocation for

ERT targets . 21-14
Addition and Subtraction Operator Code Replacement Assumes Cast-Before-

Operation Behavior . 21-15

Performance . 21-17

Reusable custom storage class to reduce root I/O memory 21-17
Subsystem functions reused independently of output connection 21-17

Verification . 21-18

SIL and PIL support fixed-point data types wider than 32 bits 21-18
SIL and PIL protected model support . 21-18
Code execution profiling improvements . 21-18

Check bug reports for issues and fixes . 21-20

R2013a

Code Generation from MATLAB Code . 22-2

Improved code replacement traceability for MATLAB code generation . . 22-2
Static code metrics report for MATLAB Coder . 22-2

Model Architecture and Design . 22-4

AUTOSAR user interface and round trip ARXML file import and export
improvements . 22-4

xxxvi Contents

Code generation for variable-size scalar signals 22-6

Data, Function, and File Definition . 22-7

Shortened system-generated identifier names . 22-7
Improved data initialization with custom storage classes 22-7
Default specification for global types . 22-7
Subsystem block parameter Function packaging option renamed 22-7

Code Generation . 22-8

Model Advisor checks for code generation . 22-8

Deployment . 22-9

Concurrent execution API to target embedded multicore platforms 22-9
Hardware configuration relocation from Target Preferences block to
Configuration Parameters dialog box . 22-9

Downloadable support and blocks for Analog Devices DSPs 22-10
Texas Instruments C2000 Clocking Options . 22-11
Support for Texas Instruments C2802x and Texas Instruments C2803x

variants . 22-12
Downloadable support and blocks for Xilinx Zynq-7000 platform 22-12
Support ending for Eclipse IDE in a future release 22-13
Support ending for remoteBuild method in a future release 22-13

Performance . 22-14

Optimized function arguments for nonreusable subsystems 22-14
Reduced data copies for tunable parameter expressions 22-14
Removal of unused global variables . 22-14

Verification . 22-15

Debugging during SIL simulations . 22-15
Simulation of multiple SIL Model blocks in a top model 22-15
API for testing rtiostream communications . 22-15
SIL and PIL support for targets with multicore processors 22-16
Additional code annotation for justifying Polyspace checks 22-16
Code execution profiling improvements . 22-16
Code-to-model traceability links for reusable subsystems in libraries . . 22-17

Check bug reports for issues and fixes . 22-19

R2012b

Cyclomatic complexity measurement in static code metrics report 23-2

Custom code substitution for MATLAB functions using code replacement
libraries . 23-2

xxxvii

SIL and PIL support for signal logging, encapsulated C++, and AUTOSAR
calibration parameters . 23-2

Signal logging for SIL and PIL simulations . 23-2
Use SIL and PIL simulations to verify encapsulated C++ code 23-3
Improved SIL and PIL verification for AUTOSAR-compliant code 23-3

AUTOSAR 4.0 nonscalar data support . 23-3

Code annotation for justifying Polyspace checks 23-3

Texas Instruments Code Composer Studio IDE 5.1 support 23-4

External mode support for ERT targets with static main 23-4

Downloadable support for Green Hills MULTI . 23-4

Support for Texas Instruments C2806x processors 23-5

Performance enhancement of Simulink data objects 23-6

AUTOSAR software component import and export enhancements 23-7
Import validation . 23-7
Faster import and export of arxml files . 23-7
Explicit access mode for AUTOSAR Sender and Receiver ports 23-7
Import port-based calibration parameters . 23-7

Highlight virtual blocks in model Web view of code generation report
. 23-7

Code Execution Profiling Improvements . 23-7
Updated Code Execution Profiling API . 23-7
Code Execution Profiling Supports Single Object Output 23-10

Incremental Compilation with Changes in Code Coverage Settings . . . 23-10

Check bug reports for issues and fixes . 23-11

R2012a

AUTOSAR Enhancements . 24-2
AUTOSAR Release 4.0 . 24-2
Support for Schema 2.0 Removed . 24-2

Code Efficiency Enhancements . 24-2
For Each Subsystem Loop Bound Passed by Value 24-2
Fully Inlined S-functions from Legacy Code Tool 24-2
Element-Wise Operations as Inputs to Intrinsic Functions 24-3

Enhancements to Custom Storage Classes in Simulink and mpt Packages
. 24-3

xxxviii Contents

Code Generation Report Includes Simulink Web View 24-4

LDRA Testbed Code Coverage Annotations in Code Generation Report
. 24-4

Generated Identifiers Enhancements . 24-4
Simplified Identifiers for Model Reference Code 24-4
Consistent Identifiers for Comparing Generated Code 24-5

Code Replacement Enhancements . 24-5
Target Function Libraries Renamed to Code Replacement Libraries 24-5
Enhanced Code Replacement Traceability . 24-5
Code Replacement Support for Simulink Matrix Division and Inversion

Operators . 24-6
Code Replacement Support for MATLAB Coder fix, hypot, round, and sign

Functions . 24-6
Integer Functions Now Return Real-World Values 24-6

SIL and PIL Enhancements . 24-7
SIL and PIL Test Harness Files in Code Generation Report 24-7
PIL Support for Code Coverage with LDRA Testbed 24-8
Seamless Switching Between SIL and PIL for Top-Model and Model Block

. 24-8
Enhanced Hardware Implementation Support . 24-8
Top-Model Output Limitations Removed . 24-9
Model Block SIL/PIL Support for Absolute Time 24-9

Changes for ERT and ERT-Based Targets . 24-9

Changes for Embedded IDEs and Embedded Targets 24-10
Support Added for GCC 4.4 on Host Computers Running Linux with Eclipse

IDE . 24-10
Support Added for Using Processor-in-the-Loop (PIL) with Serial

Communication Interface (SCI) for TI C2000 Processors 24-10
Support Removed for Freescale MPC5xx . 24-11
Limitation: Parallel Builds Not Supported for Embedded Targets 24-11

New and Enhanced Demos . 24-11

Check bug reports for issues and fixes . 24-13

R2011b

Static Code Metrics in Code Generation Report . 25-2

AUTOSAR Enhancements . 25-2
Import and Export of AUTOSAR Sensor/Actuator Components 25-2
Improved Simulink Library Support for Multiple Runnables 25-2
AUTOSAR Schema Version 3.2 . 25-2
Export AUTOSAR XML as Single File . 25-2

xxxix

SIL and PIL Enhancements . 25-2
Code Execution Profiling of Functions in Subsystems and Model Blocks

. 25-2
Code Coverage with LDRA Testbed . 25-3
BitField and GetSet Custom Storage Classes . 25-3
Model Blocks with Variable-Size Signals . 25-3
Verification of Generated C++ Code . 25-3

Generate Multitasking Code for Concurrent Execution on Multicore
Processors . 25-4

Changes for Embedded IDEs and Embedded Targets 25-4
64-bit Version of Embedded Coder Supports Analog Devices VisualDSP++

and Texas Instruments Code Composer Studio 3.3 and 4.0 25-4
Support Added for Wind River VxWorks 6.8 . 25-4
Support Added for Serial Communications Interface with Processor-in-the-

loop (PIL) for Texas Instruments™ C28035 and C28335 25-5
New Target Function Library for Intel IPP/SSE (GNU) 25-5
Support Added for Single Instruction Multiple Data (SIMD) with ARM

Cortex-A8, ARM Cortex-A9 , and Intel Processors 25-5
Support Removed for Altium TASKING . 25-5
Support Removed for Infineon C166 . 25-5
Support Ending for Green Hills MULTI in a Future Release 25-6
Support Ending for Freescale MPC5xx in a Future Release 25-6

Saturation Control of Stateflow Data . 25-6

Custom Storage Class Properties for Managing Data Ownership and
Definition . 25-6

Export Data Declarations to Shared Header File for Code Generation with
Model Reference . 25-7

Target Function Library Code Replacement Enhancements 25-7
Code Replacement Tool for Creating and Managing TFL Tables 25-7
Ability to Align Data Objects to TFL-Specified Boundaries to Boost Code

Performance . 25-8
Support for Replacing Element-wise Matrix Multiply 25-8

Code Generation Enhancements . 25-8
Redundant Condition Checks . 25-8
Loop Fusion . 25-9
Invariant Condition Check Lifting . 25-9
Parameter Pooling for Stateflow and Interpreted MATLAB Function Blocks

. 25-9
Readability Improvement for Reusable Subsystem Input and Output 25-9

Enhanced Code Generation Optimization Using Minimum and Maximum
Values . 25-9

New Model Advisor Check for Code Efficiency of Logic Blocks 25-10

Control of Default Case Generation for Switch Statements in Generated
Code for Stateflow Charts . 25-10

xl Contents

Improvement to Build Process for Conflicting Identifiers 25-11

Update to Code Generation Verification Class cgv.Config 25-11

License Names Not Yet Updated for Coder Product Restructuring . . . 25-11

New and Enhanced Demos . 25-12

Check bug reports for issues and fixes . 25-13

R2011a

Coder Product Restructuring . 26-2
Product Restructuring Overview . 26-2
Resources for Upgrading from Real-Time Workshop Embedded Coder . . 26-2
Migration of Embedded MATLAB Coder Features to MATLAB Coder 26-3
Migration of Embedded IDE Link and Target Support Package Features to

Simulink Coder and Embedded Coder . 26-3
Interface Changes Related to Product Restructuring 26-4
Simulink Graphical User Interface Changes . 26-4

Data Management Enhancements and Changes . 26-4
Memory Section Enhancements . 26-5
No Longer Able to Set RTWInfo or CustomAttributes Property of Simulink

Data Objects . 26-5
Parts of Data Class Infrastructure Not Available 26-5
No Longer Generating Pragma for Data Defined with Built-In Storage Class

ExportedGlobal, ImportedExtern, or ImportedExternPointer 26-6
Simulink.CustomParameter and Simulink.CustomSignal Data Classes To Be

Deprecated in a Future Release . 26-6

AUTOSAR Enhancements . 26-7
Calibration Parameters . 26-7
Multiple Runnables from Virtual Subsystems . 26-7
Support for Code Descriptor Elements . 26-7

SIL and PIL Enhancements . 26-8
Code Execution Profiling . 26-8
PIL Block Parameter Tuning . 26-8
Top-Model SIL/PIL and PIL Block Parameter Initialization 26-8
Model Block Parameter Tuning and Model Initialization 26-8

Code Generation Enhancements . 26-9
Improved Code for Data Store Memory In-place Assignment 26-9
Improvements to Target Function Library Replacements 26-9
Improved Loop Fusion . 26-9
Improved Array Indexing . 26-9
Improvement on Matrix Parameter Pooling . 26-9
Readability Improvements Involving Data References 26-9

xli

Code Generation Verification (CGV) API Updates 26-10
Support for Adding Multiple Callback Functions 26-10
New Functionality Added to the cgv.CGV Class 26-10

MISRA-C Code Generation Objective . 26-12

New Model Advisor Check for Code Efficiency of Lookup Table Blocks
. 26-12

Enhanced Code Generation Optimization . 26-13

Target Function Library Replacement Based on Computation Method for
Reciprocal Sqrt, Sine, and Cosine . 26-13

Target Function Library Support for abs, min, max, and sign functions
. 26-13

C++ Encapsulation Allowed for Referenced Models in For Each
Subsystems . 26-13

Improved Code Generation for Portable Word Sizes 26-14

Improved Comments in the Generated Code . 26-14

Replacement Data Types and Simulation Mode for Referenced Models
. 26-14

Changes for Embedded IDEs and Embedded Targets 26-14
Feature Support for Embedded IDEs and Embedded Targets 26-15
Execution Profiling during PIL Simulation . 26-15
Location of Blocks for Embedded Targets . 26-15
Location of Demos for Embedded IDEs and Embedded Targets 26-16
Multicore Deployment with Rate-Based Multithreading 26-17
Windows-Based Code Generation and Remote Build On Linux Target

(BeagleBoard) . 26-17
Changes to Frame-Based Processing . 26-17
New Support for Analog Devices Blackfin BF50x and BF51x Processors

. 26-18
Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-A8, and

Cortex-A9 Processors . 26-19
Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI 26-19
Support for Texas Instruments Delfino C2834x Processors 26-19
Ending Support for Altium TASKING in a Future Release 26-20
Ending Support for Freescale MPC5xx in a Future Release 26-20
Ending Support for Infineon C166 in a Future Release 26-20
Removed Methods and Arguments . 26-20

Changes to ver Function Product Arguments . 26-20

New and Enhanced Demos . 26-20

Check bug reports for issues and fixes . 26-22

xlii Contents

R2023a

Version: 7.10

New Features

Bug Fixes

Compatibility Considerations

1

Code Generation from MATLAB Code

instrumentCode: Add instrumentation to code you already generated
for SIL or PIL execution
Starting in R2023a, you can use the instrumentCode function to add instrumentation to code you
already generated for software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution. You can add
instrumentation to track stack memory usage, analyze C/C++ code coverage, profile entry-point
functions, or profile functions called within entry-point functions. You can also use instrumentCode
to specify the toolchain to use to build the generated code, and compiler optimization and debug
settings for the specified toolchain.

The instrumentCode function decouples the code generation and code instrumentation steps. This
functionality enables you to analyze the execution behavior of the code you intend to deploy without
altering the original functional code. Once you generate the code, you can apply the instrumentation
as many times as you need.

For example, first generate code for the entry-point function foo. In the code generation
configuration object, set the verification mode to SIL. Also, specify the location of the generated files
using the -d option.

cfg = coder.config('lib');
cfg.VerificationMode = 'SIL';
codegen -config cfg foo -args {0} -d my_codegen_folder

To add instrumentation to the generated code to profile both entry-point functions and functions
called within entry-point functions, call instrumentCode:

instrumentCode('my_codegen_folder', 'CodeExecutionProfiling', true, 'CodeProfilingInstrumentation', true)

This instrumented code has the same behavior as the code generated with the
CodeExecutionProfiling and CodeProfilingInstrumentation properties enabled in the
configuration object cfg.

Analyze coverage of C/C++ code during SIL and PIL simulations
Starting in R2023a, you can perform coverage analysis of both the generated C/C++ code and
custom C/C++ during a software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution. To include
instrumentation that performs coverage analysis in the generated code, do one of the following:

• When generating a SIL or PIL MEX from your MATLAB® entry-point functions by using the
codegen command, set the coder.EmbeddedCodeConfig property CodeCoverage to true.
Alternatively, if you generate the SIL or PIL MEX by using the MATLAB Coder™ app, set the
configuration parameter Enable C/C++ code coverage to Yes.

For example, to generate a SIL MEX with code coverage enabled for the entry-point function foo
that accepts a double scalar input, run these commands:

cfg = coder.config('lib');
cfg.VerificationMode = 'SIL';
cfg.CodeCoverage = true;
codegen -config cfg foo -args {0}

R2023a

1-2

• Use the instrumentCode function to add instrumentation for coverage analysis to the code you
already generated for software-in-the-loop (SIL) or processor-in-the-loop (PIL) execution.

For example, first generate code for the entry-point function foo. In the code generation
configuration object, set the verification mode to SIL. Also, specify the location of the generated
files using the -d option.

cfg = coder.config('lib');
cfg.VerificationMode = 'SIL';
codegen -config cfg foo -args {0} -d my_codegen_folder

To add instrumentation to the generated code to perform coverage analysis, call
instrumentCode:

instrumentCode('my_codegen_folder', 'CodeCoverage', true)

To use this functionality, you must have a MATLAB Test™ license.

For an example of this workflow, see “Add Instrumentation That Performs Coverage Analysis”.

Generate execution time profile for custom code during SIL and PIL
simulations
Starting in R2023a, the execution time profile report generated during software-in-the-loop (SIL) or
processor-in-the-loop (PIL) simulation shows execution times for your custom C/C++ code that you
integrated with the generated code. In previous releases, the profile showed only execution times for
the generated code.

See “Generate Execution Time Profile”.

Debugging for PIL execution
Provide debugging for processor-in-the-loop (PIL) execution of C and C++ code generated from
MATLAB code by following these steps:

1 When you set up PIL connectivity, specify a debugger by using target.ExecutionService and
target.DebugExecutionTool objects.

2 In the MATLAB Coder app, select the Enable source-level debugging for SIL or PIL check
box. Or, from the command line, set the SILPILDebugging property of the
coder.EmbeddedCodeConfig object to true.

In previous releases, debugging is available only for software-in-the-loop (SIL) execution.

In MATLAB scripts, the use of the coder.EmbeddedCodeConfig.SILDebugging property is still
supported.

For more information, see:

• “Support PIL Debugging”
• “DebugExecutionTool Template”
• “Debug Generated Code During SIL or PIL Execution”

 Code Generation from MATLAB Code

1-3

Code Profile Analyzer
To analyze execution-time and stack usage profiles produced by software-in-the-loop (SIL) or
processor-in-the-loop (PIL) simulations, use the Code Profile Analyzer. The new app enables you to:

• Analyze profiling results interactively.
• Investigate the function call-stack for the most demanding simulation step.
• Compare results from different simulations.

For more information, see:

• Code Profile Analyzer
• “View Execution Times”
• “Stack Usage Profiling for Code Generated From MATLAB Code”

Generate C/C++ code with annotations to suppress known MISRA C:
2012 and AUTOSAR C++14 violations
In R2023a, you can instruct the code generator to add annotations to the generated C/C++ code for
known MISRA™ C: 2012 and AUTOSAR C++14 violations. These annotations enable static analysis
tools, such as Polyspace®, to automatically recognize these comments and report the annotated
violations as Justified.

To add MISRA C: 2012 and AUTOSAR C++14 annotations from the MATLAB Coder or Embedded
Coder, select Generate justification comments for known MISRA violations from the MISRA
Compliance tab and Include comments from the Code Appearance tab.

Alternatively, you can set the JustifyMISRAViolations and GenerateComments configuration
options of your model to true.

This table compares generated C++ code with JustifyMISRAViolations set to false and code
with JustifyMISRAViolations set to true.

R2023a

1-4

MATLAB Code Generated C++ Code with
JustifyMISRAViolations
set to false (default)

Generated C++ Code with
JustifyMISRAViolations
set to true

function result = addNumbers(x, y)
 result = x + y;
end

// Function Definitions
//
// Arguments : void
// Return Type : void
//
namespace sample {
void addNumbers_initialize()
{
}
 
} // namespace sample

// Function Definitions
//
// Arguments : void
// Return Type : void
//
namespace sample {
//
// MW:begin MISRA-CPP:0-1-8
// "Justified for external interface function"
// MW:begin AUTOSAR-CPP14:M0-1-8
// "Justified for external interface function"
void addNumbers_initialize()
{
}
//
// MW:end MISRA-CPP:0-1-8
// MW:end AUTOSAR-CPP14:M0-1-8
 
} // namespace sample

For more information on how to generate code that has improved MISRA C: 2012 and AUTOSAR C+
+14 compliance, see “Generate C/C++ Code with Improved MISRA and AUTOSAR Compliance”.

Reduction of violations for AUTOSAR C++14 rules in generated code
Starting in R2023a, the generated code has fewer violations of several rules in the required
categories of the AUTOSAR C++14 coding standard. Some of these rules are:

• Standard conversions: AUTOSAR C++14 Rule A4-10-1
• Declarators: AUTOSAR C++14 Rule A8-4-9, AUTOSAR C++14 Rule A8-4-10
• Preprocessing directives: AUTOSAR C++14 Rule A16-2-2

For more information on how to generate code that has improved MISRA and AUTOSAR compliance,
see “Generate C/C++ Code with Improved MISRA and AUTOSAR Compliance”.

 Code Generation from MATLAB Code

1-5

Model Architecture and Design

Unused variable and macro elimination for Variant blocks in
generated code
Prior to R2023a, when you generated code for a variant block with its Variant activation time set to
code compile, the code generator added an unused variable inside the corresponding model data
structure containing pre-processor conditionals. During code compilation, if the conditions inside the
structure evaluated to false, the unused variable prevented the creation of an empty structure in
the compiled code. However, adding the unused variable violated MISRA standard.

Starting in R2023a, if the structure has mutually exclusive conditions, the code generator eliminates
unused variables. Also, if the structure has at least one unconditional variable, the code generator
eliminates the macros that generate unused variables.

This table compares the code generated from the slexVariantControlVariableChoices model
in R2022b and R2023a. In R2023a, the code generator eliminates the macro for unused variables
because the structure contains an unconditional variable In1. During code compilation, even if the
conditions inside the structure evaluate to false, In1 is compiled, thus preventing the creation of an
empty structure in the compiled code.

R2022b Generated Code R2023a Generated Code
typedef struct {
 real_T In1; /* '<Root>/In1' */

#if v == 1
 real_T In2; /* '<Root>/In2' */
#define EXTU_VARIANT_EXISTS
#endif

#if v == 2
 real_T In3; /* '<Root>/In3' */
#define EXTU_VARIANT_EXISTS
#endif

} ExtU;

typedef struct {
 real_T In1; /* '<Root>/In1' */

#if v == 1
 real_T In2; /* '<Root>/In2' */
#endif

#if v == 2
 real_T In3; /* '<Root>/In3' */
#endif

} ExtU;

Improve code readability of variant blocks and variant parameters by
placing utassert statements in a separate function
Starting in R2023a, when you generate code for variant blocks or variant parameters with a “startup”
activation time, the code generator places utassert statements in a startupVariantChecker
function. The startupVariantChecker function is then called in the model_initiaize function.
Placing utassert statements in a separate function makes the code more readable and
understandable. Previously, the code generator placed utassert statements directly in
model_initialize.

To avoid function name collisions during code compilation, by default the code generator mangles the
startupVariantChecker function name to be the first nine characters of the model name followed
by _startupVariantChecker.

This table compares the code generated in R2022b and R2023a for the model
slexVariantSubsystems, which has a Variant Subsystem block with an activation time of
startup.

R2023a

1-6

R2022b Generated Code R2023a Generated Code
void slexVariantSubsystems_initialize(void)
{
 /* Enable for Sin: '<Root>/sine1' */
 slexVariantSubsystems_DW.systemEnable = 1;

 /* Enable for Sin: '<Root>/sine2' */
 slexVariantSubsystems_DW.systemEnable_e = 1;

 /* Enable for Sin: '<Root>/sine3' */
 slexVariantSubsystems_DW.systemEnable_b = 1;

 /* startup variant condition checks */
 utAssert(VSS_LINEAR_CONTROLLER() +
 VSS_NONLINEAR_CONTROLLER() == 1);
}

void slexVariantSubsystems_initialize(void)
{
 /* Enable for Sin: '<Root>/sine1' */
 slexVariantSubsystems_DW.systemEnable = 1;

 /* Enable for Sin: '<Root>/sine2' */
 slexVariantSubsystems_DW.systemEnable_e = 1;

 /* Enable for Sin: '<Root>/sine3' */
 slexVariantSubsystems_DW.systemEnable_b = 1;
 slexVaria_startupVariantChecker();
}

static void slexVaria_startupVariantChecker(void)
{
 /* startup variant condition checks */
 utAssert(VSS_LINEAR_CONTROLLER() +
 VSS_NONLINEAR_CONTROLLER() == 1);
}

Group variant parameter values in a single structure array in
generated code
Starting in R2023a, you can use variant parameter banks to group variant parameters that have the
same set of variant conditions into a structure array in the generated code. The code uses a pointer
variable to access values from the structure array. The code generator initializes the pointer based on
variant conditions in the model_initialize function. The code generator supports variant
parameter banks only for variant parameters with a startup variant activation time.

Prior to R2023a, the code generator inlined values of the variant parameters with startup activation
time in the model_initialize function, which involved reading and copying parameter values into
the program memory.

For more information and an example, see Release Notes for Simulink.

Model Advisor checks for component deployment using a service
interface configuration
Starting in R2023a, you can use these Embedded Coder Model Advisor checks to verify compliance of
your model with the guidelines.

Model Advisor Check Modeling Guideline
“Check Startup and Shutdown Event”
(mathworks.codegen.cgsl_0404)

“cgsl_0404: Model startup and shutdown events
by using Initialize Function and Terminate
Function blocks for component deployment”

“Check usage of partial data send”
(mathworks.codegen.cgsl_0408)

“cgsl_0408: Partial data send for component
deployment”

 Model Architecture and Design

1-7

Code Interface Configuration and Integration

Component timer service interface enhancements
In R2022b, for aperiodic exported functions that include Discrete Time Integrator and Weighted
Sample Time blocks and rely on elapsed time values, Embedded Coder introduced support for
configuring and generating timer service interfaces for accessing the function clock tick that is used
by the target environment. Starting in R2023a, you can configure and generate timer service
interface code for:

• Entry-point functions generated from export-function and single-rate, rate-based models.
• Periodic entry-point functions generated from models that use blocks that rely on absolute time

values, such as Sine Wave and Pulse Generator blocks.
• Periodic entry-point functions generated from models that use blocks that rely on elapsed time

values in an aperiodic context. An example of an aperiodic context is when the Sample time type
parameter of the Trigger Port block of the model or subsystem that includes the time-based block
is set to triggered.

Within a model, you represent requests for a clock tick implicitly when you use blocks that rely on a
time value. For these blocks, depending on the context, the code generator assumes that the clock
resolution is the sample period of the function or fixed-step size (fundamental sample time) of the
model. You can override the clock resolution with a target environment clock resolution by setting
model configuration parameter Clock resolution (see “Improve code generated for functions that
include blocks that request time values by specifying target platform clock resolution” on page 1-
10). The code generator produces a timer service interface based on:

• Content of the model
• Setting of the Clock resolution model configuration parameter
• Timer service interface configuration in the shared Embedded Coder Dictionary attached to the

model

For more information about timer service interfaces, see:

• “cgsl_0410: Timer service for component deployment”
• “Configure Timer Service Interfaces by Using the Code Mappings Editor”
• “Configure Timer Service Interfaces Programmatically”
• “Generate C Timer Service Interface Code for Component Deployment”
• “Create a Service Interface Configuration”
• “Data Communication Methods”

Compatibility Considerations
Starting in R2023a, for these types of models that you configure with a service code interface, the
code generator abstracts the timer requests by including calls to a target platform timer service:

• Models that include periodic functions that use blocks that rely on absolute time values
• Export-function models that include periodic functions that use Discrete Time Integrator or

Weighted Sample Time blocks (rely on elapsed time values) within an aperiodic context

R2023a

1-8

For models configured with a service code interface:

• Use of an S-Function block that relies on elapsed time is not supported. The code generator
produces an error.

• It is the responsibility of the code integrator to provide the implementation of the called timer
service.

For example, in this generated code fragment, the
TimerService_tick_ComponentDeploymentFcn_Periodic() function calls initiate timer
requests. It is the responsibility of the code integrator to provide an implementation for the
function TimerService_tick_ComponentDeploymentFcn_Periodic.

.

.

.
if (zcEvent != NO_ZCEVENT) {
 if (rtDWork.Subsystem_RESET_ELAPS_T) {
 Subsystem_ELAPS_T = 0U;
 } else {
 Subsystem_ELAPS_T = (uint32_T)
 (TimerService_tick_ComponentDeploymentFcn_Periodic() -
 rtDWork.Subsystem_PREV_T);
 }

 rtDWork.Subsystem_PREV_T =
 TimerService_tick_ComponentDeploymentFcn_Periodic();

Prior to R2023a, for the same model, the code generator implemented the function clock tick code
within the generated periodic entry-point function and used the execution interval specified for
the Simulink function as the function clock resolution. In this example, the code generator
implements the function clock tick as rtM->Timing.clockTick1 and maintains the function
within the algorithmic code as rtM->Timing.clockTick1++.

.

.

.
if (zcEvent != NO_ZCEVENT) {
 if (rtDWork.Subsystem_RESET_ELAPS_T) {
 Subsystem_ELAPS_T = 0U;
 } else {
 Subsystem_ELAPS_T = (uint32_T) (rtM->Timing.ClockTick1 -
 rtDWork.Subsystem_PREV_T);
 }

 rtDWork.Subsystem_PREV_T = rtM->Timing.clockTick1;
.
.
.
 rtM->Timing.clockTick1++;
.
.
.

 Code Interface Configuration and Integration

1-9

Improve code generated for functions that include blocks that request
time values by specifying target platform clock resolution
Starting in R2023a, for model functions that include blocks that request absolute or elapsed time
values, you can improve the entry-point code generated for those functions by configuring the model
to use a specific clock resolution. Clock resolution is the smallest increment of a clock value. For
example, if a clock increments its value once per second, the clock resolution is 1 second.

Benefits of specifying a clock resolution include:

• Clock resolution that aligns with target environment clock requirements. For models configured to
use a service code interface, specifying a clock resolution results in code that reads time values
that produce more accurate results.

• Decoupling of the clock resolution and the solver properties that Simulink® uses during
simulation, such as the fixed-step size and sample times. The decoupling enables you to generate
code that aligns with the target environment clock resolution and produces more accurate results.

• Influencing the data type that Simulink and the code generator use to represent time values. For
example, in normal, accelerator, and rapid accelerator modes, Simulink uses the specified clock
resolution to deduce fixed-point data types, which produces fixed-point simulation and generated
code execution output that match.

• Portability of models between code interface configurations. You can attach a model that has a
specified clock resolution to a shared Embedded Coder Dictionary that defines a data or service
code interface configuration.

• Generated code that is easier to read.

To specify a clock resolution for the code generator to apply for a model, configure the model with
these model configuration parameter settings:

• Set System target file (SystemTargetFile) to ert.tlc.
• Set solver parameter Type (SolverType) to Fixed-step.
• Set Clock resolution (ClockResolution) to a scalar value of type double, which represents

the clock resolution in seconds.

For more information, see Clock resolution and “Specify Clock Resolution Used by Target
Environment Clock”.

Use code definitions from packages in service interface configurations
In R2023a, you can use code definitions from a package in an Embedded Coder Dictionary service
interface configuration. Previously, you could use package-based code definitions in only data
interface configurations. Loading storage classes from a package enables you to simultaneously:

• Use existing storage classes that you defined by using the Custom Storage Class Designer
• Utilize the configuration and mapping capabilities of a service interface configuration

For more information, see “Refer to Code Generation Definitions in a Package”.

R2023a

1-10

Generate code using built-in FFTW library
The required FFTW library is shipped with MATLAB and the code generation process is simpler in
R2023a. You can generate code for models by using the shipped FFTW library and by selecting model
configuration parameter Built-in FFTW library callback.

Prior to R2023a, to generate code by using the FFTW library, you had to install the FFTW library,
write a custom callback class to specify the FFTW library installation using
coder.fftw.StandaloneFFTW3Interface, and then set the model configuration parameter
Custom FFT library callback to the name of the callback class. See “Speed Up Fast Fourier
Transforms in Code Generated from a MATLAB Function Block”.

Coexisting code mapping configurations for data and service
interfaces
Starting in R2023a, you can configure your models to have both data and service code interface
mappings. Once configured, you can switch between the configurations to activate either the data or
the service interface configuration. For example, when you switch a model from a data to a service
interface, the data interface code mappings are retained for future use. When you switch the model
back to using a data interface configuration, the saved data interface code mappings are reactivated.
To learn more about mapping configurations, see “Define Service Interfaces, Storage Classes,
Memory Sections, and Function Templates for Software Architecture”.

Convert subsystems with service interface mappings to referenced
models
Starting in R2023a, when converting a subsystem to a referenced model, you can copy service
interface code mappings of the parent model to the created referenced model. Code mappings for the
following modeling elements are copied to the newly created model:

• Signals
• States
• Data stores
• Model parameters and model parameter arguments
• Function callers

To convert a subsystem to a referenced model along with the code mappings, use the Model
Reference Conversion Advisor with the Copy code mappings parameter selected. Alternatively,
you can use the Simulink.SubSystem.convertToModelReference function with the
CopyCodeMappings argument specified as true. If the original model that contains the converted
subsystem is set to the Automatic deployment type, then the newly created reference model is set to
the Automatic deployment type as well. Otherwise, the newly created model is set to the
Subcomponent deployment type. To learn more about code mapping configurations, see “Define
Service Interfaces, Storage Classes, Memory Sections, and Function Templates for Software
Architecture”. To learn more about converting subsystems to referenced models, see “Convert
Subsystems to Referenced Models”.

 Code Interface Configuration and Integration

1-11

Automatic deployment type for models with a service interface code
configuration
In 2023a, you can now set the deployment type of models configured with a service interface
configuration to 'Automatic'. The code generator uses the deployment type to:

• Enforce peer and nesting rules in the model hierarchy.
• Map model elements to code interface definitions.
• Generate code that uses the appropriate interface to connect to other parts of the hierarchy.

When you set the deployment type to 'Automatic', Embedded Coder determines the deployment
type based on the model hierarchy context. In previous releases, 'Automatic' was only supported
for models with a data interface configuration.

For more information, see setDeploymentType and “Configure C Code Deployment Types for Model
Hierarchy”.

Automatic code suggestions and completions for code mappings
programming interface
Starting in R2023a, the coder.mapping.api.CodeMapping object and its functions support tab
completion. After you enter the first few characters of a function, input argument, or object property,
press the Tab key to let MATLAB automatically complete the typing. MATLAB adds the remaining
characters of the function, argument, or property. If you do not enter anything or if there are multiple
options that begin with the characters you enter, MATLAB opens a list of available alternatives you
can choose from. To learn more about tab completion, see Code Suggestions and Completions.

R2023a

1-12

Code Generation

Example models attached to examples and renamed
In R2023a, these example models have been renamed and are available in the examples indicated in
this table.

R2022b model name New model name Example
rtwdemo_accel_send AccelerometerSendMessage

s
“Model Message-Based
Communication Integrated with
POSIX Message Queues”

rtwdemo_asap2 ASAP2Demo “Create a Host-Based ASAM-
ASAP2 Data Definition File for
Data Measurement and
Calibration”

rtwdemo_asap2_mdlref ASAP2DemoModelRef “Create a Host-Based ASAM-
ASAP2 Data Definition File for
Data Measurement and
Calibration”

rtwdemo_caller SimulinkFunctionCaller “Generate Code for Simulink
Function and Function Caller”

rtwdemo_col_interpselsub
table

SubtableInterpolationCol “Interpolation with Subtable
Selection Algorithm for Row-
Major Array Layout”

rtwdemo_differentsizereu
se

DifferentSizeReuse “Reuse Buffers of Different
Sizes and Dimensions”

rtwdemo_export_functions SimulinkFunctionsTestHar
ness

“Generate Code for Simulink
Function and Function Caller”

rtwdemo_float_mul_for_ne
t_slope_correction

FloatMultiplicationNetSl
ope

“Floating-Point Multiplication to
Handle a Net Slope Correction”

rtwdemo_forloop ForLoopConstruct “Optimize Generated Code by
Combining Multiple for
Constructs”

rtwdemo_functions SimulinkFunctions “Generate Code for Simulink
Function and Function Caller”

rtwdemo_getset_matrix GetSetMatrix “Use GetSet with Matrix Data”
rtwdemo_getset_scalar GetSetScalar “Access Legacy Data Using Get

and Set Functions”
rtwdemo_getset_struct GetSetStruct “Use GetSet with Structured

Data”
rtwdemo_getset_vector GetSetVector “Use GetSet with Vector Data”
rtwdemo_gps_send GPSSendMessages “Model Message-Based

Communication Integrated with
POSIX Message Queues”

 Code Generation

1-13

R2022b model name New model name Example
rtwdemo_inline_invariant
_signals

InvariantSignalsInline “Optimize Generated Code
Using Inline Invariant Signals”

rtwdemo_internal_init InternalZeroInitializati
on

“Remove Zero Initialization
Code for Internal Data”

rtwdemo_label_guided_reu
se

SignalLabelReuse “Optimize Generated Code by
Using Signal Labels to Guide
Buffer Reuse”

rtwdemo_logicalAsBoolean LogicalAsBoolean “Optimize Generated Code
Using Boolean Data for Logical
Signals”

rtwdemo_minmax MinMaxOptimization “Optimize Generated Code
Using Minimum and Maximum
Values”

rtwdemo_optimize_global MinimizeGlobalDataAccess “Minimize Global Data Access”
rtwdemo_optimize_global_
ebf

UseGlobalsForTemporaryRe
sults

“Use Global to Hold Temporary
Results”

rtwdemo_optionalDisableR
esetFunc_bot

DisableResetFunctionBott
om

“Remove Reset and Disable
Functions from the Generated
Code”

rtwdemo_optionalDisableR
esetFunc_top

DisableResetFunctionTop “Remove Reset and Disable
Functions from the Generated
Code”

rtwdemo_pack_boolean PackBooleanData “Optimize Generated Code by
Packing Boolean Data into
Bitfields”

rtwdemo_parentheses ParenthesizationStyle “Control Use of Parentheses”
rtwdemo_pos_estimate PositionEstimateMessages “Model Message-Based

Communication Integrated with
POSIX Message Queues”

rtwdemo_preservedimensio
ns

PreserveArrayDims “Preserve Dimensions of
Multidimensional Arrays in
Generated Code”

rtwdemo_preservedimensio
ns_slbus

PreserveBusDims “Preserve Dimensions of Bus
Elements in Generated Code”

rtwdemo_reusable Reusable “Generate Reentrant Code from
Top Models”

rtwdemo_reusable_csc ReusableStorageClass “Specify Buffer Reuse for
Signals in a Path”

rtwdemo_reuse_global GlobalReuse “Reuse Global Block Outputs in
the Generated Code”

rtwdemo_roll RollAxisAutopilot “Generate C Code from
Simulink Models”

R2023a

1-14

R2022b model name New model name Example
rtwdemo_roll_harness RollAxisAutopilotHarness “Generate C Code from

Simulink Models”
rtwdemo_rootlevel_zero_i
nitialization

RootZeroInitialization “Remove Initialization Code
from Root-Level Inports and
Outports Set to Zero”

rtwdemo_row_interpselsub
table

SubtableInterpolationRow “Interpolation with Subtable
Selection Algorithm for Row-
Major Array Layout”

rtwdemo_row_lutcol2row_w
orkflow

RowLUTColToRow “Column-Major Layout to Row-
Major Layout Conversion of
Models with Lookup Table
Blocks”

rtwdemo_row_lutcol2row_w
orkflow_rowrow

RowLUTColToRowPreconfigu
red

“Column-Major Layout to Row-
Major Layout Conversion of
Models with Lookup Table
Blocks”

rtwdemo_rsim_param_tunin
g

RsimParamTuning “Tune Parameters Interactively
During Rapid Simulation”

rtwdemo_secondOrderSyste
m

SecondOrderSystem “Generate C Code for a Model”

rtwdemo_slexprfold FoldBlockComputations “Fold Expressions”
rtwdemo_unicode MixedLanguagesAndLocales “Internationalization and Code

Generation”

In addition to searching in Help Center, you can use the functions modelfinder and openExample
to find models and open examples.

Replacement of Simulink data types with C99 data types
Use the new Data type replacement (DataTypeReplacement) configuration parameter to specify the
method for replacing Simulink data types in generated code. If you select the option that uses data
types from the C99 language standard, you can improve generated code compliance with the MISRA
C™ and MISRA C++ standards.

In previous releases:

• Data types are specified in the rtwtypes.h file and are based on the C89 language standard.
• To rename data types in generated code, you use the Replace data type names in the

generated code configuration parameter. In R2023a, Replace data type names in the
generated code is called Specify custom data type names. The EnableUserReplacementTypes
command-line parameter is unchanged.

This table summarizes the changes.

 Code Generation

1-15

Configuration Parameter Options Comments
Dialog Box Command Line Dialog Box Command Line
Data type
replacement (new)

DataTypeReplac
ement (new)

Use coder
typedefs

'CoderTypedefs
'

If you select this
option:

• The code
generator
creates the
rtwtypes.h
header file,
which specifies
data types that
are based on
the C89
language
standard.

• The renamed
configuration
parameter
Specify
custom data
type names
(EnableUserR
eplacementTy
pes) is
available.

R2023a

1-16

Configuration Parameter Options Comments
Dialog Box Command Line Dialog Box Command Line

Use C data
types with
fixed-width
integers
(default)

'CDataTypesFix
edWidth'
(default)

If you select this
option, the
generated code:

• Uses data types
from the C99
language
standard, which
includes
definitions from
the stdint.h,
stdbool.h,
and
complex_type
s.h header
files.

• Does not
require
definitions from
the
rtwtypes.h
header file. By
default, the
code generator
does not create
rtwtypes.h.

• The advanced
parameter
Coder
typedefs
compatibility
(CoderTypede
fsCompatibil
ity) is
available.

Coder typedefs
compatibility (new)

CoderTypedefsC
ompatibility
(new)

on 'on' If you use legacy
custom code or
static source files
(under
matlabroot) that
require Simulink
Coder data type
definitions, you
can force the
generation of
rtwtypes.h by
selecting this
option.

 Code Generation

1-17

Configuration Parameter Options Comments
Dialog Box Command Line Dialog Box Command Line

off (default) 'off' (default) If you select this
option, the code
generator does not
create
rtwtypes.h.

Specify custom
data type names
(previously called
Replace data
type names in
the generated
code)

EnableUserRepl
acementTypes
(unchanged)

on 'on' Functionality for
the renamed
configuration
parameter is
unchanged.

If you open a
model that you
created in a
previous release,
the software sets
DataTypeReplac
ement to
'CoderTypedefs
' but does not
change the value
of
EnableUserRepl
acementTypes.

off (default) 'off' (default)

If you use TLC files that contain hard-coded instances of Simulink Coder data types, you can modify
the files for C99 code generation by using the coder.updateTlcForLanguageStandardTypes
function.

For more information, see:

• “Manage Replacement of Simulink Data Types in Generated Code”
• “Compatibility of TLC Files with Generated Code Data Types”

Code interface report improvements for service interfaces
In R2023a, when you generate code using the service interface configuration, you can more easily
assess the generated code interfaces by using the improved formatting and hyperlinks in the code
interface report. The code interface report now includes these improvements:

• Table of contents with hyperlinks to report sections
• Service interfaces documented separately from execution function interfaces
• Hyperlinks between execution functions and the services they call
• Formatted documentation that shows how each service appears or is called in the generated code
• Documentation of measurement service interfaces

These improvements are not available for code generated using the data interface configuration.

R2023a

1-18

C++ code generation support for models configured with service
interfaces and nonreusable function code interface packaging
In R2023a, you can generate C++ code from models that:

• Are linked to a shared Embedded Coder Dictionary that defines a service code interface
configuration

• Have the Code interface packaging model configuration parameter set to Nonreusable
function

R2023a does not support C++ code generation for service interfaces if the Code interface
packaging configuration parameter is set to Reusable function or C++ class. For more
information about service interfaces, see “Service Interfaces”.

 Code Generation

1-19

Optimized C code for reusable subsystems
The code generator now eliminates duplicate code that it creates for multiple instances of a reusable
subsystem with different fixed-point datatype inputs. Prior to R2023a, the code generator generated
individual C functions for each instance of the reusable subsystem with different fixed-point datatype
inputs.

Consider the model, ReuseCModel.

This table compares the code generated in R2022b and R2023a.

In R2022b, the generated code includes function ReuseCModel_AddMul3_e, which is a duplicate of
function ReuseCModel_AddMul3. The function ReuseCModel_AddMul3_e is removed from R2023a
code.

R2023a

1-20

R2022b Generated Code R2023a Generated Code
/* Output and update for atomic system: '<Root>/AddMul1' */
int16_T ReuseCModel_AddMul3(int16_T rtu_In1, int16_T rtu_In2)
{
 /* Gain: '<S1>/Gain' incorporates:
 * Sum: '<S1>/Add'
 */
 return (int16_T)((int16_T)(rtu_In1 + rtu_In2) * 3);
}

/* Output and update for atomic system: '<Root>/AddMul3' */
int16_T ReuseCModel_AddMul3_e(int16_T rtu_In1, int16_T rtu_In2)
{
 /* Gain: '<S2>/Gain' incorporates:
 * Sum: '<S2>/Add'
 */
 return (int16_T)((int16_T)(rtu_In1 + rtu_In2) * 3);
}
/* Model step function */
void ReuseCModel_step(void)
{
 /* Outputs for Atomic SubSystem: '<Root>/AddMul3' */

 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 */
 ReuseCModel_Y.Out1 = ReuseCModel_AddMul3_e(ReuseCModel_U.In1,
 ReuseCModel_U.In2);

 /* End of Outputs for SubSystem: '<Root>/AddMul3' */

 /* Outputs for Atomic SubSystem: '<Root>/AddMul1' */

 /* Outport: '<Root>/Out2' incorporates:
 * Inport: '<Root>/In3'
 * Inport: '<Root>/In4'
 */
 ReuseCModel_Y.Out2 = ReuseCModel_AddMul3(ReuseCModel_U.In3, ReuseCModel_U.In4);

 /* End of Outputs for SubSystem: '<Root>/AddMul1' */
}

/* Output and update for atomic system: '<Root>/AddMul1' */
int16_T ReuseCModel_AddMul3(int16_T rtu_In1, int16_T rtu_In2)
{
 /* Gain: '<S1>/Gain' incorporates:
 * Sum: '<S1>/Add'
 */
 return (int16_T)((int16_T)(rtu_In1 + rtu_In2) * 3);
}

/* Model step function */
void ReuseCModel_step(void)
{
 /* Outputs for Atomic SubSystem: '<Root>/AddMul3' */

 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 */
 ReuseCModel_Y.Out1 = ReuseCModel_AddMul3(ReuseCModel_U.In1, ReuseCModel_U.In2);

 /* End of Outputs for SubSystem: '<Root>/AddMul3' */

 /* Outputs for Atomic SubSystem: '<Root>/AddMul1' */

 /* Outport: '<Root>/Out2' incorporates:
 * Inport: '<Root>/In3'
 * Inport: '<Root>/In4'
 */
 ReuseCModel_Y.Out2 = ReuseCModel_AddMul3(ReuseCModel_U.In3, ReuseCModel_U.In4);

 /* End of Outputs for SubSystem: '<Root>/AddMul1' */
}

For more information, see “Generate Reusable Code for Subsystems Shared Across Models”.

Code replacement validation check detects unspecified rounding
modes for multiplication
In R2023a, when you create a code replacement entry for a multiplication operation that can lose
precision during rounding, you must specify the Rounding mode (RoundingModes) for the entry.
When you validate these entries, they produce a warning if you do not specify the required setting.
The new validation check enables you to identify entries that can lead to unintended replacements in
the generated code and produce different results from the model.

Previously, the validation check reported these entries as valid even if the rounding settings were not
specified. When the settings were not specified, operations with different rounding needs could map
to the same code replacement entry, leading to generated code that produced different results from
the model. For more information, see “Rounding modes”.

Compatibility Considerations
Some code replacement entries for multiplication operations that Embedded Coder previously
reported as valid produce warnings in R2023a. To make the entries valid, specify the Rounding
mode for the entries. In a future release, the validation check will produce errors instead of
warnings.

 Code Generation

1-21

Embedded Coder features available in Simulink Online
In R2023a, you can use most of the Embedded Coder features through your web browser for
teaching, learning, and convenient lightweight access. To access these features, sign in with your
MathWorks® account. For more information, visit the Simulink Online product page.

Functionality being removed or changed
crossReleaseImport will support only last eight releases
Warns

In future releases, crossReleaseImport will support the import of generated code from only the
previous eight releases. For example, in R2023b, you will be able to use crossReleaseImport to
import only code generated by releases R2019b to R2023a.

For more information, see “Cross-Release Code Integration” and crossReleaseImport.

R2023a

1-22

https://www.mathworks.com/products/simulink-online.html

Deployment

Embedded Coder Support Package for Linux Applications
In R2023a, the Embedded Coder Support Package for Linux® Applications has added the following
enhancements:

• You can deploy DDS Blockset models.
• You can deploy models configured for external mode simulation.

For more information, see “External Mode Simulation of Deployed Applications”.

Calibration file customization
Starting in R2023a, Embedded Coder allows you to merge multiple A2L files to a model by using the
coder.asap2.merge function. For more information, see “Merge ASAP2 Files”.

You can also add, delete, modify, find, filter, and fetch record layouts by using the ASAP2
programming interface. For more information, see coder.asap2.RecordLayout.

TLC function FULLFILE for full path of the file
Starting in R2023a, you can use the Target Language Compiler (TLC) function FULLFILE to find a full
path of the file. The TLC function FULLFILE accepts the folder or file names and returns the full file
specification. Using this function improves the efficiency of the TLC code when compared to FEVAL
function calls to MATLAB function fullfile.

For more information, see “Target Language Compiler Directives”.

Support of coder.asap2.export API for DDS Blockset Models
Starting in R2023a, the coder.aspa2.export function can be used to generate an A2L file for DDS
Blockset models.

Code Descriptor API service interface enhancements
Starting in R2023a, you can use the code descriptor API to programmatically retrieve information
about measurement service interfaces, parameter tuning service interfaces, and parameter argument
tuning service interfaces. For information about specific code descriptor classes for each service
interface, see coder.descriptor.MeasurementServiceInterface,
coder.descriptor.ParameterTuningServiceInterface, and
coder.descriptor.ParameterArgumentTuningServiceInterface. For general information
about using the code descriptor API with service interfaces, see “Get Metadata About Service
Interface”.

 Deployment

1-23

Functionality being removed or changed
Embedded Coder Support Package for Texas Instruments C2000 Processors has
transitioned into C2000 Microcontroller Blockset

Starting in R2023a, Embedded Coder Support Package for Texas Instruments® C2000™ Processors
has transitioned into the C2000 Microcontroller Blockset. Existing support package functionality is
available in the new product.

Embedded Coder Support Package for STMicroelectronics STM32
Processors: Support for STM32L4xx, STM32L5xx, and STM32WBxx-
based boards
• Use the Embedded Coder Support Package for STMicroelectronics® STM32 Processors to

generate and build code using an STM32CubeMX project file for STM32L4xx, STM32L5xx, and
STM32WBxx-based boards.

• The new STM32-based boards supports the following peripherals ADC, PWM, GPIO, Hardware
Interrupt, Timer, Encoder, I2C and UART/USART blocks for model base design using Embedded
Coder Support Package for STMicroelectronics STM32 Processors

• For the new STM32-based boards, you can use the support package to:

• Monitor signals & tune parameters in the external mode.
• Run processor-in-loop (PIL) simulation in the serial communication mode.

For more additional improvements, see release notes in “R2023a” (Embedded Coder Support Package
for STMicroelectronics STM32 Processors).

Embedded Coder Support Package for STMicroelectronics STM32
Processors: Support for CAN Read, CAN Write, FDCAN Read, FDCAN
Write, SPI Receive, SPI Transmit, SPI Controller Transfer, and Digital to
Analog Converter blocks
Starting R2023a, you can use the following blocks with STM32 processor-based boards.

• Use the CAN Read and CAN Write blocks to read and write data from a CAN Bus in STM32F4xx,
STM32F7xx, and STM32L4xx processor-based boards.

• Use the FDCAN Read and FDCAN Write blocks to read and write data from a CAN FD Bus in
STM32G4xx, STM32H7xx, and STM32L5xx processor-based boards.

• Use the SPI Transmit, SPI Receive, and SPI Controller Transfer blocks to write and read data from
an SPI peripheral device in STM32F4xx, STM32F7xx, STM32G4xx, and STM32H7xx processor-
based boards.

• Use the Digital to Analog Converter (DAC) block to receive the digital value and convert it to the
equivalent analog voltage on a specified channel in STM32G4xx processor-based board.

• Use the updated Analog to Digital Converter (ADC) block to support buffering of group
conversions when the block outputs N-by-M data.

• Use the Protocol Encoder and Protocol Decoder blocks to encode and decode the input data on the
communication protocol.

R2023a

1-24

For more additional improvements, see release notes in “R2023a” (Embedded Coder Support Package
for STMicroelectronics STM32 Processors).

Embedded Coder Support Package for STMicroelectronics STM32
Processors: Support for I2S Audio Out, I2S Mic In, TCP Receive, TCP
Send, UDP Receive, and UDP Send blocks
Starting R2023a, you can use the following blocks with STM32F4xx-based boards.

• Use the I2S Audio Out block to send an audio stream and I2S Mic In block to read an audio stream
on STM32F4xx processor-based boards.

• Use the updated UDP Receive and UDP Send blocks for stateless and connectionless data
transmission on STM32F4xx processor-based boards.

• Use the updated TCP Receive and TCP Send blocks for data transmission from a remote host or
other target hardware over a TCP/IP network on STM32F4xx processor-based boards.

For more additional improvements, see release notes in “R2023a” (Embedded Coder Support Package
for STMicroelectronics STM32 Processors).

 Deployment

1-25

Performance

Code Profile Analyzer
To analyze execution-time and stack usage profiles produced by software-in-the-loop (SIL), processor-
in-the-loop (PIL), or XCP-based external mode simulations, use the Code Profile Analyzer. Use the new
app to perform these tasks:

• Analyze profiling results interactively.
• Investigate the function call-stack for the most demanding simulation step.
• Compare results from different simulations.

For more information, see:

• Code Profile Analyzer
• “View and Compare Code Execution Times”
• “Stack Usage Profiling for Code Generated from Simulink Models”

Display of profiling results in Simulink Editor
If you enable execution-time profiling for a software-in-the-loop (SIL) or processor-in-the-loop (PIL)
simulation, at the end of the simulation, the Simulink Editor displays the Profiling details panel. The
panel provides links to the code execution profiling report and the Code Profile Analyzer.

R2023a

1-26

To view execution-time metrics for a profiled component, place the cursor over a blue-shaded block.
Alternatively, click the block to display execution-time metrics in the panel.

 Performance

1-27

In previous releases, the software displays the metrics in a separate window.

For more information, see “View and Compare Code Execution Times”.

View additional code execution profiling results in Code view
In R2023a, when you run your model in the SIL/PIL Manager app, you can view additional code
execution profiling information in the Code view. You can:

• View a summary of task profiling information below the code.
• Access links to detailed statistics from the profiling tooltip when you point to a function call in the

Code view.
• View detailed profiling information in the model window by clicking the Profiling details tab.

R2023a

1-28

For more information, see “View and Compare Code Execution Times”.

 Performance

1-29

Stack usage profiles for child functions of tasks
To determine the size of stack memory that is required to run generated code, you can run a
software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation that produces a stack usage
profile. You can use stack usage profiles to observe the effect of compiler optimization and data input.
In previous releases, the simulation produces stack usage metrics for generated tasks but not child
functions of the tasks. Now, the simulation also evaluates stack memory usage for child functions of
tasks. For more information, see “Stack Usage Profiling for Code Generated from Simulink Models”.

Memory allocation for execution-time profiling with XCP external
mode simulations
To optimize memory allocation on target hardware with limited resources and reduce communication
channel bandwidth usage, you can configure profiling memory allocation in XCP external mode
simulations by using these Simulink parameters:

• CodeProfilingXCPMaxMemory — Specify the maximum amount of memory to use for code
profiling.

• CodeProfilingMaxBufferSize — Specify the maximum size of the buffer that the simulation
uses to upload profiling data from the target hardware to your development computer.

For more information, see “Specify Memory Allocation for Code Execution Profiling”.

SIMD code for integer operations for ARM Cortex-A
In R2023a, when you generate code for ARM® Cortex®-A devices by using the ARM Cortex-A code
replacement library, the generated code contains SIMD instructions for these integer operations:

• Addition, multiplication, and subtraction
• Bitwise
• Shift left for signed integers
• Load, store, and broadcast

For more information, see “Optimize Code for ARM Cortex-A Processors” (Embedded Coder Support
Package for ARM Cortex-A Processors).

Generate SIMD code for FIR Interpolation and FIR Decimation blocks
In R2023a, if you have DSP System Toolbox™, you can generate SIMD code for the FIR Interpolation
and FIR Decimation blocks. For computationally intensive operations on supported blocks, SIMD
intrinsics can significantly improve the performance of the generated code on Intel® platforms. To
generate SIMD code from the blocks, set these model configuration parameters:

• Leverage target hardware instruction set extensions — Specify an instruction set to use.
• Optimize reductions — Select the Optimize reductions parameter.
• Priority — Select Maximize execution speed.

Your model must meet the requirements for code generation described in FIR Decimation, FIR
Interpolation, and “Generate SIMD Code from Simulink Blocks”.

R2023a

1-30

Improved C code for models using parfor-loops
To preserve the maximum stack limit, the code generator might promote local variables to global
variables. Prior to R2023a, if the code generator promoted the local variable of the parfor loop to a
global variable due to the stack limitation, the code generator then produced a normal for loop
instead of a parfor loop and could not generate OpenMP (Open Multiprocessing) code.

Starting in R2023a, you can generate OpenMP code even if the code generator promotes the local
variables of the parfor loop to a global variables. For more information, see “Parallel for-Loops
(parfor) in Generated Code”.

Data store buffer reuse for referenced models irrespective of inplace
specifications
Starting in R2023a, you can generate optimized code for a model containing a referenced model
whose input values are read from and output values are written to the same top-level data store.

If you select these model configuration parameters:

• Reuse buffers for Data Store Read and Data Store Write blocks for the top model
• Reuse output buffers of Model blocks for the top and referenced models

The code generator analyzes referenced model contents to determine if it is possible to reuse the
data store buffers for holding referenced model input and output values. If reuse is possible, the code
generator reuses the data store buffers, which improves RAM efficiency.

Consider, the model mBusDsmTop containing the referenced model mBusDsmBot. The referenced
model does not have function prototype control specifications to use the same input and output
variable. A Data Store Read block reads the referenced mode input values from the top-level data
store dsm1. The output values of the referenced model are written to dsm1 by a Data Store Write
block.

In R2022b, the code generator produced this code:

void mBusDsmTop_step(RT_MODEL *const rtM)
{

 Performance

1-31

 D_Work *rtDWork = rtM->dwork;
 BusType1 rtb_mBusDsmBot;
 mBusDsmBot(&rtDWork->dsm1, &rtb_mBusDsmBot);
 rtDWork->dsm1 = rtb_mBusDsmBot;
}

The code contained an unnecessary temporary variable rtb_mBusDsmBot and data copy.

In R2023a, the code generator produces this code:

void mBusDsmTop_step(RT_MODEL *const rtM)
{
 D_Work *rtDWork = rtM->dwork;
 mBusDsmBot(&rtDWork->dsm1, &rtDWork->dsm1);
}

The code does not contain the unnecessary temporary variable rtb_mBusDsmBot and data copy. The
code reuses the data store memory buffer for both input and output values, which improves RAM
efficiency. For more information, see “Data Copy Reduction for Data Store Read and Data Store Write
Blocks”.

Enhanced global data store reuse in the presence of referenced
models
Before R2023a, for models that used data stores with the ExportToFile storage class, the
generated code contained redundant data copies when the top model read input or wrote output
values of the referenced models from or to the global data store. If no read or write operation
happens for the global data store inside the referenced models, the code generator can now eliminate
redundant data copies when the top model reads input or writes output values of the referenced
models. Eliminating the extra data copies reduces RAM and ROM consumption and improves
execution speed. To enable this optimization, select the Reuse buffers for Data Store Read and
Data Store Write blocks model configuration parameter.

Consider the model mTopMdlRef with a Data Store Read block that reads data from a data store,
which uses the ExportToFile storage class. The read data is input to the referenced model
somma_offset. Inside the referenced model, no read or write operation happens for the global data
store.

R2023a

1-32

In R2022b, the code generator produced this code:

/* Model step function */
void mTopMdlRef_step(void)
{
 uint32_T rtb_uscita;

 /* DataStoreRead: '<Root>/Data Store Read' */
 memcpy(&mTopMdlRef_B.InMemoria[0], &MemoriaSig[0], 100U * sizeof(uint32_T));

 /* ModelReference: '<Root>/somma_offset' incorporates:
 * Inport: '<Root>/offset'
 */
 somma_offset_step(&offset, &mTopMdlRef_B.InMemoria[0], &rtb_uscita);

 /* Sum: '<Root>/Add' incorporates:
 * Inport: '<Root>/offset'
 */
 OutUscita = (offset + mTopMdlRef_B.uscita2) + rtb_uscita;
}

The code contained an unnecessary temporary variable mTopMdlRef_B.InMemoria and data copy.

In R2023a, the code generator produces this code:

/* Model step function */
void mTopMdlRef_step(void)
{
 uint32_T rtb_uscita;

 /* ModelReference: '<Root>/somma_offset' incorporates:
 * DataStoreRead: '<Root>/Data Store Read'
 * Inport: '<Root>/offset'
 */
 somma_offset_step(&offset, &MemoriaSig[0], &rtb_uscita);

 /* Sum: '<Root>/Add' incorporates:
 * Inport: '<Root>/offset'
 */
 OutUscita = (offset + mTopMdlRef_B.uscita2) + rtb_uscita;
}

The code does not contain the unnecessary temporary variable mTopMdlRef_B.InMemoria and data
copy. It reuses the data store memory buffer MemoriaSig for passing the reference model input
values to somma_offset_step function, which improves RAM efficiency. For more information, see
“Data Copy Reduction for Data Store Read and Data Store Write Blocks”.

Change to reuse referenced model buffers model configuration
parameter settings
Starting in R2023a, when you configure models to use maximum optimization Level, by default,
model configuration parameter Reuse output buffers of Model blocks is selected.

If you use different settings of the Reuse output buffers of Model blocks parameter for the top
model and the model referenced by a Model block, the code generator no longer issues build errors.
However, the optimization is enabled only when the top model and the referenced model have the

 Performance

1-33

parameter selected. Reusing referenced model output buffers conserves RAM usage and improves
the execution efficiency of the generated code. For more information, see “Reduce Memory Usage for
Models Containing Referenced Models”.

Data copy reduction for referenced model buffers reuse optimization
Before R2023a, for some modeling patterns containing referenced models, the Reuse output
buffers of Model blocks optimization produced extra data copies in the generated code. The code
generator now optimizes the code by eliminating the unnecessary data copies, which improves RAM
consumption.

Consider, the model mnisfcn_top contains a Model block to reference the model mnisfcn_sub.

The referenced model imports external C code through S-Function blocks.

R2023a

1-34

The top and the model referenced by the Model block are configured to use the maximum
optimization Level to balance RAM usage and code speed, which automatically enables the Reuse
output buffers of Model blocks parameter for models.

In R2022b, the code generator produced this code:

/* ModelReference: '<Root>/Model' */
 mnisfcn_sub(&mnisfcn_top_B.SineWave, &rtb_Integrator1, &rtb_Model_o2);

 /* Outport: '<Root>/Out1' incorporates:
 * Sum: '<Root>/Sum'
 */
 mnisfcn_top_Y.Out1 = rtb_Integrator1 - rtb_Integrator;

 /* Integrator: '<Root>/Integrator1' */
 rtb_Integrator1 = mnisfcn_top_X.Integrator1_CSTATE;

 /* Outport: '<Root>/Out2' incorporates:
 * Sum: '<Root>/Sum1'
 */
 mnisfcn_top_Y.Out2 = rtb_Model_o2 - rtb_Integrator1;

The code reused the rtb_Integrator1 buffer to hold the referenced model output out1, but the
code contained an unnecessary data copy to rtb_Integrator1.

In R2023a, the code generator produces this code:

 /* ModelReference: '<Root>/Model' */
 mnisfcn_sub(&mnisfcn_top_B.SineWave, &rtb_Integrator1, &rtb_Model_o2);

 /* Outport: '<Root>/Out1' incorporates:
 * Sum: '<Root>/Sum'
 */
 mnisfcn_top_Y.Out1 = rtb_Integrator1 - rtb_Integrator;

 /* Outport: '<Root>/Out2' incorporates:
 * Integrator: '<Root>/Integrator1'
 * Sum: '<Root>/Sum1'
 */
 mnisfcn_top_Y.Out2 = rtb_Model_o2 - mnisfcn_top_X.Integrator1_CSTATE;

The code eliminates the unnecessary data copy to the rtb_Integrator1 by expression folding the
computation. For more information, see “Reduce Memory Usage for Models Containing Referenced
Models”.

Improve code efficiency by using code efficiency tools and techniques
Embedded Coder documentation now contains a new topic “Optimize Generated Code Using Code
Efficiency Tools and Techniques” that describes how using different code efficiency tools and
techniques, you can improve the efficiency of the generated code. If the efficiency of the code
generated from your model does not meet your requirements, review the tips and techniques
discussed in the topic and choose an approach for your model.

 Performance

1-35

Verification

Debugging for PIL simulations
Provide debugging for processor-in-the-loop (PIL) simulations by following these steps:

1 When you set up PIL connectivity, specify a debugger by using target.ExecutionService and
target.DebugExecutionTool objects.

2 In the Configuration Parameters dialog box, select the Enable source-level debugging for SIL
or PIL check box. Or, from the Command Window, set SILPILDebugging to 'on'

In previous releases, debugging is available only for software-in-the-loop (SIL) simulations.

MATLAB scripts still support SILDebugging, the previous command-line parameter.

For more information, see:

• “Support PIL Debugging”
• “DebugExecutionTool Template”
• “Debug Generated Code During SIL or PIL Simulation”

Initialization of model workspace parameters for Model block SIL/PIL
simulations
You can run Model block software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulations with
generated code that has uninitialized or undefined model workspace parameters. In previous
releases, the simulations produce errors or numerical mismatches between results from the model
and the generated code.

For Model block SIL or PIL simulations, you can use:

• Model workspace parameters with imported storage classes
• Exported model workspace parameters with no data initialization
• Model workspace parameters that map to AUTOSAR shared parameters

You can also tune model workspace parameter values between simulations, including when fast
restart is enabled.

For more information, see:

• “Configure and Run SIL Simulation”
• “Run Automated Verification, Model Simulation, or SIL/PIL Simulation”
• “General SIL and PIL Limitations”

Specify whether to open Code View automatically
You can use a new Simulink preference to specify whether or not the Code View window opens
automatically after you build a model. In the Simulink Preferences dialog box, select Editor, then set

R2023a

1-36

the preference Open Code View window after building a model. For more information, see
Simulink Preferences.

 Verification

1-37

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2023a

1-38

https://www.mathworks.com/support/bugreports/

R2022b

Version: 7.9

New Features

Bug Fixes

Compatibility Considerations

2

Code Generation from MATLAB Code

Removal of initialized but unused class properties in generated C/C++
code
Starting in R2022b, unused class properties or structure fields are removed along with their
initialization statement from generated C/C++ code. Prior to R2022b, initialization of unused class
properties or structure fields were preserved.

This enhancement reduces code complexity, reduces memory usage at run time, and improves code
readability.

The table compares the code generated in R2022b with the code generated in R2022a.

MATLAB Code R2022b Generated Code R2022a Generated Code
function out = myStruct(n)
 %# codegen
 s.a = [n n n]; % initialized and unused field
 s.b = n+2;
 s.c = n; % initialized and unused field
 out = myAdd([s s]);
end

function out = myAdd(s)
 coder.inline('never');
 out = s(1).b + s(2).b;
end

typedef struct {
 double b;
} struct_T;

/*
 * Arguments : double n
 * Return Type : double
 */
double myStruct(double n)
{
 struct_T b_s[2];
 struct_T s;
 s.b = n + 2.0;
 b_s[0] = s;
 b_s[1] = s;
 return myAdd(b_s);
}

typedef struct {
 double a[3];
 double b;
 double c;
} struct_T;

/*
 * Arguments : double n
 * Return Type : double
 */
double myStruct(double n)
{
 struct_T b_s[2];
 struct_T s;
 s.a[0] = n;
 s.a[1] = n;
 s.a[2] = n;
 s.b = n + 2.0;
 s.c = n;
 b_s[0] = s;
 b_s[1] = s;
 return myAdd(b_s);
}

For more information, see Removal of Unused Class Properties in Generated C/C++ Code.

Reduction of violations for MISRA C:2012 and AUTOSAR C++14 rules
in generated code
In R2022b, the generated code has fewer violations of several rules in the required categories of
MISRA C: 2012 and AUTOSAR C++14 coding standards. Some of these rules are:

• Dead code: MISRA C:2012 Rule 2.2 (Polyspace Bug Finder), AUTOSAR C++14 Rule M0-1-9
(Polyspace Bug Finder)

• Lexical conventions: AUTOSAR C++14 Rule M2-10-1 (Polyspace Bug Finder), AUTOSAR C++14
Rule A2-10-6 (Polyspace Bug Finder), AUTOSAR C++14 Rule A2-3-1 (Polyspace Bug Finder)

R2022b

2-2

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/removal-of-unused-class-properties-in-the-generated-cc-code.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/misrac2012rule2.2.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulem019.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulem2101.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulea2106.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulea2106.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulea231.html

• Identifiers: MISRA C:2012 Rule 5.6 (Polyspace Bug Finder)
• Compilation directive: MISRA C:2012 Rule 4.1 (Polyspace Bug Finder), MISRA C:2012 Dir

4.12 (Polyspace Bug Finder)
• Side effects and expressions: MISRA C:2012 Rule 13.2 (Polyspace Bug Finder), AUTOSAR C+

+14 Rule A5-0-1 (Polyspace Bug Finder), AUTOSAR C++14 Rule M5-0-8 (Polyspace Bug
Finder)

• Standard libraries: MISRA C:2012 Rule 21.3 (Polyspace Bug Finder)
• Other restrictions: MISRA C:2012 Dir 2.1 (Polyspace Bug Finder), AUTOSAR C++14 Rule

M0-1-3 (Polyspace Bug Finder), AUTOSAR C++14 Rule M17-0-2 (Polyspace Bug Finder),
AUTOSAR C++14 Rule A12-0-1 (Polyspace Bug Finder), AUTOSAR C++14 Rule A0-1-3
(Polyspace Bug Finder), AUTOSAR C++14 Rule A18-0-1 (Polyspace Bug Finder)

For more information on how to generate code that has improved MISRA and AUTOSAR compliance,
see Generate C/C++ Code with Improved MISRA Compliance.

 Code Generation from MATLAB Code

2-3

https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/misrac2012rule5.6.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/misrac2012rule4.1.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/misrac2012dir4.12.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/misrac2012dir4.12.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/misrac2012rule13.2.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulea501.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulea501.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulem508.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/misrac2012rule21.3.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/misrac2012dir2.1.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulem013.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulem013.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulem1702.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulea1201.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulea013.html
https://www.mathworks.com/help/releases/R2022b/bugfinder/ref/autosarc14rulea1801.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/generate-cc-code-with-improved-misra-compliance.html

Model Architecture and Design

Deploy models as components that include comprehensive service
interface support
Starting in R2022b, Embedded Coder provides a set of features that enhance how you model,
configure, generate, verify, and integrate component model code intended to interact with service
implementations of a target platform. You can set up a service interface configuration that includes
comprehensive service support for a target platform that modelers can share. Service interfaces:

• Support deployment of periodic and aperiodic rates.
• Enable customization of generated interface code for single- and multicore deployment with built-

in safeguards for maintaining data coherence.
• Support code customization of data transfers between functions outside of (before and after)

function execution.
• Provide support for accessing time values in aperiodic tasks.

You generate code that includes comprehensive platform service support by completing these steps
(highlighted in the following figure):

1 Create a shared Embedded Code Dictionary that defines a service interface configuration,
including default interfaces, for your target platform.

2 Link a model to the Embedded Coder Dictionary.
3 If you want to override default mappings that are configured in your dictionary, map model

elements to service interfaces.
4 Generate code that complies with the service interface configuration.

The complete set of features enables you to:

• Apply a new set of modeling guidelines for interfacing generated code with target platform
software. Examples of target platform software include a function scheduler and services that
send and receive data and provide access to the target environment clock tick. See “Modeling

R2022b

2-4

guidelines and Model Advisor checks for component deployment using a service interface
configuration” on page 2-9.

• Set up a shared Embedded Coder Dictionary that includes comprehensive service interface
configurations, including behavior semantics, for generating component code intended to interact
with services provided by specific target platforms. See:

• “Control interface of generated code using data and service interface configurations in
Embedded Coder Dictionary” on page 2-6

• “Component service interface support for callable entry-point functions” on page 2-7
• “Component service interface support for target platform data receiver and data sender

services” on page 2-7
• “Component service interface support for target platform data transfer service” on page 2-7
• “Component service interface support for target platform timer service” on page 2-8
• “Component service interface support for target platform parameter tuning and measurement

services” on page 2-8
• “New $X naming rule token” on page 2-16

• Link a component model to a shared Embedded Coder Dictionary that includes service interface
configurations. See “Control interface of generated code using data and service interface
configurations in Embedded Coder Dictionary” on page 2-6.

• Configure a model for component or subcomponent deployment. See “Select code interface
configuration using new configuration parameter” on page 2-13.

• Map elements of a component model to service interfaces defined in the shared dictionary linked
to the model. See “Map model elements to service interfaces” on page 2-10.

• Use new Model Advisor checks to confirm that a model that is configured to use service interfaces
complies with modeling guidelines and is ready for code generation. See “Modeling guidelines and
Model Advisor checks for component deployment using a service interface configuration” on page
2-9.

• Generate and review the file structure and naming of code generation output that supports service
interfaces for component deployment. See “Files and folders for target platform services” on page
2-15.

• View a version of the Code Interface Report that is enhanced to show details about component
callable entry-point functions and service code interfaces. See “Code interface report for service
interfaces” on page 2-16.

• Use software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations to test your generated
service interface code on your development computer and a target processor or simulator,
respectively. See SIL/PIL Manager Verification Workflow.

• Ease component code integration by using the code descriptor programming interface to get
metadata about the code interface generated for a model. See “Retrieve metadata about service
interface by using code descriptor programming interface” on page 2-20.

For examples, see Deploy Export-Function Component Configured for C Service Interface Code
Generation and Deploy Rate-Based Component Configured for C Service Interface Code Generation .

For background and high-level workflow information, see Embedded Coder Fundamentals.

For information about constraints and current limitations, see Service Interface Constraints and
Limitations.

 Model Architecture and Design

2-5

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/verification-workflow-with-silpil-manager.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/develop-and-deploy-component-configured-for-c-service-interface-code-generation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/develop-and-deploy-component-configured-for-c-service-interface-code-generation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/deploy-ratebased-component-configured-for-service-interface-codegen.html
https://www.mathworks.com/help/releases/R2022b/ecoder/embedded-coder-fundamentals.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/component-c-service-code-interfacing-with-target-environment-services.html#mw_d80aed63-01ee-4d62-89a9-1a7906062d35
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/component-c-service-code-interfacing-with-target-environment-services.html#mw_d80aed63-01ee-4d62-89a9-1a7906062d35

Control interface of generated code using data and service interface
configurations in Embedded Coder Dictionary
Starting in R2022b, you can control the interface of your generated code by creating a code interface
configuration in an Embedded Coder Dictionary and mapping your model elements to the definitions
in the code interface configuration. The Embedded Coder Dictionary contains one of these code
interface configurations:

• Service interface configuration — The configuration contains service interfaces, storage classes,
function customization templates, and memory sections. The new service interface configuration
enables you to define comprehensive service interfaces to generate code that interacts with
services provided by specific target platforms. For more information, see “Deploy models as
components that include comprehensive service interface support” on page 2-4.

• Data interface configuration — The configuration contains storage classes, function customization
templates, and memory sections. If you created an Embedded Coder Dictionary in an earlier
release, when you open the dictionary in R2022b, the dictionary contains a data interface
configuration with the existing code interface definitions.

Starting in R2022b, when you create an Embedded Coder Dictionary, you specify whether the
dictionary contains a service interface configuration or a data interface configuration. For more
information, see Embedded Coder Dictionary.

R2022b

2-6

https://www.mathworks.com/help/releases/R2022b/ecoder/ref/embeddedcoderdictionary.html

For more information about deploying component models that are configured with a service code
interface, see “Deploy models as components that include comprehensive service interface support”
on page 2-4.

Component service interface support for callable entry-point functions
Starting in R2022b, for component deployment, you can associate a model with a service interface
configuration that aligns with callable entry-point function requirements for a specific target
platform. The service interface configuration includes function customization templates for:

• Periodic and aperiodic functions used for executing component algorithms
• Initialize and terminate functions used for handling startup and shutdown events

The code generator produces the callable entry-points based on code mappings from functions
represented in a model to function customization templates configured in the shared Embedded
Coder Dictionary linked to the model. For more information, see Periodic and Aperiodic Function
Interfaces and Startup, Reset, and Shutdown Function Interfaces.

For more information about deploying component models that are configured with a service code
interface, see “Deploy models as components that include comprehensive service interface support”
on page 2-4.

Component service interface support for target platform data receiver
and data sender services
Starting in R2022b, for component deployment, you can generate code that sends and receives data
to and from the target environment by using environment-specific data communication methods. In a
model, at the root level, you represent a sender service as an Outport block or a Bus Element Outport
block. You represent a receiver service as an Inport block or a Bus Element Inport block. The code
generator produces service interfaces based on your specified communication methods in the shared
Embedded Coder Dictionary linked to the model. These service interfaces are also based on the
mappings between Embedded Coder Dictionary interfaces and model elements specified in the Code
Mappings editor.

For more information, see Data Communication Methods, Service Interfaces, Create a Service
Interface Configuration, and Generate Sender and Receiver C Interface Code for Component
Deployment.

For more information about deploying component models that are configured with a service code
interface, see “Deploy models as components that include comprehensive service interface support”
on page 2-4.

Component service interface support for target platform data transfer
service
Starting in R2022b, for component deployment, you can generate code that supports data transfers
between callable functions within a model, including data transfers that occur between functions
outside of (before and after) function execution or during function execution. Within a model, you
represent a data transfer as a signal line that connects the outport of one callable function to the
inport of another callable function. The code generator produces service interfaces based on the

 Model Architecture and Design

2-7

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/periodic-and-aperiodic-function-interfaces.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/periodic-and-aperiodic-function-interfaces.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/startup-reset-and-shutdown-function-interfaces.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/data-communication-methods.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/component-c-service-code-interfacing-with-target-environment-services.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/create-code-interface-defintions-for-function-platform.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/create-code-interface-defintions-for-function-platform.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/generate-sender-and-reciever-service-interface-code-for-component-deployment.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/generate-sender-and-reciever-service-interface-code-for-component-deployment.html

content of the model and the data transfer service interface configuration in the shared Embedded
Coder Dictionary linked to the model.

For more information, see Data Communication Methods, Service Interfaces, Create a Service
Interface Configuration, and Generate C Data Transfer Service Interface Code for Component
Deployment.

For more information about deploying component models that are configured with a service code
interface, see “Deploy models as components that include comprehensive service interface support”
on page 2-4.

Component service interface support for target platform timer service
Starting in R2022b, for component deployment of aperiodic export-function models, you can generate
code that supports access to the function clock tick used by the target environment. Within a model,
you represent requests for the clock tick implicitly when you use Discrete Time Integrator and
Weighted Sample Time blocks. The code generator assumes that the clock resolution is the
fundamental step size of the model and produces a timer service interface based on content of the
model and the timer service interface configuration in the shared Embedded Coder Dictionary linked
to the model.

For more information, see Data Communication Methods, Service Interfaces, Create a Service
Interface Configuration, and Generate C Timer Service Interface Code for Component Deployment.

For more information about deploying component models that are configured with a service code
interface, see “Deploy models as components that include comprehensive service interface support”
on page 2-4.

Component service interface support for target platform parameter
tuning and measurement services
Starting in R2022b, you can generate service interface code that supports:

• Tuning parameters
• Tuning parameter arguments
• Measuring signal, state, and data store data

The code generator produces service interfaces based on data stored in a workspace or dictionary for
the model and the parameter tuning, parameter argument tuning, and measurement service interface
configurations in the shared Embedded Coder Dictionary linked to the model.

For more information, see Service Interfaces, Create a Service Interface Configuration, Generate C
Parameter Tuning Service Interface Code for Component Deployment, and Generate C Measurement
Service Interface Code for Component Deployment.

For more information about deploying component models that are configured with a service code
interface, see “Deploy models as components that include comprehensive service interface support”
on page 2-4.

R2022b

2-8

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/data-communication-methods.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/component-c-service-code-interfacing-with-target-environment-services.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/create-code-interface-defintions-for-function-platform.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/create-code-interface-defintions-for-function-platform.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/generate-c-data-transfer-service-interface-code-for-component-deployment.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/generate-c-data-transfer-service-interface-code-for-component-deployment.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/data-communication-methods.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/component-c-service-code-interfacing-with-target-environment-services.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/create-code-interface-defintions-for-function-platform.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/create-code-interface-defintions-for-function-platform.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/generate-c-timer-service-interface-code-for-component-deployment.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/component-c-service-code-interfacing-with-target-environment-services.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/create-code-interface-defintions-for-function-platform.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/generate-c-parameter-tuning-service-interface-code-for-component-deployment.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/generate-c-parameter-tuning-service-interface-code-for-component-deployment.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/generate-c-measurement-service-interface-code-for-component-deployment.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/generate-c-measurement-service-interface-code-for-component-deployment.html

Modeling guidelines and Model Advisor checks for component
deployment using a service interface configuration
Starting in R2022b, MathWorks provides a set of guidelines that you can use when deploying models
as pluggable components whose generated code interacts with service implementations of a target
platform. You can use Embedded Coder Model Advisor checks to verify compliance of your model
with the modelling guidelines.

For information on how to set up a service interface configuration with Embedded Coder that
includes comprehensive service support for a target platform, see “Deploy models as components
that include comprehensive service interface support” on page 2-4.

This table identifies the modeling guidelines and their corresponding Model Advisor checks, when
applicable.

Modeling Guideline Model Advisor Check
cgsl_0401: Modeling styles for component
deployment

Check modeling style for component deployment

cgsl_0402: Signal interfaces for component
deployment

Check signal interfaces

cgsl_0404: Model startup and shutdown events
by using Initialize Function and Terminate
Function blocks for component deployment

A Model Advisor check is not provided for this
guideline.

cgsl_0405: Data receive for component
deployment

A Model Advisor check is not provided for this
guideline.

cgsl_0406: Data send for component deployment A Model Advisor check is not provided for this
guideline.

cgsl_0408: Partial data send for component
deployment

A Model Advisor check is not provided for this
guideline.

cgsl_0409: Data transfer for component
deployment

The guideline cannot be verified by using a Model
Advisor check.

cgsl_0411: Access nonvolatile memory by using
Initialize Function and Terminate Function blocks

The guideline cannot be verified by using a Model
Advisor check.

cgsl_0413: Reuse memory between component
state and output for component deployment

The guideline cannot be verified by using a Model
Advisor check.

cgsl_0414: Configure service interface for
component model

Check configuration for component deployment

 Model Architecture and Design

2-9

https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/guideline_cgsl_0401.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/guideline_cgsl_0401.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_e0bc50af-ef0b-43a6-a683-b90e4001cec1
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0402-signal-interface.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0402-signal-interface.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_a4d2bc6e-67a1-49b3-8465-a0da95f2205a
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0404-model-startup-and-shutdown-events-by-using-initialize-function-and-terminate-function-blocks.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0404-model-startup-and-shutdown-events-by-using-initialize-function-and-terminate-function-blocks.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0404-model-startup-and-shutdown-events-by-using-initialize-function-and-terminate-function-blocks.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0405-data-receive.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0405-data-receive.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0406-data-send.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0408-partial-data-send.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0408-partial-data-send.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0409-data-transfer.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0409-data-transfer.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0411-access-nonvolatile-memory-by-using-initialize-function-and-terminate-function-blocks.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0411-access-nonvolatile-memory-by-using-initialize-function-and-terminate-function-blocks.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0413-reuse-memory-between-component-state-and-output.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/cgsl-0413-reuse-memory-between-component-state-and-output.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/guideline-cgsl-0414.html
https://www.mathworks.com/help/releases/R2022b/simulink/mdl_gd/cg/guideline-cgsl-0414.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_aa8769f9-7295-494e-a29f-5ca70fe7f912

Code Interface Configuration and Integration

Map model elements to service interfaces
In R2022b, code mappings enable you to map elements of a model to service interfaces defined in a
shared dictionary linked to the model. You can control code interfaces at different levels of the model
hierarchy by configuring the deployment type of the model.

Using the Code Mappings Editor or its associated programming interface, customize interfaces in
the generated code that interact with target platform services by mapping interface elements in your
model to service interfaces defined in a shared dictionary.

Model Element Service Example
Inports Receiver Configure Sender and Receiver

Service Interfaces for Model
Inports and Outports

Outports Sender

Data transfers represented by a
signal connecting two function-
call subsystems or exported
scoped Simulink functions

Data transfer Configure Data Transfer Service
Interfaces for Data Transfer
Signals

Export functions Timer Configure Timer Service
Interfaces for Aperiodic Export
Functions

Model parameters Parameter tuning Configure Parameter and
Parameter Argument Tuning
Service Interfaces for Model
Parameters and Model
Parameter Arguments

Model parameter arguments Parameter argument tuning

Signals, states, and data stores Measurement Configure Measurement Service
Interfaces for Signals, States,
and Data Stores

To configure these services, your model must be linked to a service interface definition. For more
information, see C Service Interfaces and Code Mappings editor.

For more information about deploying component models that are configured with a service code
interface, see “Deploy models as components that include comprehensive service interface support”
on page 2-4.

Dimension preservation of multidimensional arrays for GetSet and
access function storage classes
Previously, you could not generate code that preserved the dimensions of a multidimensional model
data element when you set the storage class for that data element to the predefined storage class
GetSet or to a custom storage class with Data Access set to Function. In R2022b, when the model
configuration parameter Array layout is set to Row-major, you can preserve the dimensions of a
multidimensional array data element when the element uses one of these storage classes.

R2022b

2-10

https://www.mathworks.com/help/releases/R2022b/ecoder/ref/codemappingseditorc.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-sender-and-receiver-services-for-model-inports-and-outports.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-sender-and-receiver-services-for-model-inports-and-outports.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-sender-and-receiver-services-for-model-inports-and-outports.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-data-transfer-services-for-signals.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-data-transfer-services-for-signals.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-data-transfer-services-for-signals.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-timer-services-for-export-functions.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-timer-services-for-export-functions.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-timer-services-for-export-functions.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-parameter-and-parameter-argument-tuning-services-for-model-parameters-and-model-parameter-arguments.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-parameter-and-parameter-argument-tuning-services-for-model-parameters-and-model-parameter-arguments.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-parameter-and-parameter-argument-tuning-services-for-model-parameters-and-model-parameter-arguments.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-parameter-and-parameter-argument-tuning-services-for-model-parameters-and-model-parameter-arguments.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-parameter-and-parameter-argument-tuning-services-for-model-parameters-and-model-parameter-arguments.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-measurement-services-for-signals-states-and-data-stores.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-measurement-services-for-signals-states-and-data-stores.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-measurement-services-for-signals-states-and-data-stores.html
https://www.mathworks.com/help/releases/R2022b/ecoder/service-interfaces.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/codemappingseditorc.html

In the Code Mappings editor, to preserve dimensions for an individual data element that uses a
GetSet or access function storage class, or a category of such elements, select the
PreserveDimensions property in the Property Inspector window.

In the Embedded Coder Dictionary, to preserve dimensions for a new custom storage class with Data
Access set to Function, select the Preserve array dimensions property in the Property Inspector.
This property is available only when the Access Mode property for the storage class is set to Value.

You can also select the Preserve array dimensions property in a data object property dialog box.

For more information, see Preserve Dimensions of Multidimensional Arrays in Generated Code.

Support for root level inports and outports as pointer members in C+
+ generated code
C++ code generation now supports configuring inports and outports at the root level of a model to
appear in the generated code as pointer members. Configuring inports or outports as pointers
reduces the number of data copies by allowing the generated model class to refer to externally
managed memory.

When configuring inports or outports as pointer members, the model must have Model Configuration
Parameters set to either generate an example ERT main program (ert_main.cpp) or generate code
only. Additionally, the member access method for the Inports or Outports must be structure-based.

For more information about configuring C++ interfaces, see Interactively Configure C++ Interface
and Programmatically Configure C++ Interface.

Functionality being removed or changed
Model parameters and parameter arguments returned separately by find function
Behavior change

The find function now returns model parameter arguments separately from model parameters.

Starting in R2022b, to return all elements in the model code mappings that are model parameter
arguments, enter the following.

cm = coder.mapping.api.get('myConfigModel');
modelParamArgs = find(cm,'ModelParameterArguments');

To return all elements in the model code mappings that are model parameters, enter the following.

cm = coder.mapping.api.get('myConfigModel');
modelParams = find(cm,'ModelParameters');

In previous releases, specifying ModelParameters as the category argument returned both model
parameters and model parameter arguments.

Embedded Coder Dictionary refreshes when loading model from earlier release
Behavior change

Package-based code definitions have changed. If your Embedded Coder Dictionary refers to code
definitions that you store in a package, the dictionary refreshes when you load a model from an

 Code Interface Configuration and Integration

2-11

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/preserve-dimensions-of-multidimensional-arrays-in-generated-code.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/interactively-configure-cpp-interface.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/programmatically-configure-cpp-interface.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.mapping.api.codemapping.find.html

earlier release. To prevent the dictionary refresh, resave the model, or the Simulink data dictionary
that contains the Embedded Coder Dictionary, in the current release.

R2022b

2-12

Code Generation

Select code interface configuration using new configuration
parameter
In R2022b, you can configure a model to use a code interface configuration in one of these ways:

• In the Embedded Coder app, on the C Code tab, click Code Interface > Set up shared
Embedded Coder Dictionary. Use the dialog box to select or create an Embedded Coder
Dictionary.

• Specify the Embedded Coder Dictionary for a model hierarchy by using the Set up deployment
type for model hierarchy dialog box. The table shows code interface configuration types contained
in the dictionary.

 Code Generation

2-13

• In the Configuration Parameters dialog box, set the configuration parameter Shared coder
dictionary to the name of an Embedded Coder Dictionary SLDD file.

When you select an Embedded Coder Dictionary, the code interface configuration type that the
dictionary contains controls the deployment types that are available to configure your model.

• For a data interface configuration, you can select the automatic or subcomponent deployment
type.

• For a service interface configuration, you can select the component or subcomponent deployment
type.

For more information, see Select Code Generation Output for Target Platform Deployment and
Configure C Code Deployment Types for Model Hierarchy. For more information about deployment
component models that are configured with a service code interface, see “Deploy models as
components that include comprehensive service interface support” on page 2-4.

Generate an example main program parameter not available for
models configured with a service interface configuration
When deploying a component, the goal is to produce algorithm code that can be integrated with a
main program and scheduler of choice. From a task execution perspective, the generated code is
portable across target environments. Given this goal, there is no need to generate an example main
program. As such, starting in R2022b, for component models that you configure with a service code
interface, you cannot set the model configuration parameter Generate an example main program
(GenerateSampleERTMain).

For more information about deploying component models that are configured with a service code
interface, see “Deploy models as components that include comprehensive service interface support”
on page 2-4.

Generated C++11 example main program simplified
Starting in R2022b, for models configured with the following model configuration parameter settings,
the code generator produces a simplified ert_main.cpp file that aligns with the concurrency and
multithreading capabilities of the C++11 (ISO) standard library.

• Allow tasks to execute concurrently on target is selected.
• MAT-file logging is cleared.
• System target file is set to an ERT-based system target file.
• Language is set to C++.
• Language standard is set to C++11 (ISO).
• Code interface packaging is set to C++ class.
• Generate an example main program (GenerateSampleERTMain) is selected.

R2022b

2-14

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/select-code-generation-output-for-model-function-platform-deployment.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-deployment-types-for-a-model-hierarchy.html

Prior to R2022b, generated example main program ert_main.cpp included a wrapper function,
which served as a dispatcher. For example:

// Model wrapper function
 void rtwdemo_cppclass_step(multi_rate & rtwdemo_cppclass_Obj, int_T tid)
 {
 switch (tid) {
 case 0 :
 rtwdemo_cppclass_Obj.EngineEntrypoint();
 break;

 case 1 :
 rtwdemo_cppclass_Obj.EngineEntrypoint1();
 break;

 case 2 :
 rtwdemo_cppclass_Obj.EngineEntrypoint2();
 break;

 default :
 // do nothing
 break;
 }
 }

The wrapper function used the switch statement to select the model_stepN function to call during
run time. Starting in R2022b, the code generator improves performance of generated main program
by eliminating the wrapper function and calling each entry-point function directly.

For more information, see Model Multicore Concurrent Tasking Application, Generate an example
main program, and Deploy Applications to Target Hardware.

Include requirement comments in the generated code
When you generate C/C++ code from MATLAB code containing requirement links (Requirements
Toolbox™), you can include comments in the generated code that contain information about the
requirements and the linked MATLAB code ranges. When you view the generated code from a code
generation report, the comments are hyperlinks that you can use to navigate to the requirement or
the linked MATLAB code range. For more information, see Requirements Traceability for Code
Generated from MATLAB Code (Requirements Toolbox).

Files and folders for target platform services
When you generate code for a component model that uses a service code interface configuration, the
code generator creates these subfolders:

• codeGenerationFolder/modelBuildFolder/services — Contains services.h, the header
file that specifies function prototypes for target platform services.

• codeGenerationFolder/modelBuildFolder/services/lib — Contains buildInfo.mat,
which you use for building the component model library that represents the generated code
compiled against services.h.

For more information about generated files and folders, see Manage Build Process Folders.

 Code Generation

2-15

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/model-concurrent-execution-for-symmetric-multicore-cpu-platforms.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/generateanexamplemainprogram.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/generateanexamplemainprogram.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/standalone-programs-no-operating-system.html
https://www.mathworks.com/help/releases/R2022b/slrequirements/ug/requirements-traceability-for-code-generated-from-matlab-functions-classes.html
https://www.mathworks.com/help/releases/R2022b/slrequirements/ug/requirements-traceability-for-code-generated-from-matlab-functions-classes.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/build-process-folders.html

To generate code for the component model and build the component model library, set the
GenCodeOnly configuration parameter to 'off' and use the slbuild command. If code for the
component model is already generated, you can build the component model library by using the
codebuild command with the path to the buildInfo.mat file.

If you only generate code for the component model library, you can build the component model
library outside the MATLAB environment by using a CMake workflow. You can create a:

• CMake configuration (CMakeLists.txt) file by using the codebuild function
• ZIP file by using the packNGo function

For more information, see:

• Deploy Generated Code
• Deploy Component Algorithm as Component Model Library by Using CMake

For more information about deploying component models that are configured with a service code
interface, see “Deploy models as components that include comprehensive service interface support”
on page 2-4.

Code interface report for service interfaces
In R2022b, when you generate code by using a service code interface configuration, the code
interface report documents how the generated code uses services such as data transfer and timer
services. The code interface report includes:

• A high-level description of service interface generation
• Interface details for model execution functions, including the model_initialize, model_step,

and model_terminate functions
• Interface details for services the model uses, such as data transfer and timer services

For more information, see Analyze Generated Service Code Interface. For more information about
deploying component models that are configured with a service code interface, see “Deploy models as
components that include comprehensive service interface support” on page 2-4.

Generate code for Reusable custom storage classes with symbolic
dimension inputs
Starting in R2022b, you can generate code for the Reusable custom storage classes with symbolic
dimensions as inputs. Prior to R2022b, code generation for Reusable custom storage classes with
symbolic dimensions as inputs was not supported.

For more information, see Implement Dimension Variants for Array Sizes in Generated Code.

New $X naming rule token
Use the $X token in naming rules for generated sender, receiver, data transfer, and timer service
interface access functions. The $X token represents the name of the entry-point function that
encloses the access function.

For example, this code uses the function naming rule get_$X_input for receiver services and set_
$X_output for sender services.

R2022b

2-16

https://www.mathworks.com/help/releases/R2022b/simulink/slref/slbuild.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/codebuild.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/codebuild.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/packngo.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/deploy-component-model.html#mw_86afbd85-c4f9-44fe-b5d1-4e57b608ce5b
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/deploy-component-algorithm-as-component-model-library-by-using-cmake.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/analyze-interface-of-service-aware-generate-code.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html

void CD_accumulator(void)
{
 int32_T i;
 for (i = 0; i < 10; i++) {
 CD_sig.delay[i] += (get_CD_accumulator_input())[i];
 (set_CD_accumulator_output())[i] = CD_param.tunable_gain * CD_sig.delay[i];
 }
}

The sender and receiver services, set_CD_accumulator_output and
get_CD_accumulator_input respectively, include the name of the enclosing entry-point function,
CD_accumulator.

For more information about naming rule tokens, see Identifier Format Control. For more information
about deploying component models that are configured with a service code interface, see “Deploy
models as components that include comprehensive service interface support” on page 2-4.

Example models attached to examples and renamed
In R2022b, these example models have been renamed and are available in the examples indicated in
this table.

R2022a model name New model name Example
rtwdemo_condinput ConditionalInput Use Conditional Input Branch

Execution
rtwdemo_deadpathElim DeadPathElimination Eliminate Dead Code Paths in

Generated Code
rtwdemo_foreachreuse ForEachReuse Generate Reusable Code from

For Each Subsystems
rtwdemo_col_dlut3d_selpl
ane

ColumnDLUT3DSelectPlane Direct Lookup Table Algorithm
for Row-Major Array Layout

rtwdemo_col_dlut3d_selve
ctor

ColumnDLUT3DSelectVector Direct Lookup Table Algorithm
for Row-Major Array Layout

rtwdemo_row_dlut3d_selpl
ane

RowDLUT3DSelectPlane Direct Lookup Table Algorithm
for Row-Major Array Layout

rtwdemo_row_dlut3d_selve
ctor

RowDLUT3DSelectVector Direct Lookup Table Algorithm
for Row-Major Array Layout

rtwdemo_mdlreftop TopModelCode File Packaging for Models (Code
and Data)

rtwdemo_mdlrefbot ReferenceModelCode File Packaging for Models (Code
and Data)

rtwdemo_row_interpalg RowInterpolationAlgorith
m

Interpolation Algorithm for Row-
Major Array Layout

rtwdemo_row_lut2d RowLUT2D Interpolation Algorithm for Row-
Major Array Layout

rtwdemo_udt UserDefinedDataTypes Define Abstract Numeric Types
and Rename Types

 Code Generation

2-17

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/specify-identifier-formats.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/use-conditional-input-branch-execution.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/use-conditional-input-branch-execution.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/eliminate-dead-code-paths-in-generated-code.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/eliminate-dead-code-paths-in-generated-code.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/generate-reusable-code-from-for-each-subsystems.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/generate-reusable-code-from-for-each-subsystems.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/direct-lookup-table-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/direct-lookup-table-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/direct-lookup-table-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/direct-lookup-table-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/direct-lookup-table-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/direct-lookup-table-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/direct-lookup-table-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/direct-lookup-table-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/file-packaging-for-models-code-and-data.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/file-packaging-for-models-code-and-data.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/file-packaging-for-models-code-and-data.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/file-packaging-for-models-code-and-data.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/interpolation-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/interpolation-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/interpolation-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/interpolation-algorithm-for-row-major-array-layout.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/control-data-type-names-in-generated-code.html#mw_0e065711-c68a-4370-8bd3-9dc104e7ef28
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/control-data-type-names-in-generated-code.html#mw_0e065711-c68a-4370-8bd3-9dc104e7ef28

R2022a model name New model name Example
rtwdemo_sil_block SILBlock Test Generated Code with SIL

and PIL Simulations
rtwdemo_sil_modelblock SILModelBlock Test Generated Code with SIL

and PIL Simulations
rtwdemo_sil_counter SILCounter Test Generated Code with SIL

and PIL Simulations
rtwdemo_sil_topmodel SILTopModel Test Generated Code with SIL

and PIL Simulations
rtwdemo_cppclass CppClassRateBased Configure C++ Class Interface

for Rate-Based Models
rtwdemo_cppclass_expfcn CppClassExportFunction Configure C++ Class Interface

for Export-Function Models
rtwdemo_cppclass_workflo
w

CppClassWorkflowKeyIgnit
ion

Generate C++ Code from
Simulink Models

rtwdemo_concurrent_execu
tion

MulticoreConcurrentTaski
ng

Model Multicore Concurrent
Tasking Application

rtwdemo_multirate_multit
asking

MultirateMultitasking Model Single-Core, Rate-
Monotonic Multitasking
Application

rtwdemo_multirate_single
tasking

MultirateSingleTasking Model Single-Core, Single-
Tasking Application

rtwdemo_explicitinvocati
on_atomicsubsys

AtomicSubsystem Generate Code for Atomic
Subsystems

New Simulink Model Advisor check for numeric efficiency
You can use the Model Advisor to identify when code generated from a Simulink model will be more
efficient if you enable the Support long long parameter. This numeric efficiency check alerts you
when signals and ports in your model will result in expensive multi-word types in generated code
because the long long data type is not enabled.

In the Model Advisor, select and run By Product > Embedded Coder > Check usage of 'long
long' data type. For more information, see Embedded Coder Checks.

Only explicit usage of signals and ports having data types with word lengths greater than the long
data type are detected. This check does not flag operation outputs that implicitly have word lengths
greater than long data type, such as the output of a multiply operation.

Code replacement validation detects ambiguous overflow and
rounding modes
In R2022b, when you create a code replacement entry for an operation that can overflow or lose
precision during rounding, you must specify the Integer saturation mode (SaturationMode) or
Rounding mode (RoundingModes) for the entry. When you validate these entries in R2022b, they
produce a warning if the required settings are not specified. The new validation check enables you to

R2022b

2-18

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/software-and-processor-in-the-loop-sil-and-pil-simulation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/software-and-processor-in-the-loop-sil-and-pil-simulation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/software-and-processor-in-the-loop-sil-and-pil-simulation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/software-and-processor-in-the-loop-sil-and-pil-simulation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/software-and-processor-in-the-loop-sil-and-pil-simulation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/software-and-processor-in-the-loop-sil-and-pil-simulation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/software-and-processor-in-the-loop-sil-and-pil-simulation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/software-and-processor-in-the-loop-sil-and-pil-simulation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/cpp_class_interface_scheduled_example.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/cpp_class_interface_scheduled_example.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-cpp-class-interface-export-fcn.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configure-cpp-class-interface-export-fcn.html
https://www.mathworks.com/help/releases/R2022b/ecoder/gs/generate-c-code-from-simulink-models-1.html
https://www.mathworks.com/help/releases/R2022b/ecoder/gs/generate-c-code-from-simulink-models-1.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/model-concurrent-execution-for-symmetric-multicore-cpu-platforms.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/model-concurrent-execution-for-symmetric-multicore-cpu-platforms.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/model-singlecore-multitasking-platform-execution.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/model-singlecore-multitasking-platform-execution.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/model-singlecore-multitasking-platform-execution.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/model-singlecore-singletasking-platform-execution.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/model-singlecore-singletasking-platform-execution.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/model-explicit-function-invocation-with-atomic-subsystems.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/model-explicit-function-invocation-with-atomic-subsystems.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/embedded-codersimulink-coder-checks.html

identify entries that could lead to unintended replacements in the generated code and produce
different results from the model.

Previously, these entries were reported as valid even if the saturation and rounding settings were not
specified. When the settings were not specified, operations with different saturation or overflow
needs could have mapped to the same code replacement entry, leading to generated code that
produced different results from the model. For more information, see Integer saturation mode
and Rounding modes.

Compatibility Considerations
Some code replacement entries that were previously reported as validated produce warnings in
R2022b. To make the entries valid, specify the Integer saturation mode or the Rounding mode for
the entries. In a future release, the validation check will produce errors instead of warnings.

 Code Generation

2-19

https://www.mathworks.com/help/releases/R2022b/ecoder/ref/codereplacementtool.html#bui_r6i-1-Integersaturationmode
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/codereplacementtool.html#bui_r6i-1-Roundingmodes

Deployment
Retrieve metadata about service interface by using code descriptor
programming interface
You can now ease component code integration configured with a service code interface by using the
code descriptor programming interface to get metadata about the code interfaces generated for a
model. You can use this metadata to declare and define your target platform service functions.

To use the code descriptor programming interface, first create a
coder.codedescriptor.CodeDescriptor object for the model.

codeDesc = coder.getCodeDescriptor(BuildDirectory);

Use these methods of the coder.codedescriptor.CodeDescriptor object to retrieve metadata
about service function declarations.

Goal Method
Return the service interface object. getServices
Return the declaration of service function
interface in the generated code

getServiceFunctionDeclaration

Return the prototype of generated service
function interface.

getServiceFunctionPrototype

Use these methods of the coder.descriptor.ServiceInterface object to retrieve metadata
about a specified service function.

Goal Method
Return a list of generated entry-point functions
that call a target platform service function.

getCallableFunctionsThatCallServiceFun
ction

Return a list of the service functions called from a
generated entry-point function.

getCalledServiceFunctions

Return the data communication method that the
specified service function uses.

getServiceDataCommMethod

Return the service interface object for a service
interface type.

getServiceInterface

Return the name of the header file that contains
the service interface prototypes.

getServicesHeaderFileName

For more information, see Get Metadata About Service Interface.

For more information about deploying component models that are configured with a service code
interface, see “Deploy models as components that include comprehensive service interface support”
on page 2-4.

Target Language Compiler search functions for regular expressions
Starting in R2022b, you can use these Target Language Compiler (TLC) functions to perform
operations on regular expressions. For more information, see Regular Expressions.

R2022b

2-20

https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.codedescriptor.codedescriptor-class.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.codedescriptor.codedescriptor.getservices.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.codedescriptor.codedescriptor.getservicefunctiondeclaration.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.codedescriptor.codedescriptor.getservicefunctionprototype.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.descriptor.serviceinterface-class.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.descriptor.serviceinterface.getcallablefunctionsthatcallservicefunction.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.descriptor.serviceinterface.getcallablefunctionsthatcallservicefunction.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.descriptor.serviceinterface.getcalledservicefunctions.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.descriptor.serviceinterface.getservicedatacommmethod.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.descriptor.serviceinterface.getserviceinterface.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.descriptor.serviceinterface.getservicesheaderfilename.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/get-metadata-about-service-interface.html
https://www.mathworks.com/help/releases/R2022b/matlab/matlab_prog/regular-expressions.html

TLC Built-In Functions

Built-In Function Name Description
CONTAINS(expr1, expr2) Returns TLC_TRUE if expr1 contains expr2, and TLC_FALSE

otherwise. expr1 and expr2 must be strings. For example,
CONTAINS(“I walk up, they walked up, we are walking
up.”, “walk(\\w*) up”) returns TLC_TRUE.

REGEXP_MATCH(expr1, expr2) Returns the substrings in expr1 that match the pattern expr2. expr1
and expr2 must be strings. For example, REGEXP_MATCH(“I walk
up, they walked up, we are walking up.”, “walk(\\w*)
up”) returns [“walk up”, “walked up”, “walking up”].

REGEXPREP(expr1, expr2, expr3) Returns a new string that replaces instances of the substring expr2 in
string expr1 with the substring expr3. expr1, expr2 and expr3
must be strings. This function supports tokens in replacement string.
For example, REGEXPREP(“I walk up, they walked up, we
are walking up.”, “walk(\\w*) up”, “ascend$1”) returns
“I ascend, they ascended, we are ascending.”.

For more information, see Target Language Compiler Directives.

Introducing Embedded Coder Support Package for Linux Applications
Embedded Coder Support Package for Linux Applications is available from release R2022b. Deploy
and prototype AUTOSAR adaptive application components on a Linux target.

The support package includes an application Linux Runtime Manager. Use the application to
deploy and calibrate the AUTOSAR adaptive model on a Linux target as an adaptive application. You
can also use the application to start, stop, or suspend a running AUTOSAR adaptive application on a
target.

For more details on installing the support package, see Support Package Installation.

You can also convert a DDS Blockset model into an AUTOSAR Adaptive model by using the
linux.utils.migrateDds2Adaptive function and deploy it on the target.

Calibration File Customization
Starting from R2022b, the Generate Calibration Files tool remembers the last used settings, such
as version of the ASAP2 file, and include or exclude comments, turn off or on the ASAP2 file and CDF
file generation. These settings are saved in the MATLAB preferences.

For more information, see Generate ASAP2 and CDF Calibration Files.

The Embedded Coder allows you to add, delete, modify, find, filter, fetch measurements,
characteristics, functions, and compu-methods by using the programming interface.

Also, the new enhancements allow you to

• Insert custom code fragments in different sections of the ASAP2 file.
• Modify the Name and Comments for the project and module sections.
• Provide address extension for the ECU address to measurements, characteristics, and axis points.

 Deployment

2-21

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/target-language-compiler-directives.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/spkg_installation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/linux.utils.migratedds2adaptive.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/asap2-cdf-calibration.html

• Insert functions hierarchy by adding function as subfunction in another function.

For more information, see Customize Generated ASAP2 File.

R2022b

2-22

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/a2l-custom-cd.html

Performance

Data Store Memory block reuse in reusable subsystems inside While
Iterator subsystems
Starting in R2022b, the generated code contains fewer data copies for models in which Data Store
Memory blocks are read from a reusable subsystem that is inside a While Iterator subsystem. Inside
the reusable subsystem, an Assignment block passes the output values to the Data Store Write block
in order to write them into the Data Store Memory locations.

For example, the mDSMReuse model has a While Iterator subsystem and a Data Store Memory block.

The While Iterator subsystem contains the reusable subsystem Calculate. Inside the subsystem,
bus values are read from a top-level Data Store Memory block MyData. The subsystem output values
are passed to the Data Store Write block by an Assignment block in order to write them into MyData.

In R2022a, the code generator produced this code in Calculate.c:

if (rtu_Enable) {
 if ((*rtd_WhileIterator_IterationMarker) < 2ULL) {
 *rtd_WhileIterator_IterationMarker = 2U;
 (void)memcpy(&localB->Assignment[0], &rtd_MyData->data[0], 10U *
 (sizeof(SubBus)));}
localB->Assignment[rtu_IDX].flag = false;
 localB->Assignment[rtu_IDX].a1 = rtu_In1;
 localB->Assignment[rtu_IDX].a2 = rtu_In2;
 localB->Assignment[rtu_IDX].a3 = rtu_In3;

 Performance

2-23

 localB->Assignment[rtu_IDX].a4 = rtu_In4;
 (void)memcpy(&rtd_MyData->data[0], &localB->Assignment[0], 10U * (sizeof
 (SubBus)));
 }

The generated code unnecessarily first copied bus elements to the local variable, localB, and then
updated the rtd_MyData variable.

In R2022b, the code generator produces this code in Calculate.c:

 if (rtu_Enable) {
 if ((*rtd_WhileIterator_IterationMarker) < 2ULL) {
 *rtd_WhileIterator_IterationMarker = 2U;
 }
 rtd_MyData->data[rtu_IDX].flag = false;
 rtd_MyData->data[rtu_IDX].a1 = rtu_In1;
 rtd_MyData->data[rtu_IDX].a2 = rtu_In2;
 rtd_MyData->data[rtu_IDX].a3 = rtu_In3;
 rtd_MyData->data[rtu_IDX].a4 = rtu_In4;
 }

The code does not contain the local variable localB and the data copies, which improves RAM
efficiency of generated code. For more information, see Enable and Reuse Local Block Outputs in
Generated Code.

Removed redundant multirate block output buffers
Before R2022b, the code generator generated redundant output buffers for models that contained a
multi-rates block, and another block whose output sample time was the same as the multi-rates block
output sample time. Starting in R2022b, you can generate optimized code that does not contain the
unnecessary output buffer for the multirate block whenever possible. Eliminating redundant buffers
reduces data copies and improves RAM consumption. To enable this optimization, select the Reuse
local block outputs parameter.

Consider the mBufferReuse model that has a Buffer block whose input signal (indicated by the red
signal) has D1, and the output signal (indicated by the green signal) has D2 sample time. The output
signal of Windowing also has D2 sample time.

In R2022a, the code generator produced this code:

 /* S-Function (sdspdmult2): '<Root>/Windowing' incorporates:
 * Buffer: '<Root>/Buffer'
 * Constant: '<Root>/Constant'
 */
 idxS = 0;
 for (i = 0; i < 2; i++) {
 idxV = 0;
 for (k = 0; k < 256; k++) {
 mBufferReuse_Y.Outport[idxS] = mBufferReuse_B.bufferUp[idxS] *

R2022b

2-24

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/data-store-buffer-reduction.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/data-store-buffer-reduction.html

 mBufferReuse_ConstP.Constant_Value[idxV];
 idxS++;
 idxV++;
 }
 }

This code included a redundant output buffer mBufferReuse_B.bufferUp for the Buffer block and
the root output buffer mBufferReuse_Y.Outport.

In R2022b, the code generator produces this code:

/* S-Function (sdspdmult2): '<Root>/Windowing' incorporates:
 * Buffer: '<Root>/Buffer'
 * Constant: '<Root>/Constant'
 */
 idxS = 0;
 for (i = 0; i < 2; i++) {
 idxV = 0;
 for (k = 0; k < 256; k++) {
 mBufferReuse_Y.Outport[idxS] *= mBufferReuse_ConstP.Constant_Value[idxV];
 idxS++;
 idxV++;
 }
 }

The generated code does not contain the mBufferReuse_B.bufferUp buffer, which reduces RAM
consumption of the code. For more information, see Enable and Reuse Local Block Outputs in
Generated Code.

Buffer reuse optimization for referenced models
Before R2022b, for models containing referenced models, the code generator generated unique
buffers for holding referenced model outputs. Starting in R2022b, you can generate optimized code
that reuses signal buffers or generates reusable buffers for referenced model outputs whenever
possible. To enable this optimization, in the Configuration Parameters dialog box, select the new
parameter Reuse output buffers of Model blocks. For more information, see Reduce Memory
Usage for Models Containing Referenced Models.

Improved cache efficiency of generated code containing loop
distribution, interchange, and reversal
In R2022b, you can generate optimized code containing loop interchange and distribution. These loop
transformations increase the number of cache hits and improve the code execution time. The
optimizations apply to code generation targets for which the cache information is available to the
code generator. To increase the availability of cache information to the code generation target,
specify the target hardware information by using the configuration parameters Device vendor and
Device type.

 Performance

2-25

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/enable-and-reuse-local-block-outputs-in-generated-code.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/enable-and-reuse-local-block-outputs-in-generated-code.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/reuseoutputbuffersofmodelblocks.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/Reduce-Memory-Usage-for-Models-Containing-Referenced-Models.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/Reduce-Memory-Usage-for-Models-Containing-Referenced-Models.html
https://www.mathworks.com/help/releases/R2022b/simulink/gui/device-vendor.html
https://www.mathworks.com/help/releases/R2022b/simulink/gui/device-type.html

For example, in this model, the MATLAB Function block contains code that performs operations on
the elements of the two input matrices of dimension [180x80] by using for-loops.

function out = MatLabFun(A, B)

sizeRow=90;
sizeCol=80;

for i = 2 : sizeRow
 for j = 2 : sizeCol
 B(i*2,j) = B((i*2)-1,j)+i*j;
 for k = 2 : sizeCol
 A(i*2,k) = A(i-1,k)+i+j;
 end
 end
end

out = [A;B];
end

In R2022a, the code generator produced code that contains one loop nest that evaluates the loop with
iteration variable B_tmp at the innermost position.

/* Output and update for atomic system: '<Root>/MatlabFun' */
void MatlabFun(void)
{
 int32_T B_tmp;
 int32_T B_tmp_tmp;
 int32_T i;
 int32_T j;

 /* Inport: '<Root>/In1' */
 memcpy(&rtDW.A[0], &rtU.In1[0], 14400U * sizeof(real_T));

 /* Inport: '<Root>/In2' */
 memcpy(&rtDW.B_m[0], &rtU.In2[0], 14400U * sizeof(real_T));
 for (i = 0; i < 89; i++) {
 for (j = 0; j < 79; j++) {
 B_tmp_tmp = (i + 2) << 1;
 B_tmp = (j + 1) * 180 + B_tmp_tmp;
 rtDW.B_m[B_tmp - 1] = (real_T)((i + 2) * (j + 2)) + rtDW.B_m[B_tmp - 2];
 for (B_tmp = 0; B_tmp < 79; B_tmp++) {
 int32_T A_tmp;

R2022b

2-26

 A_tmp = (B_tmp + 1) * 180;
 rtDW.A[(B_tmp_tmp + A_tmp) - 1] = (rtDW.A[A_tmp + i] + ((real_T)i + 2.0))
 + ((real_T)j + 2.0);
 }
 }
 }

 /* Outport: '<Root>/Out1' */
 for (i = 0; i < 80; i++) {
 for (j = 0; j < 180; j++) {
 B_tmp_tmp = 180 * i + j;
 B_tmp = 360 * i + j;
 rtY.Out1[B_tmp] = rtDW.A[B_tmp_tmp];
 rtY.Out1[B_tmp + 180] = rtDW.B_m[B_tmp_tmp];
 }
 }

 /* End of Outport: '<Root>/Out1' */
}

In R2022b, the loop in the generated code is distributed to two loop nests. The loop nests are
interchanged to evaluate the loop with iteration variable j at the innermost position.

void MatlabFun(void)
{
 int32_T A_tmp;
 int32_T B_tmp;
 int32_T i;
 int32_T j;

 /* Inport: '<Root>/In1' */
 memcpy(&rtDW.A[0], &rtU.In1[0], 14400U * sizeof(real_T));

 /* Inport: '<Root>/In2' */
 memcpy(&rtDW.B_m[0], &rtU.In2[0], 14400U * sizeof(real_T));
 for (j = 0; j < 79; j++) {
 for (i = 0; i < 89; i++) {
 B_tmp = ((i + 2) << 1) + (j + 1) * 180;
 rtDW.B_m[B_tmp - 1] = (real_T)((i + 2) * (j + 2)) + rtDW.B_m[B_tmp - 2];
 }
 }

 for (B_tmp = 0; B_tmp < 79; B_tmp++) {
 for (i = 0; i < 89; i++) {
 for (j = 0; j < 79; j++) {
 A_tmp = (B_tmp + 1) * 180;
 rtDW.A[(((i + 2) << 1) + A_tmp) - 1] = (rtDW.A[A_tmp + i] + ((real_T)i +
 2.0)) + ((real_T)j + 2.0);
 }
 }
 }

 /* Outport: '<Root>/Out1' */
 for (j = 0; j < 80; j++) {
 for (i = 0; i < 180; i++) {
 B_tmp = 180 * j + i;
 A_tmp = 360 * j + i;
 rtY.Out1[A_tmp] = rtDW.A[B_tmp];

 Performance

2-27

 rtY.Out1[A_tmp + 180] = rtDW.B_m[B_tmp];
 }
 }

 /* End of Outport: '<Root>/Out1' */
}

This interchange improves the locality of reference for the loop nest and improves cache
performance.

Generate SIMD code for Discrete FIR Filter block
In R2022b, if you have DSP System Toolbox, you can generate SIMD code for the Discrete FIR Filter
block. For computationally intensive operations on supported blocks, SIMD intrinsics can significantly
improve the performance of the generated code on Intel platforms. To generate SIMD code from the
Discrete FIR Filter block, set these configuration parameters:

• Leverage target hardware instruction set extensions — Specify an instruction set to use.
• Optimize reductions — Select the Optimize reductions parameter.
• Priority — Select Maximize execution speed.

Your model must meet the requirements for code generation described in Discrete FIR Filter and
Generate SIMD Code from Simulink Blocks.

Improved function argument generation eliminates extra global
variable assignment
In R2022b, the code generator eliminates unnecessary global variable assignments when the code
can use the global variable as a function call argument instead.

R2022b

2-28

https://www.mathworks.com/help/releases/R2022b/simulink/slref/discretefirfilter.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/generate-simd-code-from-simulink-blocks.html

This example model contains two model functions that write global outputs. In R2022a, the code
generator produced code in this pattern in the model step function. The code contained an extra
value assignment for the variable global_out1.

 model_function1(global_in1, &global_out2);
 global_out1 = global_out2;
 model_function2(&global_out2);

In R2022b, for some cases, the code generator produces code in this pattern in the model step
function. The variable global_out1 is an argument of the first function and the code does not
contain the extra line that assigns the variable value.

 model_function1(global_in1, &global_out1);
 model_function2(&global_out2);

This code enhancement occurs when:

• The first-called function defines the variable on the right side of the assignment and passes the
variable to the second-called function.

• The two functions pass the variable as an argument by reference.
• The second-called function reassigns the value of the variable, which means that the second

function does not use the value defined by the first function.

 Performance

2-29

SIMD code for bitwise and shift operations
In R2022b, you can generate SIMD code for bitwise operations and shift operations. When you select
an instruction set by using the Leverage target hardware instruction set extensions parameter, the
generated code includes the associated instructions for these bitwise operations and shift operations:

• Bitwise AND
• Bitwise OR
• Bitwise XOR
• Shift arithmetic

For more information, see Generate SIMD Code from Simulink Blocks.

Code replacement for lookup tables that support differently sized
table and breakpoint objects
In R2022b, you can replace code from Lookup table blocks that support differently sized table and
breakpoint objects by using a code replacement library. If a Lookup table block uses a lookup table
object that has the new parameter Allow multiple instances of this type to have different table
and breakpoint sizes selected, the generated function signature for the lookup table uses pointer
arguments for the table and breakpoint data. The pointer arguments allow multiple instances of the
table to have different table and breakpoint sizes.

For example, this model uses a 1-D Lookup table block that uses a lookup table object for the data
specification. The generated step function calls the lookup table function using the table and
breakpoint data fields from the lookup table object as arguments.

look1_lu16n15_linlcapw(LookupModel_LookupCRL_U.In1,
 LookupModel_LookupCRL_P.dlutObj.BP1,
 LookupModel_LookupCRL_P.dlutObj.Table,
 LookupModel_LookupCRL_P.dlutObj.N1 - 1U);

When the lookup table object does not use the new parameter Allow multiple instances of this
type to have different table and breakpoint sizes, the generated lookup table object uses arrays
for the breakpoint and table data. The function call passes the corresponding arguments as arrays.

typedef struct {
 uint32_T N1;
 real_T BP1[10];
 real_T Table[10];
} dlutObj_type;

To replace the lookup table function call in this case, you use a code replacement entry that specifies
the conceptual function arguments as matrix arguments for the table and breakpoint data arguments.

R2022b

2-30

https://www.mathworks.com/help/releases/R2022b/rtw/ref/leveragetargethardwareinstructionsetextensions.html
https://www.mathworks.com/help/releases/R2022b/rtw/ug/generate-simd-code-from-simulink-blocks.html

In R2022a and earlier, you used this method and did not have the option to use pointers for the table
and breakpoint arguments in the lookup table function replacement.

In R2022b, when the new parameter Allow multiple instances of this type to have different
table and breakpoint sizes is selected for the lookup table object, the generated lookup table object
uses pointers for the breakpoint and table data. The function call passes the corresponding
arguments as pointers.

typedef struct {
 uint32_T N1;
 real_T *BP1;
 real_T *Table;
} dlutObj_type;

To replace the lookup table function call when using the new parameter, in the code replacement
entry, configure the conceptual arguments for the table and breakpoint data as pointers. To use
pointers for conceptual arguments, you must create the entry programmatically. For more
information, see Lookup Table Function Code Replacement.

Code execution profiling for models that use GRT system target files
For models that use GRT system target files, you can produce execution time profiles for generated
code by running software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulations. Previously, code
execution profiling was possible only for models that used ERT or ERT-based system target files.

For more information, see Configure Code Execution Profiling.

Task scheduling visualization with XCP external mode simulations
During XCP external mode simulations, use the Simulation Data Inspector to observe task scheduling
and related CPU core activity. To regenerate displays, use the schedule function.

For more information, see Visualize Task Scheduling and Visualize Task Scheduling in XCP External
Mode Simulation.

Optimized bandwidth usage during XCP external mode profiling
In an XCP-based external mode simulation, after the execution of a task, the target application
uploads data samples from the profiling buffer. The application associates the data samples from the
profiling buffer with the same simulation time. If the buffer contains only a few samples, use of the
communication channel bandwidth is suboptimal.

To improve use of bandwidth during data uploading, specify the display of absolute time:

set_param(modelName,'CodeProfilingXCPUseAbsoluteTime','on')

When the external mode simulation runs, the target application uploads data samples only when the
profiling buffer is full. The Simulation Data Inspector displays streamed values with respect to
absolute time instead of simulation time.

For more information, see Display Absolute Time.

 Performance

2-31

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/lookup-table-function-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configuring-code-execution-profiling.html#bu_slwo
https://www.mathworks.com/help/releases/R2022b/ecoder/ref/coder.profile.executiontime.schedule.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/view-and-compare-code-execution-times.html#mw_8794ab6d-1072-42d9-a3aa-7e8043b86aeb
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/visualize-task-scheduling-in-xcp-external-mode-simulation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/visualize-task-scheduling-in-xcp-external-mode-simulation.html
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/reduce-bandwidth-usage-during-code-execution-profiling.html#mw_f7a7d273-d35d-4c7b-9f91-770516f64fed

Verification

SIL or PIL block workflow
In a SIL or PIL block workflow, when you right-click a subsystem and select C/C++ Code > Build
This Subsystem, the software immediately starts the subsystem build process that creates a SIL or
PIL block for the generated subsystem code. In earlier releases, the software opens a window, and
you need to click the Build button. For more information, see SIL or PIL Block Simulation.

Reusable subsystems with input signals that map to const variables
The SIL/PIL atomic subsystem workflow now supports reusable subsystems with input signals that
map to const variables in the generated code. Previously, the SIL/PIL simulation produced an error.
For example:
Inport Const (‘TestModel/AtomicSub/Const’) is read-only in the generated code,
and is therefore not supported by SIL or PIL simulation. Change its storage
class so that it is writable in the generated code.

For more information, see Unit Test Subsystem Code with SIL/PIL Manager.

R2022b

2-32

https://www.mathworks.com/help/releases/R2022b/ecoder/ug/configuring-a-sil-or-pil-simulation.html#bsf5v22_sep_mw_54391cb8-2be1-4b31-a0dd-8d7872c79be8
https://www.mathworks.com/help/releases/R2022b/ecoder/ug/unit-test-subsystem-code-with-silpil-manager.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

2-33

https://www.mathworks.com/support/bugreports/

R2022a

Version: 7.8

New Features

Bug Fixes

Compatibility Considerations

3

Code Generation from MATLAB Code

Removal of unused class properties in generated C/C++ code
In R2022a, the default behaviour of code generator is to remove unused class properties or structure
fields in the generated C/C++ code.

The PreserveUnusedStructFields property supports standalone build types: static library,
dynamically linked library, and executable.

To preserve the unused properties of the classes or structures in the generated code, use either of
these settings:

• Set the PreserveUnusedStructFields property to true.
• Open the MATLAB Coder app. On the Memory tab, select the Preserve unused fields and

properties option.

This table compares the generated code to the PreserveUnusedStructFields set to true and the
PreserveUnusedStructFields set to false.

MATLAB Code Generated Code with
cfg.PreserveUnusedStruct
Fields = false; (default)

Generated Code with
cfg.PreserveUnusedStruct
Fields = true;

classdef myClass
 properties
 a
 b
 c
 end

 methods
 function obj = myClass(x)
 coder.inline('never')
 obj.a = x;
 obj.b = x + 1;
 obj.c = x + 2;
 end
 end
end

function y = myAdd(n)
    o = myClass(n);
    y = o.a + o.b;
end

% unused property ‘c’ is removed

class myClass {
public:
 void init(double x);
 double a;
 double b;
};

% unused property ‘c’ is present

class myClass {
public:
 void init(double x);
 double a;
 double b;
 double c;
};

For more information, see Removal of Unused Class Properties in the Generated C/C++ Code.

Reduction of violations for MISRA C:2012, MISRA C++:2008, and
AUTOSAR C++14 rules in generated code
In R2022a, the generated code has fewer violations of several rules in the required categories of
MISRA C:2012, MISRA C++:2008, and AUTOSAR C++14 coding standards. Some of these rules are:

R2022a

3-2

https://www.mathworks.com/help/releases/R2022a/ecoder/ug/removal-of-unused-class-properties-in-the-generated-cc-code.html

• MISRA C:2012 Rule 5.6 (Polyspace Bug Finder), MISRA C:2012 Rule 10.3 (Polyspace Bug
Finder), MISRA C:2012 Rule 21.2 (Polyspace Bug Finder), MISRA C:2012 Rule 21.8
(Polyspace Bug Finder)

• MISRA C++:2008 Rule 3-2-3 (Polyspace Bug Finder), MISRA C++:2008 Rule 4-10-2
(Polyspace Bug Finder), MISRA C++:2008 Rule 5-0-3 (Polyspace Bug Finder), MISRA C+
+:2008 Rule 5-19-1 (Polyspace Bug Finder), MISRA C++:2008 Rule 6-5-4 (Polyspace Bug
Finder)

• AUTOSAR C++14 Rule A0-1-2 (Polyspace Bug Finder), AUTOSAR C++14 Rule A7-1-6
(Polyspace Bug Finder), AUTOSAR C++14 Rule A7-2-3 (Polyspace Bug Finder), AUTOSAR C+
+14 Rule A8-5-2 (Polyspace Bug Finder), AUTOSAR C++14 Rule A12-7-1 (Polyspace Bug
Finder)

For more information on how to generate code that has improved MISRA and AUTOSAR compliance,
see Generate C/C++ Code with Improved MISRA Compliance.

Stack usage profiling for code generated from MATLAB code
To determine the size of stack memory that is required to run generated code, you can run a
software-in-the-loop (SIL) and processor-in-the-loop (PIL) execution that generates a stack usage
profile. The execution creates a code stack profiling report that shows minimum, average, and
maximum memory demand. For each function call, the execution streams memory usage
measurements to the Simulation Data Inspector, which enables you to analyze stack usage variation.
You can use stack usage profiles to observe the effect of compiler optimization and data input. For
more information, see Stack Usage Profiling for Code Generated From MATLAB Code.

Identification of performance bottlenecks in generated code
The code execution profiling report generated by a software-in-the-loop (SIL) or processor-in-the-loop
(PIL) execution contains a new section Execution Times in Percentages. The section displays
function execution times as percentages of caller function and total execution times, which can help
you to identify performance bottlenecks in generated code. For more information, see Code Execution
Profiling Report.

 Code Generation from MATLAB Code

3-3

https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/misrac2012rule5.6.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/misrac2012rule10.3.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/misrac2012rule21.2.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/misrac2012rule21.8.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/misrac2008rule323.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/misrac2008rule4102.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/misrac2008rule503.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/misrac2008rule5191.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/misrac2008rule5191.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/misrac2008rule654.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/autosarc14rulea012.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/autosarc14rulea716.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/autosarc14rulea723.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/autosarc14rulea852.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/autosarc14rulea852.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/autosarc14rulea1271.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/generate-cc-code-with-improved-misra-compliance.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/stack-usage-profiling-for-code-generated-from-matlab-code.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/view-execution-time-profile-1.html#mw_b107c642-d9d8-4353-8b1e-4bed1b0d55c9
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/view-execution-time-profile-1.html#mw_b107c642-d9d8-4353-8b1e-4bed1b0d55c9

Model Architecture and Design

Symbolic dimension inputs for Squeeze block
Starting in R2022a, you can generate code for the Squeeze block that has symbolic dimensions as
inputs. Prior to R2022a, generating code for Squeeze block that had symbolic dimensions as input
was not supported.

For more information, see Implement Dimension Variants for Array Sizes in Generated Code.

Embedded Coder Dictionary interface improvements
In R2022a, the Embedded Coder Dictionary interface is enhanced to better reflect how your code
interface definitions control the generated code for your target platform. In the left pane of the
dictionary, your definitions are organized in sections. The set of code definitions in your dictionary
configuration is called an application platform definition because the definitions define how the
generated application code interacts with the platform.

The Functions section contains a subsection for creating function customization templates. The
Memory section contains sub-sections for creating storage classes and memory sections. For a
dictionary stored in a .SLDD file, the sections also contain subsections for selecting the default
definitions for categories of functions and model data elements. For more information, see
Embedded Coder Dictionary.

R2022a

3-4

https://www.mathworks.com/help/releases/R2022a/simulink/slref/squeeze.html
https://www.mathworks.com/help/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ref/embeddedcoderdictionary.html

Code Interface Configuration and Integration
Control code interface generated for models by specifying
deployment types
In R2022a, when you use a model hierarchy to generate code, you can control the code interfaces at
the different levels of the hierarchy by setting the deployment type for each model. The code
generator uses the deployment type to:

• Enforce peer and nesting rules in the model hierarchy
• Map model elements to code interface definitions
• Generate code that uses the appropriate interface to connect to other parts of the hierarchy

You can specify these deployment types for your models:

• Component – The top model for code generation. The code generator produces a standalone
algorithm. The component code exposes its interface to other components in the system.

• Subcomponent – A model reference that a component model uses. The generated code entry
points are symbolically scoped to the parent component.

• Automatic – Embedded Coder determines the deployment type based on the model hierarchy
context.

• Simulation only – A model that is for simulation only. You do not generate code for a simulation
only model. For example, a plant model that you use for simulation testing is non-deployable.

You can programmatically set the deployment type for a model using the setDeploymentType
function of a coder.mapping.api.CodeMapping object. For example, to set the deployment type of
the sldemo_fuelsys/fuel_rate_control model to Component, use the setDeploymentType
function.

coder.mapping.create('fuel_rate_control');
cm = coder.mapping.api.get('fuel_rate_control');
setDeploymentType(cm, 'Component');

To view the deployment type for a model, use the getDeploymentType function.

For more information, see Configure Deployment Types for Model Hierarchy.

 Code Interface Configuration and Integration

3-5

https://www.mathworks.com/help/releases/R2022a/ecoder/ref/coder.mapping.api.codemapping.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/configure-deployment-types-for-a-model-hierarchy.html

Changes to class namespaces and default class name in C++
generated code
Nested namespace support

C++ code generation now supports nested namespaces for the model class.

For more information, see Interactively Configure C++ Interface and Programmatically Configure C+
+ Interface.

Default class name in C++ generated code is model name

Beginning in R2022a, the default class name in C++ generated code is the name of the model.
Previously, the class names in the generated code used a default class name of the form
modelModelClass. The new default is of the form model.

Compatibility Considerations
This change to the generated model class names might cause integration scripts that use the class
names to break. Update integration scripts to the new generated class names. For more information,
see C++ Data and Function Interfaces.

Calibration file customization
Starting in R2022a, the code generator produces an ASAP2 file that reflects these enhancements:

• Includes a default event list in the IF_DATA section.
• Excludes pointer variables.
• Aligns content of the Record_layouts.a2l file with the version of the ASAP2 file.

You can further customize the ASAP2 file as follows:

• Exclude 64-bit integer elements from ASAP2 file.
• Exclude structure elements from ASAP2 file.
• Specify additional address information.

For more information, see Customize Generated ASAP2 File.

Memory section mapping for grouped entry-point functions
In R2021b, if the model configuration parameter Generate separate internal data per entry-point
function was enabled and on the Data Defaults tab, category Signals, states, and internal data
is mapped to a memory section, the code generator produced a warning.

For example, consider the rtwdemo_memsec model, for which the code generator produced this
code:

/* Internal Data Grouped For Same Function */

FuncInternalData0 rtFuncInternalData0; /* '<Root>/Unit Delay' */

R2022a

3-6

https://www.mathworks.com/help/releases/R2022a/ecoder/ug/interactively-configure-cpp-interface.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/programmatically-configure-cpp-interface.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/programmatically-configure-cpp-interface.html
https://www.mathworks.com/help/releases/R2022a/ecoder/configure-c-interface.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/a2l-custom-cd.html

In R2022a, the code generator produces a memory section for each entry point function’s grouped
internal data in the generated code.

For example, for the rtwdemo_memsec model, the code generator produces this code:

/* Internal Data Grouped For Same Function */

/* This memory is of moderate speed and cost */
#pragma MEDIUM_MEM(rtFuncInternalData0)

FuncInternalData0 rtFuncInternalData0; /* '<Root>/Unit Delay' */

For more information, see Control Data and Function Placement in Memory by Inserting Pragmas.

 Code Interface Configuration and Integration

3-7

https://www.mathworks.com/help/releases/R2022a/ecoder/ug/control-data-and-function-placement-in-memory-by-inserting-pragmas.html

Code Generation

Regular expression token decorators to modify certain tokens
Starting in R2022a, you can use regular expressions in token decorators to modify $G, $N, and $R
tokens. Enclose the token decorator in double quotes and use two regular expressions separated by a
forward slash. The code generator uses the first regular expression to match substrings of the token
and uses the second regular expression to replace those substrings.

For example, this identifier naming rule takes the root model name $R and replaces instances of a
with b: $R["a/b"].

For more information, see Identifier Format Control.

Improved comments for code that initializes instance-specific values
for model arguments
Starting in R2022a, the code generator adds comments to the code that initializes the instance-
specific values for model arguments. The comments display the parameter name and full path where
the parameter is defined.

Consider the following model, top.

The top model references two other models, middle and bottom. The middle model contains two
references to the bottom model. The bottom model has two model parameters, P and Q. There are a
total of six instance-specific values for these parameters across three instances of the bottom model.
Suppose the six parameters are set to 3.

Before R2022a, the code generator produced this code:
/* instance parameters */
InstP rtInstP = {
 {
 3.0,
 3.0
 }, /* instance parameters for '<Root>/bot' */

 {
 {
 3.0,
 3.0
 },

 {
 3.0,
 3.0
 }
 } /* instance parameters for '<Root>/mid' */
};

R2022a

3-8

https://www.mathworks.com/help/releases/R2022a/ecoder/ug/specify-identifier-formats.html

The generated comments showed only one level of depth in the model hierarchy and did not identify
the parameters by name. The parameters were difficult to tune, especially when multiple parameters
had the same value.

Starting in R2022a, the code generator generates comments for each parameter. The comments
improve the traceability of the model arguments by displaying each parameter name and the full path
to the model that defines each parameter.
/* instance parameters */
InstP rtInstP = {
 {
 /*
 * top/bot
 * bottom:P
 */
 3.0,

 /*
 * top/bot
 * bottom:Q
 */
 3.0
 },

 {
 {
 /*
 * top/mid
 * middle/bot1
 * bottom:P
 */
 3.0,

 /*
 * top/mid
 * middle/bot1
 * bottom:Q
 */
 3.0
 },

 {
 /*
 * top/mid
 * middle/bot2
 * bottom:P
 */
 3.0,

 /*
 * top/mid
 * middle/bot2
 * bottom:Q
 */
 3.0
 }
 }
};

For more information about generating comments, see Configure Code Comments.

New parentheses level for MISRA standard compliance and code
readability
Starting in R2022a, the code generator provides a new option for parenthesization style that enables
you to generate more readable code by reducing the parentheses. The generated code is compliant
with MISRA C:2012 Standards as defined in Rule 12.1.

 Code Generation

3-9

https://www.mathworks.com/help/releases/R2022a/rtw/ug/configure-code-comments.html

To apply the new parentheses level, for model configuration parameter Parentheses level, select
Standards (Parentheses for Standards Compliance).

For more information, see Parentheses level and MISRA C:2012 Rule 12.1 (Polyspace Code Prover).

Improved code readability by adding "U" suffix to unsigned integer
constants
Starting in R2022a, the code generator produces code that applies the "U" suffix to the unsigned
integer constants. This suffix improves the code readability and is in accordance with the MISRA
C:2012 Rule 7.2 coding standard. Prior to R2022a, the code generator provided type casts instead of
the "U" suffix in some cases.

Before R2022a After R2022a
if((int32_T)reproMissingSuffix_U.In1 < 100)
/* Outport: '<Root>/Out1' */
reproMissingSuffix_U.Out1 = 100U;

if(reproMissingSuffix_U.In1 < 100U)
/* Outport: '<Root>/Out1' */
reproMissingSuffix_U.Out1 = 100U;

For more information, see MISRA C:2012 Rule 7.2 (Polyspace Code Prover).

Changes to initialization
Starting in R2022a, the Remove root level I/O zero initialization and Remove internal data zero
initialization parameters apply only to data that will be defined in a generated C file and for which
you do not specify initialization in an Initialize Function block.

• If you specify values in an Initialize Function block, the code generator explicitly initializes those
values and ignores the Remove root level I/O zero initialization and Remove internal data
zero initialization parameters.

• If the data is not defined by any generated C file, but you provide it by external code, for instance,
due to the use of a storage class with the Imported scope, the code generator ignores these
parameters and does not explicitly initialize this data to zero unless you specify the data in an
Initialize Function block.

Before R2022a, the code generator did not explicitly initialize values that had a custom storage class
with Data initialization set to None. Starting in R2022a, the code generator explicitly initializes
these values if you specify them in an Initialize Function block.

AUTOSAR C++14 Rule A12-4-2 violation resolution
When you set Language as C++ and Standard math library as C++11 (ISO), to resolve some
violations of AUTOSAR C++14 Rule A12-4-2 (Polyspace Bug Finder), the code generator adds the
final keyword in the class definition.

In R2021b, the code generator produced this code:

class ModelClass {
...
}

In R2022a, the code generator produces this code:

R2022a

3-10

https://www.mathworks.com/help/releases/R2022a/ecoder/ref/parentheses-level.html
https://www.mathworks.com/help/releases/R2022a/codeprover/ref/misrac2012rule12.1.html
https://www.mathworks.com/help/releases/R2022a/codeprover/ref/misrac2012rule7.2.html
https://www.mathworks.com/help/releases/R2022a/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/autosarc14rulea1242.html

class ModelClass final {
...
}

For more information, see Configure Standard Math Library for Target System.

AUTOSAR C++14 Rule A12-0-1 violation resolution
When you set Language as C++ and Standard math library as C++11 (ISO), to resolve some
violations of AUTOSAR C++14 Rule A12-0-1 (Polyspace Bug Finder), the code generator declares the
move constructor and move assignment operator and the copy and move operation.

In R2021b, the code generator produced this code:

class ModelClass {
 ~ModelClass();
 ModelClass(ModelClass const &) = delete;
 ModelClass& operator=(ModelClass const &) = delete;
...
}

In R2022a, the code generator produces this code:

class ModelClass {
 ~ModelClass();
 ModelClass(ModelClass const &) = delete;
 ModelClass(ModelClass &&) = delete;
 ModelClass& operator=(ModelClass const &) = delete;
 ModelClass& operator= (ModelClass &&) = delete;
...
}

For more information, see Configure Standard Math Library for Target System.

Removed redundant S-function output buffer
Before R2022a, the code generator generated a redundant output buffer for an S-Function block that
was the last block of a Simulink Function block in a Stateflow® chart. Suppose an S-Function block is
defined as follows and resides inside a Simulink Function block that is inside a Stateflow chart.

 Code Generation

3-11

https://www.mathworks.com/help/releases/R2022a/ecoder/ug/change-the-standard-math-library.html
https://www.mathworks.com/help/releases/R2022a/bugfinder/ref/autosarc14rulea1201.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/change-the-standard-math-library.html

Before R2022a, the code generator produced this code:

/* Model step function */
void model_step(void)
{
 /* Inport: '<Root>/In1' */
 model_B.arg1 = model_In1;

 /* Chart: '<Root>/Chart' incorporates:
 * SubSystem: '<S1>/timestwo'
 */
 /* S-Function (timestwo): '<S2>/S-Function' */
 /* Multiply input by two */
 model_B.SFun_out = model_B.arg1 * 2.0;

 /* Outport: '<Root>/Out1' */
 model_Out1 = model_B.SFun_out;
}

This code included a redundant output buffer model_B.SFun_out for the S-Function block and the
root output buffer model_Out1.

Starting in R2022a, the code generator omits the S-Function output buffer if the S-Function output
ports are configured as REUSABLE_AND_LOCAL.

/* Model step function */
void model_step(void)
{
 /* Inport: '<Root>/In1' */
 model_B.arg1 = model_In1;

 /* Chart: '<Root>/Chart' incorporates:
 * SubSystem: '<S1>/timestwo'
 */
 /* Outport: '<Root>/Out1' incorporates:

R2022a

3-12

 * S-Function (timestwo): '<S2>/S-Function'
 */
 /* Multiply input by two */
 model_Out1 = model_B.arg1 * 2.0;
}

RAM consumption is reduced in the generated code. For more information, see S-Functions That
Specify Port Scope and Reusability.

C++ Code Generation for client-server interfaces
R2022a enables you to generate C++ code for client-server function interfaces. For more
information, see Client-Server Communication Interfaces.

C++ code generation for new Message Triggered Subsystem and
Message Polling Subsystem blocks to control event-triggered
execution of messages
Generate C++ code for message-triggered subsystems by using the new Simulink Message Triggered
Subsystem and Message Polling Subsystem blocks. These blocks are each a type of conditionally
executed subsystem that uses messages as the control signal. The information contained in the
messages is accessible inside the subsystem.

• A Message Triggered Subsystem block executes whenever a message is available at the control
port, independent of block sample time.

• A Message Polling Subsystem block polls messages from a queue periodically based on its sample
time and executes only when a message is available.

A Message Triggered Subsystem block can be used to define an independent function at the root level
of an export-function model. For more information, see Export-Function Models Overview. For more
information about the Message Triggered Subsystem and Message Polling Subsystem blocks, see
Message Triggered Subsystem. For more information about how to generate C++ code for these
event-triggered subsystems, see Client-Server Communication Interfaces.

CustomSymbolStrUtil parameter available for C++ and AUTOSAR code
generation
In R2021a, the Shared utilities identifier format parameter was removed. This parameter is now
available for C++ and AUTOSAR code generation. For C code generation, use the Embedded Coder
dictionary to create a function customization template that specifies the naming rule, then apply the
template by using the Code Mappings editor. For more information, see Configure Naming of
Generated Functions.

Functionality being removed or changed
Include guards required in imported header files
Behavior change

Starting in R2022a, updates in how Embedded Coder handles the file packaging of generated code
modules might impact your generated code:

 Code Generation

3-13

https://www.mathworks.com/help/releases/R2022a/rtw/ug/s-functions-that-specify-port-scope-and-reusability.html
https://www.mathworks.com/help/releases/R2022a/rtw/ug/s-functions-that-specify-port-scope-and-reusability.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/client-server-communication.html
https://www.mathworks.com/help/releases/R2022a/simulink/ug/export-function-models.html
https://www.mathworks.com/help/releases/R2022a/simulink/slref/messagetriggeredsubsystem.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/client-server-communication.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ref/shared-utilities.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/generate-shared-utility-code-c1a54f83f920.html#mw_6c14319f-cd68-4c0d-8c14-f0c682c7fce0
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/generate-shared-utility-code-c1a54f83f920.html#mw_6c14319f-cd68-4c0d-8c14-f0c682c7fce0

• In most cases, a generated source file includes header files that export the symbols used in that
source file directly, rather than transitively through another header file.

• To prevent linker errors, you must add include guards, such as #pragma once, to the beginning
of an imported header file.

• The number of redundant #include statements might be reduced.
• The order of #include statements might change.

For more information on adding guards to imported header files, see Control File Placement of
Custom Data Types.

R2022a

3-14

https://www.mathworks.com/help/releases/R2022a/ecoder/ug/specify-location-of-user-defined-type-definitions.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/specify-location-of-user-defined-type-definitions.html

Deployment

TLC function STRNREP for string replacement
You can use the new Target Language Compiler (TLC) function STRNREP for string manipulations.
The TLC function STRNREP(expr1, expr2, expr3, value) accepts the string expr1. The
function returns a new string that replaces the substring expr2 present in expr1 with the string
expr3 for the number of instances specified in value.

For example, STRNREP("abcabcabc", "abc", "ABC", 2) returns ABCABCabc. For more
information, see Target Language Compiler Directives.

Configuration Parameter dialog box no longer lists VxWorksExample
as a setting for parameter Target operating system

For model configuration parameter Target operating system, the Configuration Parameter dialog
box no longer lists parameter value VxWorksExample. For backward compatibility, setting the
command line version of the parameter, TargetOS, to VxWorksExample, is still valid. For alternative
parameter settings, see Target operating system.

Texas Instruments C2000: Support for Texas Instruments F28003x
processor
The support package now provides code generation support for the TI F28003x processor,
peripherals such as ADC, ePWM, GPIO, SCI, SPI, I2C, Watchdog, X-BAR, and interrupts. The support
package also supports external mode over XCP on Serial and PIL simulation. For more information,
see F28003x (c28003xlib) (Embedded Coder Support Package for Texas Instruments C2000
Processors).

Texas Instruments C2000: Support for F28M35x (C28x), F28M36x
(C28x), and ARM Cortex-M3 Core
• The Embedded Coder Support Package for Texas Instruments C2000 Processors now supports TI

Concerto processors such as F28M35x (C28x), F28M36x (C28x), and ARM Cortex-M3 Core.
Previously, these processors were supported only in the Embedded Coder Support Package for
Texas Instruments C2000 F28M3x Concerto® Processors. The Embedded Coder Support Package
for Texas Instruments C2000 F28M3x Concerto Processors will stop supporting the TI Concerto
processors in a future release.

• ADC, AnalogIO, COMP, eCAP, ePWM, eQEP, GPIO, I2C, SCI, SPI, Software Interrupt Trigger, and
SPI Master Transfer support for F28M35x (C28x) and F28M36x (C28x) core.

• GPIO, Hardware Interrupt, TCP, UDP, and UART blocks are supported for ARM Cortex-M3 core.

 Deployment

3-15

https://www.mathworks.com/help/releases/R2022a/ecoder/ug/target-language-compiler-directives.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ref/target-operating-system.html
https://www.mathworks.com/help/releases/R2022a/supportpkg/texasinstrumentsc2000/f28003x-c2837xslib.html

Embedded Coder Support Package for STMicroelectronics Discovery
Boards renamed to Embedded Coder Support Package for
STMicroelectronics STM32 Processors
Starting in R2022a, the Embedded Coder Support Package for STMicroelectronics Discovery Boards
has been renamed to Embedded Coder Support Package for STMicroelectronics STM32 Processors to
support STM32F7xx, STM32G4xx, and STM32H7xx MCU boards.

Support for STMicroelectronics STM32F7xx, STM32G4xx, and
STM32H7xx-based Boards
• Use the Embedded Coder Support Package for STMicroelectronics STM32 Processors to generate

and build code using an STM32CubeMX project file for STMicroelectronics STM32F7xx,
STM32G4xx, and STM32H7xx-based boards.

• The ADC, PWM, GPIO Read, GPIO Write, and Hardware Interrupt blocks now support for
Embedded Coder Support Package for STMicroelectronics STM32 Processors.

• The support package now also includes support for Monitor and Tune (External mode) and PIL
simulation over serial.

R2022a

3-16

Performance

SIMD code for reduction operations
In R2022a, you can generate SIMD code for reduction operations by using the new configuration
parameter Optimize reductions. The generated code uses the reduction operations from the
instruction set that you specify by using the Instruction set extensions parameter.

You can generate SIMD code for these blocks:

• Sum
• Product
• Minimum
• Maximum

If you have MATLAB Coder you can generate SIMD code for these MATLAB operations:

• Sum
• Product
• Minimum
• Maximum
• Handwritten loops for the previous operations

Consider this model sumElements that has a Sum of Elements block and an input of size [1 42].

In R2021b, the sumElements_step function contained this code:

tmp = -0.0;
for (i = 0; i < 42; i++) {
 tmp += sumElements_U.In1[i];
}
sumEl_Y.Out1 = tmp;

In R2022a, when you specify the Instruction set extensions SSE2 and select the parameter
Optimize reductions, the sumElements_step function contains this code:

__m128d tmp;
real_T tmp_0[2];
int32_T i;
tmp = _mm_set1_pd(0.0);
for (i = 0; i <= 42; i += 2) {
 tmp = _mm_add_pd(tmp, _mm_loadu_pd(&sumElements_U.In1[i]));
}

_mm_storeu_pd(&tmp_0[0], tmp);
sumElements_Y.Out1 = tmp_0[0] + tmp_0[1];

 Performance

3-17

https://www.mathworks.com/help/releases/R2022a/rtw/ref/optimize-reduction-operations.html

The function _mm_add_pd processes two 64-bit values in parallel. This increase in number of bits that
process in parallel improves the execution speed of the code. For more information, see Generate
SIMD Code from Simulink Blocks and Generate SIMD Code for MATLAB Functions.

Code replacement for circular buffer index for Delay blocks
In R2022a, you can replace the calculation of the circular buffer index in the generated code for a
Delay block with a target-specific implementation. Create a function replacement entry and set the
Function to the new option circularIndex.

Consider this model DelayModel with a Delay block that has the parameter Use circular buffer for
state selected.

In R2021b, the DelayModel_step function contained this code:
if (frameIdx < i) {
 DelayModel_Y.Out1[frameIdx] = DelayModel_DW.Delay_DSTATE[currIdx];
 DelayModel_Y.Out1[frameIdx + 32] = DelayModel_DW.Delay_DSTATE[currIdx + 100];
 DelayModel_Y.Out1[frameIdx + 64] = DelayModel_DW.Delay_DSTATE[currIdx + 200];
 currIdx++;
 if (currIdx >= 100) {
 currIdx = 0;
 }
}

In R2022a, when the model uses a code replacement library that has an entry for the
circularIndex function, the DelayModel_step function calls the custom function
circindex_impl:
if (frameIdx < i) {
 DelayModel_Y.Out1[frameIdx] = DelayModel_DW.Delay_DSTATE[currIdx];
 DelayModel_Y.Out1[frameIdx + 32] = DelayModel_DW.Delay_DSTATE[currIdx + 100];
 DelayModel_Y.Out1[frameIdx + 64] = DelayModel_DW.Delay_DSTATE[currIdx + 200];
 currIdx = circindex_impl(currIdx, 1, 100);
}

To calculate the circular buffer index more efficiently, you can specify a target-specific
implementation. For more information, see Buffer Index Calculation Code Replacement.

Code replacement for lookup tables by using index search algorithm
parameter
In R2022a, you can replace code from Lookup table blocks by matching the setting for the block
parameter Begin index search using previous index result. In a code replacement entry for a
lookup function, specify the new algorithm parameter Begin index search using previous index
result as {off,on}, off, or on. For more information, see Lookup Table Function Code
Replacement.

R2022a

3-18

https://www.mathworks.com/help/releases/R2022a/rtw/ug/generate-simd-code-from-simulink-blocks.html
https://www.mathworks.com/help/releases/R2022a/rtw/ug/generate-simd-code-from-simulink-blocks.html
https://www.mathworks.com/help/releases/R2022a/coder/ug/generate-simd-code-for-matlab-blocks.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/buffer-index-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/lookup-table-function-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/lookup-table-function-code-replacement-sc.html

Code generation by inlining redundant function calls
Starting in R2022a, your generated code might be improved for functions by inlining the code. Prior
to R2022a, the code generator was not able to generate inlined code in some cases. This optimization
improves run time by eliminating the overhead of function calls in the generated code.

For example, consider the model mRTWCGLateInlineReshapeRowmajor.

In R2021b, the code generator produced this code:
static void m_reshapeRowMajorDataColumnWise(const real_T tmp[25], int32_T tmp_0,
 real_T tmp_1[25])
{
 int32_T i;

 /* Reshape: '<Root>/Reshape' */
 tmp_2 = 0;
 tmp_3 = 0;
 for (i = 0; i < tmp_0; i++) {
 tmp_1[i] = tmp[5 * tmp_2 + tmp_3];
 tmp_2++;
 if (tmp_2 > 4) {
 tmp_2 = 0;
 tmp_3++;
 }
 }
}

void mRTWCGLateInlineReshapeRowmajor_step(void)
{
 /* Reshape: '<Root>/Reshape' incorporates:
 * Inport: '<Root>/A'
 * Outport: '<Root>/y'
 */
 m_reshapeRowMajorDataColumnWise(mRTWCGLateInlineReshapeRowmaj_U.A, 25,
 mRTWCGLateInlineReshapeRowmaj_Y.y);
}

In R2022a, the code generator produces this code:
void mRTWCGLateInlineReshapeRowmajor_step(void)
{
 int32_T i;

 /* Reshape: '<Root>/Reshape' */
 tmp = 0;
 tmp_0 = 0;
 for (i = 0; i < 25; i++) {
 /* Outport: '<Root>/y' incorporates:
 * Inport: '<Root>/A'
 */
 mRTWCGLateInlineReshapeRowmaj_Y.y[i] = mRTWCGLateInlineReshapeRowmaj_U.A[5 *
 tmp + tmp_0];
 tmp++;
 if (tmp > 4) {
 tmp = 0;
 tmp_0++;
 }
 }
}

 Performance

3-19

In R2021b generated code, the function mRTWCGLateInlineReshapeRowmajor_step called
another function m_reshapeRowMajorDataColumnWise. This redundant function call is removed
from R2022a generated code. For more information, see inlining.

Stack usage profiling for code generated from Simulink models
To determine the size of stack memory that is required to run generated code, you can run a
software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation that generates a stack usage
profile. The simulation creates a code stack profiling report that shows minimum, average, and
maximum memory demand. For each step, the simulation streams memory usage measurements to
the Simulation Data Inspector, which enables you to analyze stack usage over time. You can use stack
usage profiles to observe the effect of compiler optimization and data input. For more information,
see Stack Usage Profiling for Code Generated from Simulink Models.

Identification of performance bottlenecks in generated code
The code execution profiling report generated by a software-in-the-loop (SIL) or processor-in-the-loop
(PIL) simulation contains a new section Execution Times in Percentages. The section displays
function execution times as percentages of caller function and total execution times, which can help
you to identify performance bottlenecks in generated code. For more information, see Code Execution
Profiling Report Sections.

Code execution profiling for multiple Model blocks
In a top-model simulation, you can generate execution-time metrics for multiple Model blocks in SIL
or PIL mode. Previously, code execution profiling was restricted to one Model block. For more
information, see View Code Execution Profiles for Multiple Model Blocks.

R2022a

3-20

https://www.mathworks.com/help/releases/R2022a/simulink/slref/coder.inline.html#bu8z_wa-1
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/stack-usage-profiling-for-code-generated-from-simulink-models.html
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/view-and-compare-code-execution-times.html#bu_qx2f
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/view-and-compare-code-execution-times.html#bu_qx2f
https://www.mathworks.com/help/releases/R2022a/ecoder/ug/view-and-compare-code-execution-times.html#mw_1ae0184e-4181-4e8e-98fc-6fb75bad1452

Verification

Unit-testing atomic subsystem code in AUTOSAR software component
In an AUTOSAR software component, perform unit tests on code generated from an atomic
subsystem. Using the SIL/PIL Manager, you can:

• Test numeric equivalence between the subsystem and code generated from the subsystem.
• Analyze coverage for the generated code.
• Export an equivalence test to Simulink Test.

For more information, see Test Atomic Subsystem Generated Code and Verify AUTOSAR C Code with
SIL and PIL (AUTOSAR Blockset).

Functionality being removed or changed
SIL/PIL support for BullseyeCoverage will be removed
Still runs

Software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulation support for BullseyeCoverage
will be removed in a future release.

 Verification

3-21

https://www.mathworks.com/help/releases/R2022a/ecoder/ug/configuring-a-sil-or-pil-simulation.html#bsf5v22_sep_mw_05535711-210d-4ab8-877b-9d7cf81fc779
https://www.mathworks.com/help/releases/R2022a/autosar/ug/verifying-the-autosar-code-with-sil-and-pil-simulations.html
https://www.mathworks.com/help/releases/R2022a/autosar/ug/verifying-the-autosar-code-with-sil-and-pil-simulations.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2022a

3-22

https://www.mathworks.com/support/bugreports/

R2021b

Version: 7.7

New Features

Bug Fixes

Compatibility Considerations

4

Code Generation from MATLAB Code

Communication I/O information display during SIL or PIL execution
Use the MATLAB Coder configuration parameter SIL/PIL Verbosity (SILPILVerbosity) to specify
the display of communication I/O information during a software-in-the-loop (SIL) or processor-in-the-
loop (PIL) simulation. For more information, see Troubleshooting Host-Target Communication.

Visualization of task scheduling
If you enable code execution profiling for software-in-the-loop (SIL) or processor-in-the-loop (PIL)
execution, you can use the Simulation Data Inspector to visualize task scheduling and the order of
function calls. At the end of the SIL or PIL execution, run the schedule function. For more
information, see Visualize Task Scheduling.

Reduction of violations for MISRA C++:2008 and AUTOSAR C++14
rules in generated code
In R2021b, the generated code has fewer violations of several rules in the required categories of
MISRA C++:2008 and AUTOSAR C++14 coding standards. Some of these rules are:

• Dead code: MISRA C++:2008 Rule 0-1-2 (Polyspace Bug Finder), MISRA C++:2008 Rule
0-1-4 (Polyspace Bug Finder)

• Lexical conventions: AUTOSAR C++14 Rule A2-3-1 (Polyspace Bug Finder)
• Conditionals and loops: AUTOSAR C++14 Rule A5-16-1 (Polyspace Bug Finder), AUTOSAR C+

+14 Rule M6-4-1 (Polyspace Bug Finder), AUTOSAR C++14 Rule A6-5-2 (Polyspace Bug
Finder)

• Initialization: AUTOSAR C++14 Rule A8-5-2 (Polyspace Bug Finder)
• Enumerations: AUTOSAR C++14 Rule A7-2-2 (Polyspace Bug Finder)
• Namespaces and classes: AUTOSAR C++14 Rule A2-10-4 (Polyspace Bug Finder), AUTOSAR C+

+14 Rule A9-3-1 (Polyspace Bug Finder), AUTOSAR C++14 Rule M7-3-1 (Polyspace Bug
Finder), AUTOSAR C++14 Rule A7-1-9 (Polyspace Bug Finder)

• Other restrictions: AUTOSAR C++14 Rule A16-7-1 (Polyspace Bug Finder), AUTOSAR C++14
Rule A18-5-2 (Polyspace Bug Finder), MISRA C++:2008 Rule 4-10-2 (Polyspace Bug Finder)

For more information on how to generate code that has improved MISRA and AUTOSAR compliance,
see Generate C/C++ Code with Improved MISRA Compliance.

R2021b

4-2

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/host-target-communication-for-pil.html#mw_f0f3dabb-ddb2-4044-952d-09a2cc4d3d41
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/coder.profile.mc.executiontime.schedule.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/coder.profile.mc.executiontime.schedule.html#mw_07955094-a83e-4973-b230-6b751d5d1e57
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/misrac2008rule012.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/misrac2008rule014.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/misrac2008rule014.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea231.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea5161.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulem641.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulem641.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea652.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea852.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea722.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea2104.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea931.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea931.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulem731.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea719.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea1671.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea1852.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/autosarc14rulea1852.html
https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/misrac2008rule4102.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/generate-cc-code-with-improved-misra-compliance.html

Model Architecture and Design

Built-in storage class for multi-instance data
Starting in R2021b, the built-in Simulink package of code definitions includes the new MultiInstance
storage class. When you map data to the storage class, the generated code uses a structure to store
multi-instance data and uses unstructured variables to store single-instance data. In your Embedded
Coder dictionary, you can duplicate the MultiInstance storage class to make a copy of the storage
class that you can modify. For more information, see Flexible Storage Class for Different Model
Hierarchy Contexts.

Symbolic dimension inputs for Bitwise Operator, Saturation, and Data
Type Propagation blocks
Starting in R2021b, you can generate code for Bitwise Operator, Saturation, and Data Type
Propagation blocks that have symbolic dimensions as inputs. Prior to R2021b, generating code for
these blocks that had symbolic dimensions as inputs was not supported.

For more information, see Implement Dimension Variants for Array Sizes in Generated Code.

 Model Architecture and Design

4-3

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html#mw_66305238-bd9e-473e-a27c-f7ffffd9e246
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/define-a-storage-class-with-different-settings-based-on-model-hierarchy-context.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/define-a-storage-class-with-different-settings-based-on-model-hierarchy-context.html
https://www.mathworks.com/help/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html

Code Interface Configuration and Integration

Storage class with pointer data access in Embedded Coder Dictionary
Previously, to configure generated code to access data elements of a model by using a pointer, you
had to apply the built-in storage class ImportedExternPointer to the element or create your own
storage class that had pointer access by using the Custom Storage Class Designer. Starting in
R2021b, you can create a storage class that has pointer access by using the Embedded Coder
Dictionary.

In the Embedded Coder Dictionary, create a storage class and set Data scope to Imported. Then set
Data access to Pointer. When you map a modeling element to this storage class, the generated
code reads to and writes from that data element by using a pointer.

For more information, see Embedded Coder Dictionary.

Unstructured Embedded Coder Dictionary storage class application to
model reference root I/O
Previously, when you applied a new storage class from the Embedded Coder Dictionary to the input or
output elements of a referenced model, the code generator reported an error. Starting in R2021b,
when you create an unstructured storage class by using the Embedded Coder Dictionary, you can
apply that new storage class to the root input and output elements of a referenced model.

For more information, see Embedded Coder Dictionary.

Embedded Coder Dictionary storage class application to signals and
parameters with symbolic dimensions
Previously, when you applied a storage class that you created in the Embedded Coder Dictionary to a
signal or parameter that had dimension information specified as a symbol, the code generator
reported an error. Starting in R2021b, you can apply an Embedded Coder Dictionary storage class to
a signal or parameter that has symbolic dimensions when Data initialization for the storage class is
not Static. The generated code preserves the symbolic dimensions.

For more information, see Embedded Coder Dictionary.

Changes to model hierarchy requirements
Starting in R2021b, the code generator allows a model reference hierarchy to have different
specifications for these model configuration parameters:

• Support: variable-size signals (SupportVariableSizeSignals)
• Ignore test point signals (IgnoreTestpoints)

The code generator allows a single-instance model reference hierarchy to have different
specifications for memory sections for these categories of data defaults in the Code Mappings editor:

• Inports

R2021b

4-4

https://www.mathworks.com/help/releases/R2021b/ecoder/ref/embeddedcoderdictionary.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/embeddedcoderdictionary.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/embeddedcoderdictionary.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/support-variable-size-signals.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/ignore-test-point-signals.html

• Outports
• Signals, states, and internal data
• Shared local data stores
• Constants

For information about the model configuration parameter available for Simulink Coder, see “Changes
to model hierarchy requirements”.

For more information, see Set Configuration Parameters for Code Generation of Model Hierarchies.

Calibration file customization
Starting in R2021b, you can customize the ASAP2(a2l) file. The Code Mappings Editor – C enables
you to customize the calibration properties of measurement and characteristic objects. For example,
you can set the properties Calibration Access and add a Display Identifier by using the
Code Mappings editor. For more information, see Configure Model Data Elements for ASAP2 File
Generation.

You can group the measurements and characteristic objects in the ASAP2(a2l) file based on the
properties of the data elements. For more information, see Customize Generated ASAP2 File.

TLC code storage classes in default mapping
In R2021b, custom storage classes that use TLC code are available in the default mapping. Previously,
the default mapping did not support storage classes that had Type set to Other, which is required for
TLC code. In R2021b, the default mapping supports storage classes that have Type set to Other. For
more information, see Finely Control Data Representation by Writing TLC Code for a Storage Class.

Configure additional properties from the Code Mappings editor
Starting in R2021b, you can now configure additional code mapping properties from within the Code
Mappings editor. These properties were previously accessible only in the Property Inspector.

To configure the properties, click the icon in the row containing the element you want to configure.

 Code Interface Configuration and Integration

4-5

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/set-configuration-parameters-for-code-generation-of-model-hierarchies.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/codemappingseditorc.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/a2l-cal-profile.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/a2l-cal-profile.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/a2l-custom-cd.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/define-advanced-custom-storage-classes-types.html

View In Bus Element and Out Bus Element blocks in a hierarchy in the
Code Mappings editor
Beginning in R2021b, the Code Mappings editor displays data related to In Bus Element and Out Bus
Element blocks in a hierarchical view. In previous releases, this data displayed as a flat list in the
Code Mappings editor.

Configuring C/C++ function prototypes for subsystems not
recommended
Editing the C/C++ function prototype configuration for models already configured for subsystem
build, or configuring function prototypes for new subsystems using the
RTW.configSubsystemBuild function or the associated UI now throws a warning.

To configure the function prototypes for a subsystem, convert the subsystem to a Model block. For
models configured for C code generation, the conversion of the subsystem to a Model block migrates
the model to use code mappings. See Copy Code Mappings When Converting Subsystems to
Referenced Models. For models configured for C++ code generation, you must manually configure
the code mapping settings on the converted model.

R2021b

4-6

https://www.mathworks.com/help/releases/R2021b/simulink/slref/inbuselement.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/outbuselement.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/outbuselement.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/model.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/code-definition-and-mapping-limitations-and-considerations.html#mw_630c36b7-aa81-4f97-a8ad-f05d6b3559b8
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/code-definition-and-mapping-limitations-and-considerations.html#mw_630c36b7-aa81-4f97-a8ad-f05d6b3559b8

To verify that a subsystem can be converted to a Model block, use the function
Simulink.SubSystem.convertToModelReference.

Reusable storage class in Code Mappings editor
Prior to R2021a, you could specify buffer reuse on root-level inputs, data stores, signals, and states by
associating the signals with a Simulink.Signal object and setting the Storage Class property to
Reusable. The Simulink.Signal object was required to be defined outside the model, either in the
base workspace or in a Simulink data dictionary.

Starting in R2021b, for individual root-level inports, data stores, signals, and states, you can specify
buffer reuse on them by setting Storage Class to Reusable in the Code Mappings editor. This
optimization decreases data copies and memory consumption and increases code execution speed.
The code generator does not require that the data element resolves to a Simulink.Signal object.

For reused data elements, you can specify the same value for the Identifier property. If you do not
specify a value for the Identifier, the code generator uses the same signal label to name the reusable
signal in the generated code. The code generator does not reuse signals if:

• The signals have the same labels but different identifiers.
• The signals have the same identifier but different values for these properties: DataScope,

HeaderFile, DefinitionFile, and Owner. If there is a mismatch of values in any of the properties,
the code generator stops and produces an error if the model configuration parameter Detect
non-reused custom storage classes is set to error.

For more information, see Specify Buffer Reuse for Signals in a Path.

Generated C++ model class name can be the model name
In R2021b, you can customize the generated model class name as the name of the model. Previously,
the class name in the generated code used a default class name of the form modelModelClass or a
custom name that was different from the name of the model. For more information on how to
customize a model class name, see Interactively Configure C++ Interface.

 Code Interface Configuration and Integration

4-7

https://www.mathworks.com/help/releases/R2021b/simulink/slref/model.html
https://www.mathworks.com/help/releases/R2021b/simulink/slref/simulink.subsystem.converttomodelreference.html
https://www.mathworks.com/help/releases/R2021b/simulink/gui/reusable-csc-has-incompatible-usages.html
https://www.mathworks.com/help/releases/R2021b/simulink/gui/reusable-csc-has-incompatible-usages.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/specify-buffer-reuse-for-signals-in-a-path.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/interactively-configure-cpp-interface.html

Code Generation

Accessibility of step entry-point functions generated for models
designed for multitasking and concurrency streamlined
Prior to R2021b, for models configured for multitasking (Treat each discrete rate as a separate
task is selected) or concurrency (Allow task to execute concurrently on target is selected), the
code generator placed a model_step wrapper function, which served as a dispatcher, in generated
algorithmic code files model.c or model.cpp and model.h. The wrapper function uses a switch
statement to select the model_stepN function to call during run time. For multitasking models, you
could suppress generation of the wrapper function by setting the TLC variable RateBasedStepFcn
to 1.

Starting in R2021b, by default, the code generator streamlines accessibility and improves
performance of step entry-point functions generated for models designed for multitasking and
concurrent execution. The code generator produces a step entry-point function for each rate. The
Code Interface Report lists the individual functions. A main program can call each of the entry-point
functions directly. This change does not apply to models configured to use the classic call interface.

For existing application code that depends on the wrapper function, the code generator places the
wrapper function in these generated files:

• For models configured for multitasking and have parameter Generate an example main
program cleared - rtmodel.c or rtmodel.cpp and rtmodel.h

• For models configured for concurrent execution - ert_main.c or ert_main.cpp

For more information, see Manage Build Process Files, Analyze the Generated Code Interface, and
Configure C Code Generation for Model Entry-Point Functions.

Compatibility Considerations
In a future release, the code generator will stop generating the wrapper function. Update application
code to call the rate-specific entry-point functions directly.

If your application code depends on use of the wrapper function, you can use these options
temporarily:

• To use the generated static main program on bare board target hardware (Generate an example
main program is selected and Target operating system is set to BareBoardExample), you can
update the #include statement in the main program to specify rtmodel.h instead of model.h.

• To use a custom main program on a native threads target operating system (Generate an
example main program is selected and Target operating system is set to
NativeThreadsExample), you can do one of the following:

• Generate the wrapper function in your custom main program.
• Copy the wrapper function from the generated example native threads main program and

paste the function into your application main program.

For more information, see Deploy Generated Standalone Executable Programs To Target Hardware.

R2021b

4-8

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/build-process-files.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/analyze-the-generated-code-interface.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/configure-c-code-generation-for-model-entry-point-functions.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/standalone-programs-no-operating-system.html

Code view for MATLAB Function block
Starting in R2021b, when you open a MATLAB Function block, the MATLAB Function Block Editor
opens in the same Simulink window as the parent model of the MATLAB Function block. When you
generate code from a MATLAB Function block, you can view the code alongside the function by using
the Code view. The Code view enables you to trace between your generated code and your MATLAB
function code in the same window as your model. For more information, see Verify Generated Code by
Using Code Tracing.

The Code view opens by default when you generate code from your model. To open the Code view
manually, on the C Code tab, click View Code.

If you configure your model to generate code metrics, code coverage, or code profiling data, you can
view the results in the Code view.

 Code Generation

4-9

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/verify-generated-code-by-using-code-tracing.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/verify-generated-code-by-using-code-tracing.html

Enhanced code to reduce MISRA C:2012 Rule 10.3 and Directive 4.1
violations
Starting in R2021b, Embedded Coder produces code that reduces violations of the MISRA C:2012
Rule 10.3 and Directive 4.1.

For more information, see MISRA C:2012 Rule 10.3 (Polyspace Code Prover) and MISRA C:2012 Dir
4.1 (Polyspace Code Prover).

Changes to generated C++ header files
Due to infrastructural improvements, there might be minor, nonfunctional differences in headers
generated for C++ classes. For more information about generated header files, see Manage Build
Process Files.

const member functions for C++ class interface
Starting in R2021b, the code generator emits a member functions as const when both of these
conditions are true:

• The function does not modify a class member variables.
• The function does not call a non-const functions.

The code generator does not emit a const member function if the function:

R2021b

4-10

https://www.mathworks.com/help/releases/R2021b/codeprover/ref/misrac2012rule10.3.html
https://www.mathworks.com/help/releases/R2021b/codeprover/ref/misrac2012dir4.1.html
https://www.mathworks.com/help/releases/R2021b/codeprover/ref/misrac2012dir4.1.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/build-process-files.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/build-process-files.html

• Calls a TLC function through fully inlined S-functions
• Is getRTM()
• Is model_derivatives

Generating member functions as const reduces MISRA C++ 2008 Rule 9-3-3 violations. For more
information, see MISRA C++:2008 Rule 9-3-3 (Polyspace Bug Finder).

Minimized variable visibility for C++ code
Starting in R2021b, generated C++ code contains variable declarations that have minimized block
scope. Minimized scope of variable declarations increases the likelihood of generating C++ code that
is compliant with the Rule 3-4-1 of the MISRA C++:2008 guidelines. This optimization is applicable to
these statements:

• if
• for
• while
• switch

Consider the model mMinimizeVariableScopeBasic.

In R2021a, the code generator produced this code:

void rtwdemo_forloopModelClass::step()
{
 int32_T k;
 mMinimizeVariableScopeBasic_Y.Out1 = 0.0;
 for (k = 0; k < 10; k++) {
 ...
 }
}

The variable k was declared outside the scope of the for loop where it was used.

In R2021b, the code generator produces this code:

void rtwdemo_forloopModelClass::step()
{
 mMinimizeVariableScopeBasic_Y.Out1 = 0.0;
 for (int32_T k = 0; k < 10; k++) {
 ...
 }
}

 Code Generation

4-11

https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/misrac2008rule933.html

The variable k is declared and initialized within the scope of the for loop where it is used.

When you set the parameter value of AdvancedOptControl to -SLCI for compatibility with code
inspection, the code generator does not generate minimally scoped variables.

For more information, see MISRA C++:2008 Rule 3-4-1 (Polyspace Bug Finder).

Image data by using OpenCV class cv::Mat
Computer Vision Toolbox™ Interface for OpenCV in Simulink enables you to specify an image as a
Simulink.ImageType (Computer Vision Toolbox) data type and generate code for your model. For
ERT-targets, select the new model configuration parameter Data Type Replacement > Implement
images using OpenCV Mat class to generate production C++ code where images are represented
by using the OpenCV class cv::Mat instead of the C++ class images::datatypes::Image
implemented by The MathWorks®. By default, this parameter is not selected.

For example, consider this model:

If you do not select Implement images using cv::Mat parameter, the code generator produces this
code for root-level I/O and converted block I/O:
/* Block signals (default storage) */
struct B_CVCodegen_T {
cv::Mat ToOpenCV; /* '<Root>/ToOpenCV' */
cv::Mat GaussianBlur; /* '<Root>/GaussianBlur' */
};

/* External inputs (root inport signals with default storage) */
struct ExtU_CVCodegen_T {
 images::datatypes::Image In1; /* '<Root>/In1' */
};

/* External outputs (root outports fed by signals with default storage) */
struct ExtY_CVCodegen_T {
 images::datatypes::Image Out1; /* '<Root>/Out1' */
};

R2021b

4-12

https://www.mathworks.com/help/releases/R2021b/bugfinder/ref/misrac2008rule341.html
https://www.mathworks.com/help/releases/R2021b/vision/ref/simulink.imagetype.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/implement-images-using-opencv-mat-class.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/implement-images-using-opencv-mat-class.html

/* Model step function */
void mCVCodegenModelClass::step()
{
 /* S-Function (FromOpenCV): '<Root>/FromOpenCV' incorporates:
 * Outport: '<Root>/Out1'
 */
 {
 uint8_t *y0 = static_cast<uint8_t*>(imageGetDataFcn (&mCVCodegen_Y.Out1));
 mCVCodegen_B.GaussianBlur = cv::Mat(384, 512, CV_MAKETYPE(CV_8U, 3), y0);

 /*S-Function Block: <Root>/ToOpenCV */
 {
 const uint8_t *u0 = static_cast<uint8_t*>(imageGetDataFcn (&mCVCodegen_U.In1));
 mCVCodegen_B.ToOpenCV = cv::Mat(384, 512, CV_MAKETYPE(CV_8U, 3), u0);

 /* S-Function Block: '<Root>/GaussianBlur' */
 opencv::GaussianBlur(&mCVCodegen_B.GaussianBlur, &mCVCodegen_B.ToOpenCV);
}

There are two buffers of the images::datatypes::Image class and two buffers of the class
cv::Mat class. Shallow copies convert data from the images::datatypes::Image class to
cv::Mat class.

If you select Implement images using cv::Mat, the code generator produces this code:
/* External inputs (root inport signals with default storage) */
struct ExtU_CVCodegen_T {
 cv::Mat In1; /* '<Root>/In1' */
};

/* External outputs (root outports fed by signals with default storage) */
struct ExtY_CVCodegen_T {
 cv::Mat Out1; /* '<Root>/Out1' */
};

/* Model step function */
void mCVCodegenModelClass::step()
{

 /* S-Function Block: '<Root>/GaussianBlur' */
opencv::GaussianBlur(mCVCodegen_Y.Out1, &mCVCodegen_U.In1);

}

Output buffers for the block and the shallow copies are eliminated because the root-level I/O is
represented by cv::Mat class.

For more information about Simulink.ImageType, see the “Computer Vision Toolbox Interface for
OpenCV in Simulink: Specify image data type in Simulink model” (Computer Vision Toolbox) release
note.

Shared types and parameters storage in same header file
Starting in R2021b, you can store shared types and parameters in the same header file. You can store
the following types in the same file as Simulink.Parameter.

• Simulink.Alias
• Simulink.NumericType
• Simulink.LookupTable

In this example, the code generator stores an Alias and a Parameter in the same header file in the
shared utilities folder.

#ifndef RTW_HEADER_myHeader_h_
#define RTW_HEADER_myHeader_h_

 Code Generation

4-13

#include "rtwtypes.h"

typedef real_T myAlias;
typedef creal_T cmyAlias;

// Exported data declaration
// Declaration for custom storage class: ExportToFile
extern real_T myParam;

#endif // RTW_Header_myHeader_h

Prior to R2021b, these combinations caused errors when you built your code. For more information,
see Choose Storage Class for Controlling Data Representation in Generated Code.

Bidirectional traceability in Code view by default
Starting in R2021b, the Code view provides bidirectional traceability between your model and the
generated code by default. Previously, you had to select the configuration parameters Code-to-
model or Model-to-code. To enable code tracing in the code generation report, you still select these
parameters. For more information, see Trace Simulink Model Elements in Generated Code.

R2021b

4-14

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/trace-simulink-model-objects-in-generated-code.html

Deployment

New TLC variable OverrideSampleERTMain for disabling generation of
example main program
When developing a custom system target file, you can override the default code generator behavior in
the Target Language Compiler (TLC) for creating an example main program (ert_main.c or
ert_main.cpp). For example, apply the override if you already have or want to generate your own
main program module. Starting in R2021b, to apply this override, use the new TLC variable
OverrideSampleERTMain.

For example, if you want to generate or write your own main program, suppress generation of the
default example main program by including this line of code in your TLC setup script:

%assign CompiledModel.OverrideSampleERTMain = TLC_TRUE

Prior to R2021b, to override the generation of an example main program, you used the TLC variable
GenerateSampleERTMain. This variable still works. The code generator produces slightly different
results depending on whether you set OverrideSampleERTMain to TLC_TRUE or set
GenerateSampleERTMain to TLC_FALSE.

For more information, see Generate Source and Header Files with a Custom File Processing (CFP)
Template.

Texas Instruments C2000: Code generation support for Configurable
Logic Block (CLB) and CLB X-Bar in Embedded Coder Support Package
for Texas Instruments C2000 Processors
The Embedded Coder Support Package for Texas Instruments C2000 Processors now provides code
generation support for the CLB Crossbar (CLB X-BAR) and provides the option to configure CLB and
integrate generated CLB files from the CLB tool for the F2838x(C28x), F28002x, and F28004x
processors.

Texas Instruments C2000: External Mode Simulation Using XCP on CAN
Interface
In the Embedded Coder Support Package for Texas Instruments C2000 Processors, you can now
configure a model for simulating in the external mode to perform signal logging and parameter
tuning using XCP on CAN.

Support for STMicroelectronics STM32F4xx-based Boards
• You can use the Embedded Coder Support Package for STMicroelectronics Discovery Boards to

generate and build code using an STM32CubeMX project file for STMicroelectronics STM32F4xx-
based boards.

• ADC, PWM, GPIO Read, GPIO Write, and Hardware Interrupt blocks are supported for
STMicroelectronics STM32F4xx-based boards.

• External mode over serial and PIL simulation is also supported.

 Deployment

4-15

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/generate-source-and-header-files-with-a-custom-file-processing-cfp-template.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/generate-source-and-header-files-with-a-custom-file-processing-cfp-template.html

Performance
Generation of SIMD code by using new configuration parameter
In R2021b, when you generate code for Intel or AMD hardware, you can generate single instruction,
multiple data (SIMD) code by specifying your SIMD instruction sets by using the new configuration
parameter Leverage target hardware instruction set extensions.

For new models that use the supported target hardware, the parameter is set to SSE2 by default. The
generated code uses SIMD intrinsics. For computationally intensive operations on supported blocks,
SIMD intrinsics can significantly improve the performance of the generated code on Intel and AMD
platforms.

Previously, to generate SIMD code, you used code replacement libraries. In R2021b, use the new
parameter to select one of these instruction sets:

• SSE
• SSE2
• SSE4.1
• AVX
• AVX2
• FMA
• AVX512F

When you generate code, Embedded Coder loads your specified instruction set and the instruction
sets that it requires. The replacements appear in the generated code for blocks that meet the
supported conditions for SIMD. For more information, see Generate SIMD Code from Simulink
Blocks.

You can no longer specify the SIMD instructions for the Code replacement libraries parameter
because the SIMD instruction sets are now available by using the Leverage target hardware
instruction set extensions parameter. The SIMD code replacement libraries include:

• Intel SSE
• Intel AVX
• Intel AVX-512

Models that you saved in a previous version are not changed and still use these code replacement
libraries.

Image Processing Toolbox functions enhanced with multithreading
and algorithm improvements
Starting in R2021b, if you use a compiler that supports the Open Multiprocessing (OpenMP)
application interface, you can generate multithreaded C/C++ functions for some Image Processing
Toolbox functions that are included in MATLAB code or in Simulink models that have MATLAB
Function blocks or MATLAB System blocks. Some of the Image Processing Toolbox functions have
algorithm improvements in the generated code. These enhancements improve the function execution
speed.

R2021b

4-16

https://www.mathworks.com/help/releases/R2021b/rtw/ref/selected-instruction-sets.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/generate-simd-code-from-simulink-blocks.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/generate-simd-code-from-simulink-blocks.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/code-replacement-library-embedded-coder.html

To enable multithreading, select the model configuration parameters Specify custom optimizations
and Generate parallel for loops.

The optimized functions that have multithreading capabilities are:

• hsv2rgb
• imadjust
• imfilter
• label2rgb

The functions that have algorithm improvements are:

• imfill
• imreconstruct
• medfilt2

In R2021a, the code generator produced this C code snippet for a MATLAB function containing an
image processing function imadjust:

...
for (k = 0; k < 1310720; k++) {
 out_tmp = (k % 1024 + ((k / 1024) << 10)) + 1310720 * p;
 out[out_tmp] =
 rt_powd_snf((fmax(lIn, fmin(hIn, varargin_1[out_tmp])) - lIn) /
 (hIn - lIn), g) * (hOut - lOut) + lOut;
 }
...

The loop executed sequentially.

In R2021b, the code generator produces this code snippet:
...
#pragma omp parallel for num_threads(omp_get_max_threads())

 for (i = 0; i < 1310720; i++) {
 out[i] = rt_powd_snf((fmax(lIn, fmin(hIn, img[i])) - lIn) / (hIn - lIn), g) *
 (hOut - lOut) + lOut;
 }
...

The generated code has the pragma for OpenMP (Open Multiprocessing) before the body of the loop.
OpenMP enables shared-memory and multicore platforms to execute loops in parallel. This parallel
execution improves the execution speed of the generated code. For more information, see Speed Up
for-Loop Implementation in Code Generated by Using parfor and Algorithm Acceleration Using
Parallel for-Loops (parfor).

Reduced data copies for models that have Bus Creator blocks
Prior to R2021b, the generated code contained redundant data copies for models that have Bus
Creator blocks, which combined the outputs of reusable subsystems and model references into buses.
Starting in R2021b, if the top model and referenced models do not have function prototype control
specifications, the code generator generates optimized code by eliminating the redundant data
copies. Eliminating the redundant data copies reduces RAM and ROM consumption and improves
execution speed.

 Performance

4-17

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/Speed-Up-for-loop-implementation-in-the-Code-Generated-using-parfor.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/Speed-Up-for-loop-implementation-in-the-Code-Generated-using-parfor.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html
https://www.mathworks.com/help/releases/R2021b/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html

Consider the model mBusCreatorReuse, which has two instances of the referenced model
mBusCreatorReuse_sub connected to a Bus Creator block.

In R2021a, the code generator produced this code:

/* Model step function */
void mBusCreatorReuse_step(void)
{
 /* local block i/o variables */
 MyOutSubBus rtb_one;
 MyOutSubBus rtb_two;

 /* ModelReference: '<Root>/Model' incorporates:
 * Inport: '<Root>/In1'
 */
 mBusCreatorReuse_sub(&rtU.In1.one, &rtb_one);

 /* ModelReference: '<Root>/Model1' incorporates:
 * Inport: '<Root>/In1'
 */
 mBusCreatorReuse_sub(&rtU.In1.two, &rtb_two);

 /* Outport: '<Root>/SimpleLib' incorporates:
 * BusCreator: '<Root>/Bus Creator'
 */
 rtY.SimpleLib.one = rtb_one;
 rtY.SimpleLib.two = rtb_two;
}

The generated code contained unnecessary data copies to the local variables rtb_one and rtb_two.

In R2021b, the code generator generates this code:

/* Model step function */
void mBusCreatorReuse_step(void)
{
 /* ModelReference: '<Root>/Model' incorporates:
 * Inport: '<Root>/In1'
 */
 mBusCreatorReuse_sub(&rtU.In1.one, &rtY.SimpleLib.one);

 /* ModelReference: '<Root>/Model1' incorporates:
 * Inport: '<Root>/In1'
 */
 mBusCreatorReuse_sub(&rtU.In1.two, &rtY.SimpleLib.two);
}

The generated code does not contain the local variables rtb_one, rtb_two, and the data copies.
Now, the code generator stores the input elements of the Bus Creator block into the root output
structure fields rtY.SimpleLib.one and rtY.SimpleLib.two directly.

R2021b

4-18

SIMD optimization for more integer data types
Prior to R2021b, the generated code for Simulink models contained SIMD optimizations for 32- and
64- bit integer data types. Starting in R2021b, for Intel SSE® or AVX® processors, the generated
code for models contains SIMD optimizations for 8- and 16- bit integer data types.

To enable this optimization, set the model configuration parameter Leverage target hardware
instruction set to SSE2, SSE4.1, or AVX2.

Consider the model mAddInt8, which has an Add block.

In R2021a, the code generator produced this C code by using the Intel SSE (Windows) code
replacement library:

/* Model step function */
void mAddInt8_step(void)
{
 int32_T i;

 /* Outport: '<Root>/Outport' incorporates:
 * Constant: '<Root>/Constant1'
 * Constant: '<Root>/Constant2'
 * Sum: '<Root>/Add1'
 */
 for (i = 0; i < 48; i++) {
 mAddInt8_Y.Outport[i] = (int8_T)(mAddInt8_P.Constant1_Value[i] +
 mAddInt8_P.Constant2_Value[i]);
 }

The loop incremented by one for the variable i.

In R2021b, the code generator produces this SIMD vectorized code when you set Leverage target
hardware instruction set to SSE2:
/* Model step function */
void mAddInt8_step(void)
{
 int32_T i;
 for (i = 0; i <= 32; i += 16) {
 /* Outport: '<Root>/Out1' incorporates:
 * Constant: '<Root>/Constant'
 * Constant: '<Root>/Constant1'
 */
 _mm_storeu_si128((__m128i *)&mAddInt8_Y.Out1[i], _mm_add_epi8
 (_mm_loadu_si128((__m128i *)&mAddInt8_P.Constant_Value[i]),
 _mm_loadu_si128((__m128i *)&mAddInt8_P.Constant1_Value[i])));
 }
}

The loop increments by 16 because the input data type is int8. Incrementing by 16 instead of one
occurs because the SIMD functions in the loop body process data in parallel. If the input data type is

 Performance

4-19

int16, the loop increments by 8. This optimization increases the execution speed of the generated
code. For more information, see Generate SIMD Code from Simulink Blocks.

Root outport initialization code performance improvements
Starting in R2021b, generated code contains optimizations for root outport initialization. These
optimizations result in smaller object files, reduced ROM consumption, and faster run-time
performance.

Prior to R2021b, initialization code for root outports contained separate for loops of the same size:

/* external outputs */
{
 int32_T i;
 for (i = 0; i < 2350; i++) {
 mForLoopFused_Y.Out3[i] = -2;
 }
}
{
 int32_T i;
 for (i = 0; i < 2350; i++) {
 mForLoopFused_Y.Out4[i] = -2;
 }
}

Starting in R2021b, the code generator merges these for loops:

/* external outputs */
{
 int32_T i;
 for (i = 0; i < 2350; i++) {
 mForLoopFused_Y.Out1[i] = -2;
 mForLoopFused_Y.Out2[i] = -2;
 }
}

This merge results in smaller object files, reducing ROM consumption. The merged for loop is also
faster at run-time.

Prior to R2021b, the generated code for models that had many zero constants contained a large
structure that initialized each constant individually:

const busObj mStringInBusCGpatterns_rtZbusObj = {
 0.0, /* elem1 */
 "", /* stringElem */
 "" /* stringObjElem */
} ; /* busObj ground */

/* Model initialize function */
void mStringInBusCGpatterns_initialize(void)
{
 /* external outputs */
 (void) memset((void *)&mStringInBusCGpatterns_Y, 0,
 sizeof(ExtY_mStringInBusCGpatterns_T));
 mStringInBusCGpatterns_Y.Out3 = mStringInBusCGpatterns_rtZbusObj;
}

R2021b

4-20

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/generate-simd-code-from-simulink-blocks.html

Starting in R2021b, the code generator initializes these constants in bulk by using the memset
function:

/* Model initialize function */
void mStringInBusCGpatterns_initialize(void)
{
 /* external outputs */
 (void) memset((void *)&mStringInBusCGpatterns_Y, 0,
 sizeof(ExtY_mStringInBusCGpatterns_T));
}

This initialization results in smaller object files, reducing ROM consumption.

Prior to R2021b, the code generator could use the memset function on the entire root outport
structure, but not on individual outports:
const botBus mAoSIndirectMask_rtZbotBus = {
 {
 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
 0.0 }
 , /* a */
 0.0 /* b */
} ; /* botBus ground */

/* external outputs */
(void) memset(&mAoSIndirectMask_Y.Out1[0], 0,
 2U*sizeof(botBus));

Starting in R2021b, the code generator can use the memset function on individual outports:

/* external outputs */
(void)memset(&mAoSIndirectMask_Y, 0, sizeof(ExtY_mAoSIndirectMask_T));

Using the memset function on individual outports results in smaller object files, reducing ROM
consumption. For more information, see Optimize Generated Code Using memset Function.

Readability improvement for root outport initialization code
R2021b introduces readability improvements for root outport initialization code. These improvements
change the code syntactically but not semantically, resulting in root outport initialization code that is
more consistent with other types of generated code.

Prior to R2021b, when you specified an identifier naming rule, the code generator did not apply this
rule to root outports. In this example, R2021a ignores an identifier length rule when generating
mModelUsingBusDT_rtZbusTypeForMFile:

const busTypeForMFile mModelUsingBusDT_rtZbusTypeForMFile = {
 0.0F,
 0.0
} ;
void mModelUsingBusDT_initialize(void)
{
 mModelUsingBusDT_Y.Out1 = mModelUsingBusDT_rtZbusTypeForMFile;
}

Starting in R2021b, the code generator applies the rule and truncates the identifier to
mModelUsingBusDT_rtZbusTypeForM:

const busTypeForMFile mModelUsingBusDT_rtZbusTypeForM = {
 0.0F,

 Performance

4-21

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/optimize-generated-code-by-using-memset-function.html

 0.0
};
void mModelUsingBusDT_initialize(void)
{
 mModelUsingBusDT_Y.Out1 = mModelUsingBusDT_rtZbusTypeForM;
}

For more information, see Customize Generated Identifier Naming Rules.

Prior to R2021b, root outport initialization code used the * and . operators to access elements of
structures:

(*mrootioindividual_Y_Out1) = 0.0;
(*mrootioindividual_Y_Out2).re = 0.0;
(*mrootioindividual_Y_Out2).im = 0.0;

Starting in R2021b, the code uses the -> operator:

*mrootioindividual_Y_Out1 = 0.0;
mrootioindividual_Y_Out2->re = 0.0;
mrootioindividual_Y_Out2->im = 0.0;

This is consistent with code generation for external inputs.

Optimize code by unrolling parallel for-loops
Starting in R2021b, you can specify a value for the model configuration parameter Loop unrolling
threshold parameter value to automatically unroll parallel for-loops (parfor-loops).

When the code generator unrolls a parfor-loop, it produces a copy of the loop body for each
iteration. For a small number of loop iterations that perform some simple calculation, parallelization
is inefficient as it introduces overheads, which includes time taken for thread creation, data
synchronization between threads, and thread deletion. Unrolling the loops that have a large number
of iterations can significantly increase code generation time and generate inefficient code.

The default value of the Loop unrolling threshold parameter is 5. By modifying the threshold, you
can fine-tune loop unrolling. To modify the threshold, change the value of the parameter Loop
unrolling threshold. For more information, see Unroll Parallel for-Loop That Has Small Number of
Iterations.

Improved common subexpression elimination
Prior to R2021b, for models that contained redundant subexpressions that were used to access the
same struct fields, the generated code repeatedly executed the subexpressions and accessed the
struct fields. Starting in R2021b, the generated code contains a temporary variable that holds the
value of these subexpressions and eliminates accessing the same fields repeatedly. This optimization
improves the execution speed of the generated code. The model configuration parameter Eliminate
superfluous local variables (expression folding) enables this optimization.

Consider the model mWhileBusAccess.

R2021b

4-22

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/configure-generated-identifiers-in-embedded-system-code.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/loop-unrolling-threshold.html
https://www.mathworks.com/help/releases/R2021b/rtw/ref/loop-unrolling-threshold.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/unroll-parfor-that-has-small-number-of-iterations.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/unroll-parfor-that-has-small-number-of-iterations.html

In R2021a, the code generator produced this code:

void mWhileBusAccess_step(void)
{
 int32_T s1_iter;
 boolean_T loopCond;
 s1_iter = 1;
 loopCond = true;
 while (loopCond && ((uint32_T)s1_iter <= 300U)) {
 rtY.Out1 = ((rtU.busSignal1.field3[s1_iter - 1].field2.field1 == Red) ||
 (rtU.busSignal1.field3[s1_iter - 1].field2.field1 == Yellow) ||
 (rtU.busSignal1.field3[s1_iter - 1].field2.field1 == Blue));
 loopCond = (rtU.cond != 0U);
 s1_iter++; }
}

The generated code contained subexpressions to repeatedly access the same struct field because
the same bus was attached to three distinct blocks.

In R2021b, the code generator produces this code:

void mWhileBusAccess_step(void)
{
 int32_T s1_iter;
 boolean_T loopCond;
 Colors Out1_tmp;
 s1_iter = 1;
 loopCond = true;
 while (loopCond && ((uint32_T)s1_iter <= 300U)) {
 Out1_tmp = rtU.busSignal1.field3[s1_iter - 1].field2.field1;
 rtY.Out1 = ((Out1_tmp == Red) || (Out1_tmp == Yellow) || (Out1_tmp == Blue));
 loopCond = (rtU.cond != 0U);
 s1_iter++;}
}

The generated code contains the temporary variable Out1_tmp for holding the value of the
subexpressions that access the same struct field, thereby eliminating the redundancy. For more
information, see Eliminate superfluous local variables (Expression folding).

Optimized SIMD code that performs fused multiply add operations
Starting in R2021b, if you use a processor that supports fused multiply-add (FMA) instructions, you
can generate optimized SIMD code that performs fused multiply-add operations. The fused multiply-
add operations are for sequential multiplication-addition arithmetic operations involving single and
double data types. Fused multiply-add operations are performed in one step with a single rounding
than performing a multiplication operation followed by an addition. Using this optimization improves
the execution speed of the generated SIMD code.

To enable FMA optimization, set the model configuration parameter Leverage target hardware
instruction set to FMA. For more information, see Optimize SIMD Code by Performing Fused
Multiply Add Operations.

 Performance

4-23

https://www.mathworks.com/help/releases/R2021b/rtw/ref/eliminate-superfluous-local-variables-expression-folding.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/Optimize-SIMD-Code-by-Performing-Fused-Multiply-Add-Operation.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/Optimize-SIMD-Code-by-Performing-Fused-Multiply-Add-Operation.html

Redundant data copies elimination by reusing S-function block buffers
Starting in R2021b, you can use the LibBlockInputSignalBufferDstPort function to generate
code with fewer data copies for a model containing an S-function block that implements an inplace
(that is, uses the same input and output variable) C function when one of these conditions is true:

• The block has signals with buffer reuse specifications by using Simulink.Signal objects. For
more information, see Specify Buffer Reuse for Signals in a Path.

• The block has function prototype control specifications to use the same buffer for input ports and
output ports. For more information, see Configure Name and Arguments for Individual Step
Functions.

• The block connects to a MATLAB Function block with inplace (that is, uses the same input and
output variable) specification. For more information, see Specify Buffer Reuse for MATLAB
Function Blocks in a Path.

• The block connects to a Unit Delay block.
• The block has a bus data type as input and output.
• The model uses a Data Store Memory block for reading and writing S-function block input and

output. For more information, see Data Copy Reduction for Data Store Read and Data Store Write
Blocks.

To reuse the input port of an S-function, in the S-function source code, set these flags:

• ssSetInputPortOverWritable: Specify that input ports can be overwritten by one of their output
ports.

• ssSetInputPortOptimOpts: Declare an inport port as reusable local or global.
• ssSetOutputPortOptimOpts: Declare an output port as reusable local or global.
• ssSetOutputPortOverwritesInputPort: Specify which output port overwrites which input port.

To check if the input buffer of the S-function block is reused by the output port, add an if condition in
the TLC file based on the return value of the LibBlockInputSignalBufferDstPort function.

For example, consider the model mRCSC_RootInOut. The model contains an S-function block that
has signals with buffer reuse specifications.

The S-function block implements an inplace C function through the doubleIt_arr wrapper function.

void doubleIt_arr_inplace(int dim, double* inOutVal) {
 int i = 0;
 for (i = 0;i< dim; i++){
 inOutVal[i] *= 2;
 }}
void doubleIt_arr(int dim, double* inVal, double* outVal)
{

R2021b

4-24

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/specify-buffer-reuse-for-signals-in-a-path.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/configure-c-code-generation-for-model-entry-point-functions.html#mw_6f25ec45-7299-4d8a-a2b9-0b0cbdb89cd4
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/configure-c-code-generation-for-model-entry-point-functions.html#mw_6f25ec45-7299-4d8a-a2b9-0b0cbdb89cd4
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/specify-buffer-reuse-for-matlab-function-blocks-in-a-path.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/specify-buffer-reuse-for-matlab-function-blocks-in-a-path.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/data-store-buffer-reduction.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/data-store-buffer-reduction.html
https://www.mathworks.com/help/releases/R2021b/simulink/sfg/sssetinputportoverwritable.html
https://www.mathworks.com/help/releases/R2021b/simulink/sfg/sssetinputportoptimopts.html
https://www.mathworks.com/help/releases/R2021b/simulink/sfg/sssetoutputportoptimopts.html
https://www.mathworks.com/help/releases/R2021b/simulink/sfg/sssetoutputportoverwritesinputport.html

// This check is required for Simulation Correctness because TLC code is ignored in Simulation
 if (inVal != outVal){
 int i = 0;
 for (i=0;i<dim;i++){
 outVal[i] = inVal[i];
 }}
 doubleIt_arr_inplace(dim, outVal);
}

To reuse the input buffer of an S-function block, set the reusable flags in the S-function source code.
To check if the input buffer of the S-function block is reused by the output port, add an if condition in
the TLC file as follows:

 %if (LibBlockInputSignalBufferDstPort(0) == -1)
 {
 for(int i = 0; i < %<p1_val>; i++)
 {
 (%<y1_ptr>)[i] = (%<u1_ptr>)[i];
 }
 }
 %endif

In R2021a, the code generator produced this code:

/* Model step function */
void mRCSC_RootInOut_step(void)
{
 /* S-Function (ex_sfun_doubleit_arr): '<Root>/SFun' */
 {
 for (int i = 0; i < 2; i++) {
 ((&(rcsc[0])))[i] = ((&(rcsc[0])))[i];
 }
 }
 doubleIt_arr(2, (real_T*)(&(rcsc[0])), (&(rcsc[0])));
}

The generated code contained a for-loop and copy operation to reuse the S-function block input
buffer for the output port because the LibBlockInputSignalBufferDstPort did not identify the
reuse of the inport buffer that had a reusable storage class specification.

In R2021b, the code generator produces this code:

/* Model step function */
void mRCSC_RootInOut_step(void)
{
 /* S-Function (ex_sfun_doubleit_arr): '<Root>/SFun' */
 doubleIt_arr(2, (real_T*)(&(rcsc[0])), (&(rcsc[0])));
}

The generated code does not contain the for-loop and redundant copy operation. The
LibBlockInputSignalBufferDstPort function identifies that buffer reuse occurs, therefore the
code generator directly reuses the input buffer for the output port. Reducing the redundant data
copies reduces RAM and ROM consumption and improves execution speed. For more information, see
Advanced Functions and S-Functions That Specify Port Scope and Reusability.

 Performance

4-25

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/advanced-functions.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/s-functions-that-specify-port-scope-and-reusability.html

Optimized code for models containing referenced models
Starting in R2021b, the generated code has fewer local variables for modeling patterns that have
referenced models. The unnecessary local variables are eliminated, which improves the efficiency of
generated code. For example, consider a model mCodedescNodRefOpt_top that has a referenced
model mCodedescNodRefOpt_bot.

In R2021a, the code generator produced this code:

void mCodeDescModRefOpt_top_step(void)
{
 real_T rtb_ReferencedModel1;
 real_T rtb_ReferencedModel2;
 real_T rtb_ReferencedModel3;
 real_T rtb_ReferencedModel4;
 mCodeDescModRefOpt_bot(rtU.In, &rtb_ReferencedModel1);
 rtY.Out2 = 5.0 * rtb_ReferencedModel1;
 mCodeDescModRefOpt_bot(rtU.In, &rtb_ReferencedModel2);
 rtY.Out1 = 6.0 * rtb_ReferencedModel2;
 mCodeDescModRefOpt_bot(rtU.In, &rtb_ReferencedModel3);
 rtY.Out3 = 5.0 * rtb_ReferencedModel3;
 mCodeDescModRefOpt_bot(rtU.In, &rtb_ReferencedModel4);
 rtY.Out4 = 6.0 * rtb_ReferencedModel4;
}

R2021b

4-26

In R2021b, the code generator produced this code:

void mCodeDescModRefOpt_top_step(void)
{
 real_T rtb_ReferencedModel1;
 mCodeDescModRefOpt_bot(rtU.In, &rtb_ReferencedModel1);
 rtY.Out2 = 5.0 * rtb_ReferencedModel1;
 mCodeDescModRefOpt_bot(rtU.In, &rtb_ReferencedModel2);
 rtY.Out1 = 6.0 * rtb_ReferencedModel2;
 mCodeDescModRefOpt_bot(rtU.In, &rtb_ReferencedModel3);
 rtY.Out3 = 5.0 * rtb_ReferencedModel3;
 mCodeDescModRefOpt_bot(rtU.In, &rtb_ReferencedModel4);
 rtY.Out4 = 6.0 * rtb_ReferencedModel4;
}

The generated code contains lesser local variables in R2021b.

For more information on model references, see Generate Code for Model Reference Hierarchy.

Nonstatic data class member initialization of instance-specific
parameters
Starting in R2021b, the code generator supports nonstatic data class member initialization in C++11
for instance-specific parameters. The instance-specific parameters must map to a class member. In
the Property Inspector, set Data Access to Direct. In the Code Mappings editor set Data Visibility
to private. For more information, see Interactively Configure C++ Interface and Code Mappings –
C++ Editor.

In R2021a, the code generator defined a structure containing the values of the instance-specific
parameters. It then passed that structure to the model class constructor. In R2021b, the code
generator still behaves this way when generating C++03.

// instance parameters
untitledModelClass::InstP_mCPPInstP_T mCPPInstP_InstP_init = {
 // Variable: K
 // Referenced by: '<Root>/<Gain>'

 3.0
};

// Constructor
untitledModelClass::untitledModelClass() :
 mCPPInstP_InstP(mCPPInstP_InstP_init),
 mCPPInstP_U(),
 mCPPInstP_Y(),
 mCPPInstP_M()
{}

In R2021b, when generating C++11, the code generator directly specifies the default class member
initialization for the instance-specific parameters.

private:
 InstP_mCPPInstP_T mCPPInstP_InstP = {
 // Variable: K
 // Referenced by: '<Root>/Gain'
 3.0
 };

 Performance

4-27

https://www.mathworks.com/help/releases/R2021b/rtw/ug/generate-code-for-model-reference-hierarchy.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/interactively-configure-cpp-interface.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/codemappingsceditor.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/codemappingsceditor.html

This direct specification results in more concise code that is more efficient at run time.

Code replacement for trigonometric functions that use lookup table
approximation
Starting in R2021b, you can optimize code generated from a Trigonometric Function block that uses
the Lookup algorithm by using a code replacement library. In the code replacement entry for the
sin, cos, sincos, or atan2 function, set Algorithm to Lookup. You can also specify the angle unit
for the function as radian or revolution by using the new parameter Angle unit. For more
information, see Algorithm-Based Code Replacement and Algorithm.

R2021b

4-28

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/algorithm-based-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ref/codereplacementtool.html#bui_r6i-1-Algorithm

Verification

Communication I/O information display during SIL or PIL simulation
Use the command-line configuration parameter SILPILVerboseOutput to specify the display of
communication I/O information during a software-in-the-loop (SIL) or processor-in-the-loop (PIL)
simulation. For more information, see Troubleshooting Host-Target Communication.

Signal and state logging for SIL and PIL simulations
R2021b provides these software-in-the-loop (SIL) and processor-in-the-loop (PIL) enhancements:

• Logging of nonvirtual bus data for top-model and Model block simulations.
• Logging of signal and state data for the atomic subsystem workflow.

For information about current limitations, see SIL and PIL Limitations.

LDRA tool suite code coverage analysis
During software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulations, you can perform code
coverage analysis by using the third-party LDRA tool suite, version 9.8.4. Previously, version 9.4.6
was supported.

For the Third-party tool configuration parameter, the option LDRA Testbed is replaced by
LDRAcover or LDRA tool suite. For more information, see Configure Code Coverage with Third-
Party Tools.

 Verification

4-29

https://www.mathworks.com/help/releases/R2021b/ecoder/ug/target-connectivity-pil-api-components.html#mw_db080c82-9152-4493-afe7-ac73e7122bb3
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/configuring-a-sil-or-pil-simulation.html#bsf5v22_sep_bse8tf6
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/configuring-a-sil-or-pil-simulation.html#bsf5v22_sep_bse8tg7
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/configuring-a-sil-or-pil-simulation.html#bsf5v22_sep_mw_05535711-210d-4ab8-877b-9d7cf81fc779
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/sil-and-pil-simulation-limitations.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/code-coverage-in-sil-and-pil-simulations-1.html
https://www.mathworks.com/help/releases/R2021b/ecoder/ug/code-coverage-in-sil-and-pil-simulations-1.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2021b

4-30

https://www.mathworks.com/support/bugreports/

R2021a

Version: 7.6

New Features

Bug Fixes

Compatibility Considerations

5

Code Generation from MATLAB Code

Multiple signature for software-in-the-loop (SIL) and processor-in-the-
loop (PIL) execution
Starting from R2021a, you can generate static and dynamic libraries from multiple signatures of an
entry-point function. You can validate the generated multisignature libraries by using software-in-the-
loop (SIL) and processor-in-the-loop (PIL) execution.

For example, if you have an entry-point function myAdd, you can generate a multisignature SIL/PIL
MEX function. Set the code verification mode to SIL and generate the code by using this codegen
command:

cfg = coder.config('lib');
cfg.VerificationMode = "SIL";
codegen -config cfg myAdd -args {0,0} -args {int8(0),int8(0)} -report

This command generates a multisignature SIL MEX function myAdd_sil.mex. You can verify the
output of this function by providing different input values to the function.

myAdd_sil(3,4)

Starting SIL execution for 'myAdd'
 To terminate execution: clear myAdd_sil
ans =
 7

myAdd_sil(int8(3),int8(4))

ans =
 int8
 7

For more information, see Code Verification Through Software-in-the-Loop and Processor-in-the-Loop
Execution.

Reduction of violations for MISRA C++:2008 and AUTOSAR C++14
rules in generated code
In R2021a, the generated code has fewer violations of several rules in the required categories of
MISRA C++:2008 and AUTOSAR C++14 coding standards. Some of these rules are:

• for loops: MISRA C++:2008 Rule 6-5-4 (Polyspace Bug Finder), MISRA C++:2008 Rule
6-5-5 (Polyspace Bug Finder), MISRA C++:2008 Rule 6-5-6 (Polyspace Bug Finder), and
AUTOSAR C++14 Rule A6-5-2 (Polyspace Bug Finder)

• else-if statements: MISRA C++:2008 Rule 6-4-2 (Polyspace Bug Finder)
• Minimal scoping: MISRA C++:2008 Rule 3-4-1 (Polyspace Bug Finder)
• Casting: MISRA C++:2008 Rule 5-0-10 (Polyspace Bug Finder) and MISRA C++:2008 Rule

5-0-20 (Polyspace Bug Finder)
• Dead code: MISRA C++:2008 Rule 0-1-9 (Polyspace Bug Finder) and AUTOSAR C++14 Rule

A0-1-1 (Polyspace Bug Finder)

R2021a

5-2

https://www.mathworks.com/help/releases/R2021a/ecoder/ug/code-verification-through-software-in-the-loop-and-processor-in-the-loop-execution.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/code-verification-through-software-in-the-loop-and-processor-in-the-loop-execution.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/misrac2008rule654.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/misrac2008rule655.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/misrac2008rule655.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/misrac2008rule656.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/autosarc14rulea652.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/misrac2008rule642.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/misrac2008rule341.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/misrac2008rule5010.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/misrac2008rule5020.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/misrac2008rule5020.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/misrac2008rule019.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/autosarc14rulea011.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/autosarc14rulea011.html

• Namespaces: MISRA C++:2008 Rule 7-3-1 (Polyspace Bug Finder)

For more information on how to generate code that has improved MISRA and AUTOSAR compliance,
see Generate C/C++ Code with Improved MISRA Compliance.

Format generated code by using clang-format
Starting in R2021a, you can format the generated code by using an existing clang-format file or
have the code generator create a clang-format file. Set this option by creating a
coder.EmbeddedCodeConfig object and setting ClangFormatFile to Existing or Generate. By
default, this option is set to Generate, which creates a clang-format file for your build. If the
option is set to Existing and is unable to find the required file, the code generator uses a built-in
format specification file.

In R2021a, the CodeFormattingTool flag enables you to choose how to format the code. This flag
has these settings:

• Clang-format: The code generator formats your code by using clang-format.
• Auto: Uses an internal heuristic to determine if the generated code is formatted by clang-

format or a MathWorks formatting tool. To determine whether your code is formatted by clang-
format, in a coder.config object, set the Verbosity option to 'Verbose'.

• MathWorks: Causes the code generator to revert to the legacy code formatting setting.

The CodeFormattingTool setting is available for all configuration objects, namely
coder.EmbeddedCodeConfig, coder.CodeConfig, and coder.MexCodeConfig.

Compatibility Considerations
In R2021a, the default formatting of the generated code might change. If this causes issues in your
workflow, set the CodeFormattingTool under your configuration object as MathWorks.

 Code Generation from MATLAB Code

5-3

https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/misrac2008rule731.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/generate-cc-code-with-improved-misra-compliance.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.config.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.codeconfig.html
https://www.mathworks.com/help/releases/R2021a/coder/ref/coder.mexcodeconfig.html

Model Architecture and Design

Step entry-point functions generated for rate-based and concurrent
execution models declared in model.h
Starting in R2021a, in header file model.h, the code generator declares a step entry-point function
for each task in a model. Prior to R2021a:

• For rate-based models, placement of the entry-point step function declarations depended on the
setting of the model configuration parameter Generate an example main program. If you
cleared the parameter, the code generator placed the entry-point step function declarations in
private.h. If you selected the parameter, the code generator placed the entry-point step
function declarations in model.h.

• For a model configured for concurrent execution, the code generator declared the step entry-point
functions in header file private.h.

The R2021a code generator behavior improves code integration by making the step entry-point
function for each task accessible in model.h, regardless of the concurrency and Generate an
example main program configuration.

For more information about modeling styles and code generation, see Design Models for Generated
Embedded Code Deployment.

R2021a

5-4

https://www.mathworks.com/help/releases/R2021a/ecoder/ug/design-models-for-generated-embedded-code-deployment.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/design-models-for-generated-embedded-code-deployment.html

Code Interface Configuration and Integration

C++ class interface configuration by using a code mappings workflow
R2021a introduces interactive and programmatic code mappings workflows to configure the
generated C++ class interface from a Simulink model. You can use the Code Mappings editor or
programmatic interface to configure the following aspects of a C++ class interface:

• Class information – Class name & namespace
• Class member information – Class member access & visibility
• Class method information – Class method names & arguments

For more information, see Code Mappings editor, Interactively Configure C++ Interface, and
Programmatically Configure C++ Interface.

Compatibility Considerations
Previously, the configuration parameters Parameter visibility, Parameter access, External I/O
visibility, and External I/O and configuration dialog boxes enabled the configuration of generated C
++ class interfaces. The functionality of these parameters and accessibility of the dialog boxes is now
located in the Code Mappings editor.

The RTW.ModelCPPClass, RTW.ModelCPPArgsClass, and
RTW.getClassInterfaceSpecification classes and their associated methods are not
recommended. Replace usage of these functions with the coder.mapping.api.CodeMappingCPP
object.

Legacy models continue to be supported and automatically migrate into the code mappings
environment.

Instance specific parameter support for C++ class interfaces
R2021a supports the generation of a C++ class interface for a model with instance-specific
parameters. You can specify this behavior for a model by using the Code Mappings editor or
programmatic interface to configure model parameter arguments. For more information, see
Interactively Configure C++ Interface.

Auto data initialization for new storage classes
In the Embedded Coder Dictionary, when you create a storage class, the configuration options
available for the Data Initialization property are limited to Dynamic, Static, or None. You can
apply to signals and states only those storage classes that have dynamic initialization. You can apply
to parameters only those storage classes that have static initialization. In R2021a, the default data
initialization setting for a new storage class is Auto. With this setting, you can apply the same
storage class to signals, states, and parameters. The generated code statically initializes parameter
data and dynamically initializes signal and state data.

For more information, see Embedded Coder Dictionary.

 Code Interface Configuration and Integration

5-5

https://www.mathworks.com/help/releases/R2021a/ecoder/ref/codemappingsceditor.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/interactively-configure-cpp-interface.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/programmatically-configure-cpp-interface.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/interactively-configure-cpp-interface.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/embeddedcoderdictionary.html

Dimension preservation of multidimensional arrays for Simulink.Bus
object
In R2020b, when the model configuration parameter Array layout was set to Row-major, you could
preserve dimensions for data elements in the model by configuring storage classes with the Preserve
array dimensions property. This specification did not apply to elements in the Simulink.Bus
object.

In R2021a, when the model configuration parameter Array layout is set to Row-major, you can
preserve dimensions of the elements in the Simulink.Bus object by using either of these methods:

• In the Simulink Bus Editor, select the Preserve element dimensions property.
• In the MATLAB interface, specify the PreserveElementDimensions property. For example:

MyBus = Simulink.Bus
MyBus.PreserveElementDimensions = 1

This property does not affect scalar or vector bus elements.

For more information, see Preserve Dimensions of Bus Elements in Generated Code.

Calibration file generation
Starting in R2021a, you can generate multiple versions (including latest version 1.7) of an A2L file
according to the ASAM ASAP2 standard. The new tool enables you to customize the A2L file. For
example you can include or exclude comments, include the name of the A2L file, and include the
location where to save the A2L file.

Using the Generate Calibration Files tool, you can generate a CDFX file according to the ASAM
CDF (Calibration Data Format) standard that contains the description of tunable model parameters
values and the associated metadata.

For more information, see Generate ASAP2 and CDF Calibration Files.

Code configuration for data dictionary defaults
Using the CoderDictionary object, you can now query and set the code settings of dictionary
defaults in an Embedded Coder dictionary within a Simulink data dictionary. For more information,
see coder.mapping.api.CoderDictionary.

ASAP2 system target file being removed
Warns

Support for the asap2.tlc system target file will be removed in a future release. Starting in R2021a,
use the Generate Calibration Files tool to generate ASAP2 files. For more information, see
Generate ASAP2 and CDF Calibration Files.

Functionality being removed or changed

R2021a

5-6

https://www.mathworks.com/help/releases/R2021a/simulink/slref/simulink.bus.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/preserve-dimensions-of-bus-elements-in-generated-code.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/asap2-cdf-calibration.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/coder.mapping.api.coderdictionary.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/asap2-cdf-calibration.html

Functionality Result Use Instead Compatibility
Considerations

Advanced model
configuration
parameters for applying
memory sections to data
and functions:
Package, Refresh
package list,
Initialize/Terminate,
Execution, Shared
utility, Constants,
Inputs/Outputs,
Internal data,
Parameters, and
Validation results

Parameters have been
removed.

Use the Code Mappings
editor or code mappings
programmatic interface
to configure memory
sections for data and
functions. See
Migration of Memory
Section and Shared
Utility Settings from
Configuration
Parameters to Code
Mappings and Control
Data and Function
Placement in Memory
by Inserting Pragmas.

Adjust scripts so that
they use the code
mappings programmatic
interface. See C Data
and Function
Configuration.

Shared utilities
identifier format
model configuration
parameter

Parameter has been
removed.

Use the Code Mappings
editor to configure
naming rules for shared
utility functions. See
Migration of Memory
Section and Shared
Utility Settings from
Configuration
Parameters to Code
Mappings and
Configure C Code
Generation for Model
Entry-Point Functions.

Adjust scripts so that
they use the code
mappings programmatic
interface. See C Data
and Function
Configuration.

ASAP2 interface
model configuration
parameter

Parameter has been
removed.

Use the Generate
Calibration Files tool
to generate ASAP2
related code and ASAP2
file. See Generate
ASAP2 and CDF
Calibration Files.

Use the
coder.asap2.export
function to generate
ASAP2 file. See
coder.asap2.export.

 Code Interface Configuration and Integration

5-7

https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/control-data-and-function-placement-in-memory-by-inserting-pragmas.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/control-data-and-function-placement-in-memory-by-inserting-pragmas.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/control-data-and-function-placement-in-memory-by-inserting-pragmas.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/control-data-and-function-placement-in-memory-by-inserting-pragmas.html
https://www.mathworks.com/help/releases/R2021a/ecoder/data-and-function-configuration.html
https://www.mathworks.com/help/releases/R2021a/ecoder/data-and-function-configuration.html
https://www.mathworks.com/help/releases/R2021a/ecoder/data-and-function-configuration.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/configure-c-code-generation-for-model-entry-point-functions.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/configure-c-code-generation-for-model-entry-point-functions.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/configure-c-code-generation-for-model-entry-point-functions.html
https://www.mathworks.com/help/releases/R2021a/ecoder/data-and-function-configuration.html
https://www.mathworks.com/help/releases/R2021a/ecoder/data-and-function-configuration.html
https://www.mathworks.com/help/releases/R2021a/ecoder/data-and-function-configuration.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/asap2-cdf-calibration.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/asap2-cdf-calibration.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/asap2-cdf-calibration.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/coder.asap2.export.html

Code Generation

Enhanced generated code to reduce MISRA C:2012 Rule 12.2
violations
In R2021a, the code generator produces code that reduces some violations of the MISRA C:2012 Rule
12.2. For more information, see MISRA C:2012 Rule 12.2 (Polyspace Code Prover).

Removal of typedef from C++ struct definitions
In R2020b, the code generator included the typedef keyword in C++ struct definitions. For
example:

 // External inputs (root inport signals with default storage)
 typedef struct {
 real_T In1; // '<Root>/In1'
 real_T In2; // '<Root>/In2'
 real_T In3; // '<Root>/In3'
 real_T In4; // '<Root>/In4'
 } ExternalInputs;

In R2021a, the code generator removes the typedef keyword in struct definitions to make the C++
generated code compliant with the AUTOSAR C++ 14 rule A7-1-6. For example:

 // External inputs (root inport signals with default storage)
 struct ExternalInputs {
 real_T In1; // '<Root>/In1'
 real_T In2; // '<Root>/In2'
 real_T In3; // '<Root>/In3'
 real_T In4; // '<Root>/In4'
 };

The typedef keyword is removed from struct definitions in model.h and model_types.h files. The
generated code reduces some violations of the AUTOSAR C++14 Rule A7-1-6 (Polyspace Bug Finder).

Some struct definitions in the _sharedutils folder, such as rtwtypes.h and alias definitions that
use typedef, are not affected. Shared bus types are affected.

Braced variable initialization for C++ 11 library
In R2020b, during C++ code generation, the code generator initialized local and global variables by
using assignment operator (=) and braces { }. For example:

real_T const_val[4] = { 1.0, 2.0, 3.0, 4.0 } ;

In R2021a, to make the C++ generated code compliant with AUTOSAR C++ 14, the code generator
initializes local and global variables in braces { }. For example:

real_T const_val[4]{ 1.0, 2.0, 3.0, 4.0 } ;

When you set Language as C++ and Standard math library as C++11 (ISO), the code generator
enables braced initialization. The generated code reduces most violations of the AUTOSAR C++14
Rule A8-5-2 (Polyspace Bug Finder).

R2021a

5-8

https://www.mathworks.com/help/releases/R2021a/codeprover/ref/misrac2012rule12.2.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/autosarc14rulea716.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/autosarc14rulea852.html
https://www.mathworks.com/help/releases/R2021a/bugfinder/ref/autosarc14rulea852.html

Code generation and SIL or PIL simulations for protected models from
R2018b and later releases
Previously, code generation and SIL or PIL simulations for protected models from R2018b and later
releases were supported for these system target file types:

• ERT
• ERT-based
• AUTOSAR Classic
• GRT (Embedded Coder required)

R2021a extends the support to GRT-based system target files. For more information, see Use
Protected Models from Previous Releases to Perform SIL Testing and Generate Code.

 Code Generation

5-9

https://www.mathworks.com/help/releases/R2021a/ecoder/ug/use-protected-models-from-previous-releases-to-generate-code-and-perform-sil-testing.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/use-protected-models-from-previous-releases-to-generate-code-and-perform-sil-testing.html

Performance

Code execution profiling information in Code view
In R2021a, when you run your model in the SIL/PIL Manager app, you can view code execution
profiling information in the Code view. To collect execution-time metrics, in the Configuration
Parameters dialog box, select Measure task execution time and set Measure function execution
times to Coarse or Detailed. Simulate the model in simulation-in-the-loop (SIL) mode or processor-
in-the-loop (PIL) mode.

The code execution profiling information is displayed in the Code view. To view execution profiling
details for a function call, place your cursor over the function call in the Code view. You can still
access the code execution profiling information in the Profiling display and in the code execution
profiling report. For more information, see View and Compare Code Execution Times.

Visualization of task scheduling
If you enable code execution profiling for a software-in-the-loop (SIL) or processor-in-the-loop (PIL)
simulation, you can use the Simulation Data Inspector to visualize task scheduling and the order of
function calls. At the end of the SIL or PIL simulation, perform one of these actions:

• Run the schedule function.
• From the SIL/PIL tab, in the Results gallery, click Generate Schedule.

For more information, see Visualize Task Scheduling and Analyze Results and Export Test Cases.

Removal of instrumentation overhead from execution-time profiling
by using target package
To improve execution-time profiling of generated code that is run on deterministic hardware, you can
run a processor-in-the-loop (PIL) simulation that discards the time overhead introduced by the code
instrumentation. In R2021a, with the target package, you can:

• Use the target hardware to estimate the average overhead value.
• Specify the value manually.

R2021a provides these new classes:

• target.ProfilingTaskOverhead
• target.ProfilingFunctionOverhead
• target.ProfilingFreezingOverhead

The target.Processor class has a new property, Overheads.

For more information, see Remove Instrumentation Overheads from Execution Time Measurements.

R2021a

5-10

https://www.mathworks.com/help/releases/R2021a/ecoder/ug/view-and-compare-code-execution-times.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/coder.profile.executiontime.schedule.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/coder.profile.executiontime.schedule.html#mw_0aee7c1f-cd78-4bc5-b44c-be360a9dfdf8
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/verification-workflow-with-silpil-manager.html#mw_5215bada-01ef-4e80-9942-c366e57389c3
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/target.profilingtaskoverhead-class.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/target.profilingfunctionoverhead-class.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/target.profilingfreezingoverhead-class.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/target.processor-class.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/remove-instrumentation-overhead-from-execution-time-measurements.html

Enhanced code for models containing mask blocks or Data Store
Memory blocks
Embedded Coder now generates code that improves code quality for the models containing mask
blocks or Data Store Memory blocks. For example, one change you might see is the addition of const
qualifiers for read-only variables.

Compatibility Considerations
In R2021a, the function arguments in the generated code are reordered.

Consider this model.

In R2020b, the mdstore_A1 function contained this code:

void mdstore_A1(const real_T rtu_In1[7], real_T rty_Out1[7], real_T *rty_Out2,
 DW_A0_mdstore2_T *localDW, real_T *rtd_b)
{
 int32_T i;
 ...

}

In R2021a, the mdstore_A1 function contains this code:

void mdstore_A1(const real_T rtu_In1[7], real_T rty_Out1[7], real_T *rty_Out2,
 const real_T *rtd_b, DW_A0_mdstore2_T *localDW)
{
 int32_T i;
 ...

}

GCC ARM Cortex-A code replacement library contains other ARM
libraries
Previously, when you selected an ARM Compatible device vendor and the ARM Cortex-A device type,
you could choose from these ARM code replacement libraries:

• ARM Cortex-A
• GCC ARM Cortex-A

 Performance

5-11

https://www.mathworks.com/help/simulink/ug/block-masks.html
https://www.mathworks.com/help/simulink/ug/block-masks.html
https://www.mathworks.com/help/simulink/slref/datastorememory.html

• Inlined ARM Neon Intrinsics

In R2021a, these three libraries are included in the GCC ARM Cortex-A code replacement library. As
a result, the more efficient entries that were in the Inlined ARM Neon Intrinsics library replace the
less efficient entries that were in the GCC ARM Cortex-A library in R2020b. These entries are for
matrix addition, subtraction, and element-wise multiplication operations. As a result, when you
specify a GCC ARM Cortex-A library in R2021a, the generated code contains fewer data copies and
wrapper functions for SIMD operations than it did in R2020b. If you have a DSP System Toolbox
Support Package for ARM Cortex-A Processors, the entries in the ARM Cortex-A library are also
included in the GCC ARM Cortex-A library. For more information, see Code replacement libraries and
What Is Code Replacement?.

Multithreading capabilities for more Image Processing Toolbox
functions
In R2021a, if you use a compiler that supports the Open Multiprocessing (OpenMP) application
interface, you can generate multithreaded C/C++ functions for some Image Processing Toolbox
functions that are included in MATLAB code or in Simulink models with MATLAB Function blocks or
MATLAB System blocks. This enhancement improves the function execution speed.

To enable multithreading, select the configuration parameters Specify custom optimizations and
Generate parallel for loops.

The new optimized functions that have multithreading capabilities are:

• bwlabel
• houghpeaks
• otsuthresh
• bwareaopen
• bwboundaries
• imbilatfilt

The code generator generates multithreaded code for the houghpeaks function only when the
function takes a large Hough transform matrix as an input.

In R2020b, the code generator produced this C code snippet for a MATLAB function containing an
image processing function bwlabel:

...
for (lastRunOnPreviousColumn = 0; lastRunOnPreviousColumn < 1024;
 lastRunOnPreviousColumn++) {
 firstRunOnPreviousColumn = lastRunOnPreviousColumn << 10;
 if (img[firstRunOnPreviousColumn]) {
 numRuns++;
}
 for (k = 0; k < 1023; k++) {
 runCounter = k + firstRunOnPreviousColumn;
 if (img[runCounter + 1] && (!img[runCounter])) {
 numRuns++;
 }
 }}...

The loop executed sequentially.

R2021a

5-12

https://www.mathworks.com/help/releases/R2021a/rtw/ref/code-replacement-library-embedded-coder.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/what-is-code-replacement-mc.html

In R2021a, the code generator produces this code snippet:

...
#pragma omp parallel for \
 num_threads(omp_get_max_threads()) \
 private(rootj,b_c,label,c_tmp,L_tmp,x,c_c,d1,r,i1,i2,exitg1,i3) \
 firstprivate(guard1)
 for (thread = 0; thread < 8; thread++) {
 c_tmp = (thread << 7) + 1;
 L_tmp = (thread + 1) << 7;
 chunksSizeAndLabels[c_tmp - 1] = L_tmp + 1;
 x = (int)ceil(((double)c_tmp - 1.0) * 1024.0 / 2.0);
 label = (double)x + 1.0;
 L_tmp -= c_tmp;
 for (c_c = 0; c_c <= L_tmp; c_c++) {
 b_c = c_tmp + c_c;
 for (r = 0; r < 1024; r++){
.... }}}

The generated code has the pragma for OpenMP (Open Multiprocessing) before the body of the loop.
OpenMP enables shared-memory and multicore platforms to execute loops in parallel. This parallel
execution improves the execution speed of the generated code. For more information, see Speed Up
for-Loop Implementation in Code Generated by Using parfor and Algorithm Acceleration Using
Parallel for-Loops (parfor).

Improved cache performance of generated code containing
distributed loop nests
In R2020b, for some modeling patterns, the generated code contained nested for-loops that caused
cache misses. In R2021a, when possible, you can generate optimized code containing distributed
perfect loop nests that can interchange the order of loop execution. This loop interchange lowers
cache misses by accessing data from a single cache block, which can improve the execution speed of
the generated code.

Consider the model matrix_mux that has a MATLAB Function block.

The MATLAB Function block contains code that performs matrix multiplication of the two input
matrices of dimension [1200x1600] and [1600x2400]:

function out = MatLabFun(A, B)
out = A * B;
end

In R2020b, the code generator produced this code:
/* Model step function */
void matrix_mux_step(void)
{
 int32_T i;

 Performance

5-13

https://www.mathworks.com/help/releases/R2021a/ecoder/ug/Speed-Up-for-loop-implementation-in-the-Code-Generated-using-parfor.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/Speed-Up-for-loop-implementation-in-the-Code-Generated-using-parfor.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html
https://www.mathworks.com/help/releases/R2021a/coder/ug/acceleration-of-matlab-algorithms-using-parallel-for-loops-parfor.html

 int32_T i_0;
 int32_T i_1;
 int32_T out_tmp;

 /* Outport: '<Root>/out' incorporates:
 * Inport: '<Root>/A'
 * Inport: '<Root>/B'
 */
 for (i_0 = 0; i_0 < 2400; i_0++) {
 for (i = 0; i < 1200; i++) {
 out_tmp = i + 1200 * i_0;
 rtY.out[out_tmp] = 0.0F;
 for (i_1 = 0; i_1 < 1600; i_1++) {
 rtY.out[out_tmp] += rtU.A[1200 * i_1 + i] * rtU.B_n[1600 * i_0 + i_1];
 }
 }
}

The generated nested loop performed matrix multiplication by evaluating the iteration variable i_1
in the innermost loop of the generated code.

In R2021a, the code generator produces this code:
/* Model step function */
void matrix_mux_step(void)
{
 int32_T i;
 int32_T i_0;
 int32_T i_1;
 int32_T out_tmp;

 /* Outport: '<Root>/out' incorporates:
 * Inport: '<Root>/A'
 * Inport: '<Root>/B'
 */
 for (i_0 = 0; i_0 < 2400; i_0++) {
 memset(&rtY.out[i_0 * 1200], 0, 1200U * sizeof(real32_T));
 }

 for (i_0 = 0; i_0 < 2400; i_0++) {
 for (i_1 = 0; i_1 < 1600; i_1++) {
 for (i = 0; i < 1200; i++) {
 out_tmp = 1200 * i_0 + i;
 rtY.out[out_tmp] += rtU.A[1200 * i_1 + i] * rtU.B_n[1600 * i_0 + i_1];
 }
 }
}

The generated code contains a distributed perfect loop nest. Compared to the previously generated
code, the nested loop changes the execution order of the loops. It performs matrix multiplication by
evaluating the iteration variable i in the innermost loop of the generated code, allowing a sequential
access of the memory that reduces cache misses. This optimization can improve the execution speed
of the generated code. You can calculate the cache miss rate by dividing the total cache miss number
with the total number of memories requested over a time interval and then expressing the ratio in a
percentage. In R2021a, when the code generation target hardware is Intel x86-64 (Linux 64),
the following optimization of cache-misses for the matrix_mux model are observed:

• The level-1 data read miss rate is reduced approximately from 53% to 16%.
• The level-1 data write miss rate is reduced approximately from 41% to 0.01%.

In this observed case, these configurations are used:

• The configuration parameter Build Configuration is set to Faster Runs.
• The parameter Array layout is set to Column-major.

R2021a

5-14

Improved expression folding in generated code
In R2021a, for some modeling patterns, you can generate optimized code that folds expressions that
reuse input variables of the expressions to hold the computed output results. This optimization
reduces data copies in the generated code. The parameter Eliminate superfluous local variables
(expression folding) enables this optimization.

Consider the model mSquarePowExprFolding.

In R2020b, the code generator produced this code:

void mSquarePowExprFolding_step(void)
{
 real_T rtb_Product;
 int32_T i;
 for (i = 0; i < 100; i++) {
 rtb_Product = fmax(rtU.In1[i], 0.0) / 700.12;
 rtb_Product = rtb_Product * rtb_Product / 5.0;
 rtb_Product *= rtb_Product + 1.0;
 rtY.Out1[i] = rt_powd_snf(rtb_Product, 3.5);
 }

The generated code contained a separate expression for the operation where the variable
rtb_Product was used as an input and output variable.

In R2021a, the code generator produces this code:

void mSquarePowExprFolding_step(void)
{
 real_T rtb_Product;
 int32_T i;
 for (i = 0; i < 100; i++) {
 rtb_Product = fmax(rtU.In1[i], 0.0) / 700.12;
 rtb_Product = rtb_Product * rtb_Product / 5.0;
 rtY.Out1[i] = rt_powd_snf((rtb_Product + 1.0) * rtb_Product, 3.5);
 }

The generated code does not contain the expression. The bolded code line folds the expression,
computes the output, and stores it directly in the output structure field rtY.Out1[i]. For more
information, see Minimize Computations and Storage for Intermediate Results at Block Outputs.

 Performance

5-15

https://www.mathworks.com/help/releases/R2021a/ecoder/ug/minimizing-computations-and-storage-for-intermediate-results.html

Improved root outport buffer reuse to reduce data copies
In R2021a, the generated code contains fewer data copies for models containing root outport blocks
that directly connect to one of these blocks:

• Referenced model that is configured to use the same buffer for input ports and output ports. For
more information, see Configure Name and Arguments for Individual Step Functions.

• MATLAB Function block with inplace (that is, use the same input and output variable)
specification. For more information, see Specify Buffer Reuse for MATLAB Function Blocks in a
Path.

• Unit Delay block.

Eliminating redundant data copies conserves RAM and ROM consumption and improves execution
speed.

Consider the model mdl_ReuseOutport that contains a referenced model mdl_ReuseOutport_ref
connected to a root outport block.

The referenced model mdl_RootOutport_ref is configured to use the same buffer for In1 and
Out1.

In R2020b, the code generator produced this code:

/* Model step function */
void mdl_ReuseOutport_step(void)
{
 Bus1 rtb_Switch;
 /* Switch: '<Root>/Switch' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 * Inport: '<Root>/In3'
*/
 if (rtU.In3) {
 rtb_Switch = rtU.In1;}
 else {
 rtb_Switch = rtU.In2;
}
/* End of Switch: '<Root>/Switch' */
/* Outport: '<Root>/Out1' incorporates:
* ModelReference: '<Root>/Model'
* Switch: '<Root>/Switch'
*/
 rtY.Out1 = rtb_Switch;

R2021a

5-16

https://www.mathworks.com/help/releases/R2021a/ecoder/ug/configure-c-code-generation-for-model-entry-point-functions.html#mw_6f25ec45-7299-4d8a-a2b9-0b0cbdb89cd4
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/specify-buffer-reuse-for-matlab-function-blocks-in-a-path.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/specify-buffer-reuse-for-matlab-function-blocks-in-a-path.html

 /* ModelReference: '<Root>/Model' incorporates:
 * Inport: '<Root>/In4'
 * Outport: '<Root>/Out1'
 */
 mdl_RootOutport_ref_step(&Model, &rtU.In4[0], &rtY.Out1);
}

The generated code contained unnecessary data copy to the local variable rtb_Switch.

In R2021a, the code generator produces this code:

/* Model step function */
void mdl_ReuseOutport_step(void)
{
 /* Switch: '<Root>/Switch' incorporates:
 * Inport: '<Root>/In3'
*/
 if (rtU.In3) {
 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/In1'
 */
 rtY.Out1 = rtU.In1;}
 else {
 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/In2'
 */
 rtY.Out1 = rtU.In2;
}
 /* End of Switch: '<Root>/Switch' */
 /* ModelReference: '<Root>/Model' incorporates:
 * Inport: '<Root>/In4'
 * Outport: '<Root>/Out1'
 */
 mdl_RootOutport_ref_step(&Model, &rtU.In4[0], &rtY.Out1);
}

The code generator does not generate the local variable rtb_Switch to hold the output of the Switch
block. Instead, it stores the Switch block output in the root outport structure field rtY.out1.

Reduced data copies for blocks with bus inputs and outputs
In R2021a, the generated code contains fewer data copies for some modeling patterns in which a
block has a bus data type as an input and output. For example, the model
mBusInSimulinkFunctionBlock contains a Simulink Function block that takes a bus signal as an
input and performs an in-place operation on the bus defined by the function foo.

 Performance

5-17

R2020b Generated Code R2021a Generated Code
void foo(Bus2 *rtuy_y)
{
 Bus2 rtb_BusCreator;
 rtb_BusCreator = *rtuy_y;
 rtb_BusCreator.b = rtuy_y->b << 1;
 rtb_BusCreator.h = (int8_T)(rtuy_y->h << 1);
 *rtuy_y = rtb_BusCreator;
}

void foo(Bus2 *rtuy_y)
{
 rtuy_y->b <<= 1;
 rtuy_y->h <<= 1;
}

In R2020b, the generated code contained data copies to the local rtb_BusCreator struct. In
R2021a, those data copies are eliminated. The left-shift operation occurs in place reducing RAM
consumption.

R2021a

5-18

Verification

PIL target connectivity with debugger
You can use your debugger to provide processor-in-the-loop (PIL) connectivity for target hardware
that your debugger supports. Implement a target.DebugIOTool debugger abstraction interface
that removes the need for custom rtiostream functionality. To register the interface with MATLAB,
use the target.create, target.get, and target.add functions.

R2021a provides these new classes:

• target.ApplicationStatus
• target.Breakpoint
• target.DebugIOTool
• target.ExecutionService
• target.ExecutionTool
• target.MATLABDependencies

For more information, see Set Up PIL Connectivity by Using target Package.

Unit-tests for generated code from subsystems within code from
parent model
If you have a model that contains atomic subsystems, you can use Simulink Test and the SIL/PIL
Manager to perform unit tests on code generated from the subsystems. For each atomic subsystem,
you can:

• Create a test harness and run back-to-back simulations that test numerical equivalence between
the model subsystem and its generated code.

• Export the equivalence test to Simulink Test.
• Analyze code coverage by using Simulink Coverage™.

For more information, see:

• Choose a SIL or PIL Approach
• Test Atomic Subsystem Generated Code
• Atomic Subsystem Workflow Limitations

Code view in SIL/PIL Manager
At the end of a software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation, the SIL/PIL
Manager displays generated code in the Code view, which enables you to:

• Analyze generated code.
• See code metrics.
• Trace between model elements and generated code.

For more information, see:

 Verification

5-19

https://www.mathworks.com/help/releases/R2021a/ecoder/ref/target.applicationstatus-class.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/target.breakpoint-class.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/target.debugiotool-class.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/target.executionservice-class.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/target.executiontool-class.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/target.matlabdependencies-class.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/set-up-pil-target-connectivity-by-using-target-package.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/choosing-a-sil-or-pil-approach.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/configuring-a-sil-or-pil-simulation.html#bsf5v22_sep_mw_05535711-210d-4ab8-877b-9d7cf81fc779
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/sil-and-pil-simulation-limitations.html#mw_c2df65a1-0ff6-4e0c-bf61-84b4fe327b4b

• Analyze Results and Export Test Cases
• SIL/PIL Manager
• Run SIL Simulation That Generates Execution-Time Metrics

R2021a

5-20

https://www.mathworks.com/help/releases/R2021a/ecoder/ug/verification-workflow-with-silpil-manager.html#mw_5215bada-01ef-4e80-9942-c366e57389c3
https://www.mathworks.com/help/releases/R2021a/ecoder/ref/silpilmanager-app.html
https://www.mathworks.com/help/releases/R2021a/ecoder/ug/view-and-compare-code-execution-times.html#mw_397eac9d-79a4-476c-871f-d0ab9dc8ef28

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

5-21

https://www.mathworks.com/support/bugreports/

R2020b

Version: 7.5

New Features

Bug Fixes

Compatibility Considerations

6

Model Architecture and Design

Determine programmatically if model or data dictionary contains
Embedded Coder Dictionary
In R2020b, you can programmatically determine if a model or Simulink data dictionary contains an
Embedded Coder Dictionary by using the new function coder.dictionary.exist.

Symbolic dimension inputs for Add, Subtract, Sum of Elements, and
Sum blocks
Previously, you could not generate code by using symbolic dimensions as inputs for Add, Subtract,
Sum of Elements, and Sum blocks when the block parameter Sum over was specified as Specified
dimension. The code generator produced an error.

In R2020b, you can generate code by using symbolic dimensions as inputs for Add, Subtract, Sum of
Elements, and Sum blocks when the block parameter Sum over is Specified dimension. You can
use symbolic dimensions to set constraints for signal dimensions and as block parameters for Add,
Subtract, Sum of Elements, and Sum blocks. For more information, see Implement Dimension
Variants for Array Sizes in Generated Code.

Improved readability for preprocessor conditionals in generated code
You can generate code from models containing one or more variant choices. The generated code
contains preprocessor conditionals that control the activation of each variant choice.

In R2020a, the generated code for variant systems and variant subsystems had consecutive
preprocessor conditionals with the same condition, resulting in redundant #if conditions.

For example, the inner condition #if isfoo was executed only when the outer condition #if isfoo
&& isbar was true. The inner condition #if isfoo was a redundant condition.

real_T rtb_Merge;
real_T rtb_VariantMerge_For_Variant_So;
#if isfoo && isbar
 #if isfoo
 rtb_Merge = mMergeLocalize_P.Constant1_Value;
 #endif
#endif
#if isfoo
 rtb_VariantMerge_For_Variant_So = rtb_Merge;
#endif

In R2020b, the generated code for variant systems and variant subsystems does not contain the
redundant #if conditions that are implied as true. This optimization improves the readability and
efficiency of the generated code.

For example:

real_T rtb_Merge;
real_T rtb_VariantMerge_For_Variant_So;
#if isfoo && isbar

R2020b

6-2

https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.dictionary.exist.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html

 rtb_Merge = mMergeLocalize_P.Constant1_Value;
#endif
#if isfoo
 rtb_VariantMerge_For_Variant_So = rtb_Merge;
#endif

The code generator cannot optimize all instances of redundant preprocessor conditionals for better
readability and code efficiency.

Memory section configurations for atomic subsystems
Previously, to override a memory section for an atomic subsystem, you had to use the model
configuration parameter MemSecPackage in the MATLAB Command Window.

In R2020b, you can select the memory sections from built-in packages that you load in the Embedded
Coder Dictionary by using these subsystem block parameters:

• Memory section for initialize/terminate functions
• Memory section for execution functions
• Memory section for constants
• Memory section for internal data
• Memory section for parameters

You cannot select a memory section that you newly define in the Embedded Coder Dictionary. For
more information, see Override Memory Section for Atomic Subsystem.

 Model Architecture and Design

6-3

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/control-data-and-function-placement-in-memory-by-inserting-pragmas.html#mw_2cafc0af-c99b-4336-84bd-ae46168dd01f

Code Interface Configuration and Integration

Streamlined model data configuration for code generation
R2020b simplifies how you configure individual model data elements, such as block data and signal
lines, for code generation. R2018a introduced the Code Mappings editor and an API for specifying
default code generation configurations for categories of data elements across a model. Starting in
R2020b, without affecting your model design configuration, from the Code Mappings editor, you can
configure default settings for categories of data. Then, override those settings for code generation, as
needed, for specific data elements. When producing code for data, the code generator uses storage
classes that you specify to determine properties, such as whether the data is structured, naming rules
for definition and header files, and whether the data is placed in a memory section.

Use the Code Mappings editor to map an individual model data element to:

• Auto, which specifies that the code generator use heuristics and model configuration parameter
settings (for example, Default parameter behavior) to determine how to best represent the data
element in the generated code. When possible, the code generator omits data from the code.

• A default storage class to indicate use of the specified default for the corresponding data element
category (for example, inports, model parameters, signals, and local data stores).

• Predefined storage classes, such as ExportedGlobal and storage classes available in the
Simulink package, and storage classes that you define.

When you specify a storage class in the Code Mappings editor, you can view and set relevant storage
class properties in the Property Inspector, which also opens in the coder app. For example, for a
storage class other than Auto that you specify for an individual data element, you specify a value for
the Identifier property to name an unnamed model data element (required) or override a model
name in the generated code for integration purposes.

Through code mappings, you can also associate a model with code configurations for multiple
platforms.

Platform System Target File Programming Language
C rapid prototyping GRT-based C
C production ERT-based C
AUTOSAR classic platform AUTOSAR C
AUTOSAR adaptive platform AUTOSAR Adaptive C++

Starting in R2020b, you can copy code mappings when you convert a subsystem to a referenced
model. See Copy Code Mappings When Converting Subsystems to Referenced Models (Simulink
Coder).

For more information, see C Code Generation Configuration for Model Interface Elements, Code
Definition and Mapping Limitations and Considerations, Code Mappings Editor, and
coder.mapping.api.CodeMapping.

For more information on preserving dimensions for individual modeling elements, see the release
note “Dimension preservation of multidimensional arrays for individual model elements” on page 6-
5.

R2020b

6-4

https://www.mathworks.com/help/releases/R2020b/rtw/ug/code-definition-and-mapping-limitations-and-considerations.html#mw_630c36b7-aa81-4f97-a8ad-f05d6b3559b8
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/code-definition-and-mapping-limitations-and-considerations.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/code-definition-and-mapping-limitations-and-considerations.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.api.codemapping.html

Migration of Preexisting Models

When you open a model created in a previous release, Simulink migrates data configured for code
generation within the blocks and signal lines of a model to the Code Mappings editor. Data configured
for code generation within a model includes data represented by:

• Inport blocks
• Outport blocks
• Signal lines
• Block states
• Data stores
• Parameter objects in the model workspace

Simulink does not migrate data that is configured for code generation in external sources, such as the
base workspace or a data dictionary.

For information about code mappings, see C Code Generation Configuration for Model Interface
Elements, Code Mappings Editor, and coder.mapping.api.CodeMapping. For information on
specifying code mappings for AUTOSAR applications, see AUTOSAR Component Configuration
(AUTOSAR Blockset).

Compatibility Considerations
The code mappings interfaces for configuring data are compatible with common data configuration
scenarios in previous releases of Embedded Coder software.

You can work around many of the incompatibilities by developing MATLAB scripts to run in
Embedded Coder. For more information, see “Functionality being removed or changed” on page 6-
6 and Migration of Model Data Configurations to Code Mappings.

Dimension preservation of multidimensional arrays for individual
model elements
In R2020a, when the model configuration parameter Array layout was set to Row-major, you could
preserve dimensions for individual model data elements by using the Model Data Editor.

In R2020b, when the model configuration parameter Array layout is set to Row-major, you can
preserve dimensions of multidimensional arrays for individual model data elements by using the new
tabs in the Code Mappings editor such as Inports, Outports, Parameters, Data Stores, and
Signals/States.

You can also preserve dimensions for:

• mpt.Paramater objects.
• Signal objects, when you apply a custom package to the signal object and rename the storage

class that supports dimension preservation.

For more information, see Preserve Dimensions of Multidimensional Arrays in Generated Code.

 Code Interface Configuration and Integration

6-5

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.api.codemapping.html
https://www.mathworks.com/help/releases/R2020b/autosar/ug/autosar-interface-configuration.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/preserve-dimensions-of-multidimensional-arrays-in-generated-code.html

Custom data type configuration and modification
For custom data types, such as Simulink.AliasType object, that have the Data scope specified as
Imported and that have Header file properties, you can configure the generated code to import the
type definition from your external code. Previously, if you modified the custom data type and rebuilt
the model, the code generator produced an error.

In R2020b, if you modify the custom data type and the data type is not used by shared functions or
shared constants, the code generator does not produce an error. You can rebuild the model without
deleting the slprj folder. If the modified custom data type is used by shared functions or shared
constants, you have to rebuild the model after deleting the slprj folder.

For more information, see Control File Placement of Custom Data Types.

Functionality being removed or changed
The new code mappings interfaces streamline how you configure model data elements for code
generation. These interfaces introduce:

• Incompatibilities with uncommon data configuration scenarios from previous releases of
Embedded Coder software.

• Changes for the use of other Simulink interfaces for configuring data, such as the Model Data
Editor, the Model Explorer, and the Signal Properties dialog box.

Simulink interface changes for data configuration
Still runs

In R2020b, the Code Mappings editor is the primary location to configure model data elements for
code generation.

• In the Model Data Editor, the Code view has been removed. The editor does not display a Code
section in the Property Inspector.

• You can no longer configure code generation properties in the Signal Properties dialog box.
• For Simulink.Signal objects in the model workspace, you can no longer configure code

generation properties in the Model Explorer or in the property dialog box. To configure these
elements for code generation, use the Code Mappings editor or code mappings API.

• For data objects in the model workspace other than Simulink.Signal objects, where previously
you could configure code generation properties in the Model Explorer or in the property dialog
box, links or buttons take you to the Code Mappings editor instead.

• In the Model Explorer, in the Contents pane, click the Configure link in the Storage Class
column.

• In the Model Explorer Dialog pane and in the property dialog box, on the Code Generation
tab, click Configure in Coder App.

For more information see, C Code Generation Configuration for Model Interface Elements, Code
Mappings Editor, and coder.mapping.api.CodeMapping.

TypeQualifier property for built-in storage classes no longer used for data objects

You can no longer use the TypeQualifier property for built-in storage classes, such as
ExportedGlobal and ImportedExtern, with data associated with data objects because more

R2020b

6-6

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/specify-location-of-user-defined-type-definitions.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.api.codemapping.html

robust mechanisms are available for achieving the same results. In previous releases, when you
specified the property, the code generator added C qualifiers, such as const and volatile, to the
beginning of data declarations and definitions. You might have set this property as:

• CoderInfo.TypeQualifier property for data objects in a workspace or data dictionary
• Port parameter RTWStorageTypeQualifier
• Block parameter RTWStateStorageTypeQualifier for Data Store Memory, Discrete Filter,

Discrete State-Space, Discrete-Time Integrator, Discrete Transfer Fcn, Discrete Zero-Pole, and
Memory blocks

To address this change in an existing model that uses the TypeQualifier property for data objects,
open the model in a release before R2020b. Create and run a MATLAB script that loads the data for
the model from a workspace or data dictionary, finds data objects that have the TypeQualifier
property set to a nonempty string value, and changes the storage class setting to a storage class
predefined with the required type qualifier (for example, storage class Const includes qualifier
const in data declarations and definitions). For an example, see Migration of Model Data
Configurations to Code Mappings.

Starting in R2020b, use the Code Mappings editor or code mappings API to associate data elements
with a storage class that specifies a C qualifier (see Choose Storage Class for Controlling Data
Representation in Generated Code). If none of the available storage classes meets your application
requirements, define a new storage class by using the Embedded Coder Dictionary (see Define
Storage Classes, Memory Sections, and Function Templates for Software Architecture) . Then, use
the Code Mappings Editor or code mappings API (coder.mapping.api.CodeMapping) to
associate the model data to the new storage class.

Code configuration for parameter objects initialized in model workspace initialized from
external data sources moved to code mappings

Starting in R2020b, the code mappings interface enables you to associate a model with multiple code
generation configurations for data. When you load a model created in a previous release of Simulink
and the model workspace is initialized from an external data source, such as a MAT-file, Simulink
moves the code configuration for the parameter object to the code mappings for that model.

Once the configuration for data elements in a model has been converted to code mappings, use the
Code Mappings editor or the code mappings API to get and set parameter code configuration
settings. See C Code Generation Configuration for Model Interface Elements, Code Mappings
Editor, and coder.mapping.api.CodeMapping.

Copies of blocks or signal lines between models no longer include code configuration

Starting in R2020b, when you use the Simulink Editor to copy a block or signal line to another model,
Simulink does not copy the code configuration associated with the copied modeling element. The
contents of the Simulink.CoderInfo object for the copied modeling element is removed. This
change:

• Eliminates unnecessary copies of code configuration information for data configured within the
model.

• Supports unique code configuration of data elements for a model and its active system target file.
• Promotes reuse of modeling patterns across models that have different code configurations.

 Code Interface Configuration and Integration

6-7

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.api.codemapping.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.api.codemapping.html

To copy the code configuration information associated with a block or signal line, use the code
mappings API. For an example, see Migration of Model Data Configurations to Code Mappings. For
information about the API, see coder.mapping.api.CodeMapping.

Code configuration for data configured within a model removed for some types of models

Starting in R2020b, for a model created in a previous release, Simulink ignores the code
configuration for data elements for library models and models configured with an AUTOSAR system
target file. For library models, reconfigure code generation for data in the context of models that use
the library (see C Code Generation Configuration for Model Interface Elements). For AUTOSAR
models, see Map AUTOSAR Elements for Code Generation (AUTOSAR Blockset).

This change does not apply to data objects saved in the base workspace or a data dictionary.

To avoid losing the code configuration for data, in an earlier release, create and run a MATLAB script
that migrates the model to use external data objects. For an example, see Migration of Model Data
Configurations to Code Mappings.

Default (Custom) storage class removed

To prevent confusion with the concept of default code configurations that you can set up by using the
Code Mappings editor or code mappings API, you can no longer use the Default (Custom) storage
class for data configured within a model. The storage class is not recommended and will not be in a
future release for global data (data configured in the base workspace or a data dictionary).

For models created in R2020a or earlier, the storage class for a data element is set to Default
(Custom) when these conditions exist:

• The StorageClass property for the Simulink.CoderInfo object is set to Custom.
• The CustomStorageClass property for the Simulink.CoderInfo object is not modified or is

explicitly set to Default.

For an Outport block, signal line, block state, data store, or model workspace parameter set to
Default (Custom) , when you load the model, Simulink converts the storage class setting to
ExportedGlobal and displays a warning about the change. ExportedGlobal is equivalent to
Default (Custom).

Starting in R2020b, use the Code Mappings Editor or code mappings API to specify default code
generation configurations for categories of data elements. See C Code Generation Configuration for
Model Interface Elements, Code Mappings Editor, and coder.mapping.api.CodeMapping.

Changing between GRT-based and ERT-based system target file
Behavior change

Starting in R2020b, when you change the system target file setting for a model between a GRT-based
and ERT-based system target file, Simulink applies an alternative code configuration for each system
target file.

A change between system target files can occur if you:

• Alternate between the Simulink Coder and Embedded Coder app.
• Change the active configuration set for a model.

R2020b

6-8

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.api.codemapping.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/autosar/ug/map-model-elements-using-simulink-autosar-mapping-explorer.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/c-code-generation-configuration-for-model-interface-elements.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.api.codemapping.html

• Change the setting of model configuration parameter System target file.

It is a best practice to configure data differently for a model depending on whether you are
generating rapid-prototyping (GRT) or production (ERT) code. Simulink associates the code
configuration with the system target file so that you can set up multiple code configurations for a
model.

To copy code mappings when you switch system target files, create and run a MATLAB script that
uses the code mappings API to copy relevant code mappings. For an example, see Migration of Model
Data Configurations to Code Mappings. For information about the API, see
coder.mapping.api.CodeMapping.

Simulink.CoderInfo object Alignment property for data configured within a model removed

The Simulink.CoderInfo object property Alignment for data configured for code generation
within a model has been removed, including data represented by:

• Inport blocks
• Outport blocks
• Signal lines
• Block states
• Data stores
• Parameter objects in the model workspace

To use the Alignment property, represent data by using data objects outside of the model. For an
example, see Migration of Model Data Configurations to Code Mappings.

Code configuration for subsystem I/O interface within subsystem
Behavior change

Starting in R2020b, for individual subsystems from which you generate code and executable
programs by right-clicking the Subsystem block, to include signal data in the generated subsystem
code interface, configure the storage class and storage class properties for the subsystem input and
output signals within the subsystem. If you configure the signals outside of the subsystem, the
generated code does not include variables for the input and output interface data.

For more information, see Generate Code and Executables for Individual Subsystems.

Behavior change of Ignore custom storage classes parameter
Behavior change

In R2020a, when you selected the model configuration parameter Ignore custom storage classes
and configured predefined storage classes by using default mapping in the Code Mappings editor, the
code generator ignored the predefined storage class configuration and applied the Auto storage class
to the parameters.

In R2020b, when you select the model configuration parameter Ignore custom storage classes and
configure predefined storage classes by using default mapping in the Code Mappings editor, the code
generator does not ignore these storage class configurations:

• ExportedGlobal

 Code Interface Configuration and Integration

6-9

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.api.codemapping.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/migration-of-model-data-configuration-to-code-mappings.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/generate-code-and-executables-for-an-individual-subsystem.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/ignore-custom-storage-classes.html

• ImportedExtern
• ImportedExternPointer

Certain APIs for configuring code interfaces not recommended
Still runs

APIs listed in this table are not recommended.

C Function Interface Control C++ Class Interface Control C Function Default Mapping
(introduced in R2018a)

RTW.configSubsystemBuild RTW.configSubsystemBuild coder.mapping.create
RTW.getFunctionSpecifica
tion

RTW.getClassInterfaceSpe
cification

coder.mapping.defaults.g
et

RTW.ModelSpecificCProtot
ype

RTW.ModelCPPArgsClass coder.mapping.defaults.s
et

 RTW.ModelCPPClass
 RTW.ModelCPPDefaultClass

Starting in R2020b, use the new code mappings API. The new code mappings API:

• Provides one programming interface for configuration of default code generation settings for
categories of data and functions and individual data elements and functions.

• Supports multiple configuration mappings for a model.
• Eliminates the need to create data objects to configure model data elements for code generation.

For information about the new code mappings API, see coder.mapping.api.CodeMapping.

APIs for controlling data interfaces
Still runs

In R2020b, code generation information for model-owned data objects migrates from data objects to
the mapping infrastructure. This change might affect existing scripts that you use to manage the code
configuration for these data objects.

• You doo not need to uppdate scripts that use existing functions to interact with model-owned data
objects. When you get and set code generation information by using one of these functions, data
objects now communicate with the mapping to maintain the mapping as the single source for this
information. This information includes functions such as assignin, evalin, getVariable,
get_param, set_param, and isequal.

For example, these workflows do not require updates:

• Getting the handle of a data object in the model workspace.

mws = get_param('modelname', 'modelworkspace');
objHandle = mws.getVariable('Param');

• Evaluating an expression in the context of the model workspace.

mws.evalin("param=Simulink.Parameter; param.CoderInfo.StorageClass='ExportedGlobal';")

• Specifying code generation settings for a signal object stored on a port.

R2020b

6-10

https://www.mathworks.com/help/releases/R2020b/ecoder/ref/rtw.configsubsystembuild.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/rtw.configsubsystembuild.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.create.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/rtw.getfunctionspecification.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/rtw.getfunctionspecification.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/rtw.getclassinterfacespecification.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/rtw.getclassinterfacespecification.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.defaults.get.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.defaults.get.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/rtw.modelspecificcprototype-class.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/rtw.modelspecificcprototype-class.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/rtw.modelcppargsclass-class.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.defaults.set.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.defaults.set.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/rtw.modelcppclass-class.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/rtw.modelcppdefaultclass-class.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.api.codemapping.html

portHandles = get_param('blkPath', 'PortHandles');
get_param(portHandles.Outport, 'StorageClass');
set_param(portHandles.Outport, 'StorageClass', 'ExportedGlobal');

• Specifying code generation settings for a root outport block.

get_param('blkPath', 'StorageClass');
set_param('blkPath', 'StorageClass', 'ExportedGlobal');

• Comparing data objects.

p1 = Simulink.Parameter;
p1.CoderInfo.StorageClass = 'Custom';
p1.CoderInfo.CustomStorageClass = 'ExportToFile';
p2 = copy(p1);
isequal(p1, p2); % Returns true
p1.CoderInfo.StoragClass = 'ExportedGlobal';
isequal(p1, p2); % Returns false

• Previously, when you defined your own storage class to apply to model-owned data, you created it
in a data class package. A data object created from that package used only storage classes from
that package. In R2020b, these storage classes migrate from packages to the Embedded Coder
Dictionary. For existing functions, the storage classes available for model-owned data now come
from the coder dictionary and include not only storage classes from the data object package, but
storage classes from other packages and built-in storage classes. If you have multiple packages
that have been migrated into the coder dictionary, there is a potential for naming conflicts. In this
case, storage classes with the same name have the package name added as a suffix. If you use a
storage class that has this added suffix, you might need to update your script.

• The function copy can no longer copy the code generation properties of model-owned data
objects. You can instead use the new clone function to create a copy of an object with its code
generation properties. You can use the clone function to create a copy in the same workspace as
the source object.

You can still use existing command-line functions for configuring model-owned data objects, but it is
recommended that you use the new code mappings API instead. The code mappings API:

• Provides one programming interface for configuration of default code generation settings for
categories of data and individual data elements.

• Supports multiple configuration mappings for a model.
• Eliminates the need to create data objects to configure model data elements for code generation.

For information about the new code mappings API, see coder.mapping.api.CodeMapping.

 Code Interface Configuration and Integration

6-11

https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.mapping.api.codemapping.html

Code Generation

Static code metrics for C99 and C++ libraries
In R2020a, you could generate a static code metrics report when the code generation language was C
and the code contained the header files from the language version ISO®/IEC 9899:1990. In R2020b,
you can generate a static code metrics report when the code contains header files from the language
version ISO/IEC 9899:1999 also.

In R2020a, you could generate a static code metrics report when code generation language was C++
and the code contained no references to external header files. In R2020b, you can generate a static
code metrics report when the code contains standard header files from the language version ISO/IEC
14882:2011 also.

Code generation using multiple code replacement libraries
In R2020a, you could generate code by using only a single code replacement library. In R2020b, you
can generate code that has customizations and capabilities from multiple code replacement libraries.
Multiple Code Replacement libraries can be selected in a unified workflow so that the generated code
contains optimizations from varied code replacement libraries such as AUTOSAR 4.0 and Intel
SSE. You can also select your own custom code replacement libraries along with shipped libraries to
further optimize the generated code. For more information, see Optimize Generate Code by Using
Multiple Code Replacement Libraries.

Compatibility Considerations
Before R2020b R2020b
When registering a code replacement library, a
comma was permitted in the code replacement
library name.

Comma cannot be used in the code replacement
library name.

When the CodeReplacementLibrary specifies
a standard math library, for instance through its
BaseTfl, and if it did not match the
TargetLangStandard parameter, the standard
math library specified by the
CodeReplacementLibrary parameter was
used.

If there is a mismatch, the standard math
libraries specified by the TargetLangStandard
parameter will be used.

Static reusable subsystem functions for C++ class interface
In R2020a and earlier releases, when generating C++ class interface code, the code generator
generated reusable subsystem functions as private member functions inside a model class.

In R2020b, the code generator generates reusable subsystem functions that do not access class
internals as static private member functions inside a model class when either of the following is true:

• There is no call to another function inside the reusable subsystem functions.
• If there is a call to another function, it must be a call to another reusable subsystem function or a

shared utility function in slprj/ert/_sharedutils.

R2020b

6-12

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/multiple_crl.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/multiple_crl.html

Generating reusable subsystem functions as static inside the model class reduces some the MISRA C
++ 2008 Rule 9-3-3 violations. For more information, see MISRA C++:2008 Rule 9-3-3.

Name mangling of functions inside MATLAB Function block code
In R2020a and earlier releases, the code generator generated uncompilable code if the model had
MATLAB Function block code with the following function names:

• fclose
• feof
• ferror
• fgetl
• fgets
• fopen
• fprintf
• fread
• frewind
• fscanf
• fseek
• ftell
• fwrite
• sprintf
• strcmpi
• strncmpi
• strtok
• strcat

These are also C function names. When MATLAB Function block code used these function names, the
generated code clashed with the C function names during compilation and caused an error.

In R2020b, when generating C code from a model that contains a MATLAB Function block and uses
the listed function names inside it, the code generator mangles the function names in the generated
code so that the code compiles without errors. In name mangling, the code generator adds an extra
character to make the identifiers unique so that the identifiers no longer match the C function names.

Generated code enhanced to reduce MISRA C:2012 Rule 13.5
violations
In R2020b, the code generator produces code that reduces some violations of the MISRA C:2012 Rule
13.5. For more information, see MISRA C:2012 Rule 13.5.

Generate static code metrics report programmatically
In R2020b, you can use the new function coder.report.generateCodeMetrics to generate a
static code metrics report after generating code for a model. You no longer need to generate a code
generation report.

 Code Generation

6-13

https://www.mathworks.com/help/releases/R2020b/bugfinder/ref/misrac2008rule933.html
https://www.mathworks.com/help/releases/R2020b/simulink/slref/matlabfunction.html
https://www.mathworks.com/help/releases/R2020b/codeprover/ref/misrac2012rule13.5.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/coder.report.generatecodemetrics.html

Code generation and SIL or PIL simulations for protected models from
R2018b and later releases
In R2020b, you can:

• Generate code from protected models created in previous releases (R2018b and later).
• Perform numeric equivalence testing for generated code by running software-in-the-loop (SIL) and

processor-in-the-loop (PIL) simulations.

If a user of your protected model upgrades from a previous release to the current release, you do not
have to regenerate the protected model for the user.

R2020b supports the new functionality for protected models that specify these system target file
types:

• ERT
• ERT-based
• AUTOSAR Classic
• GRT (Embedded Coder required)

For more information, see Use Protected Models from Previous Releases to Perform SIL Testing and
Generate Code.

Cross-release code integration for non-finite numbers in shared utility
code
For cross-release code integration workflows, R2020b supports the use of non-finite numbers in
shared utility code. Previously, if shared utility code contained non-finite numbers, the
sharedCodeUpdate function produced a warning. For example:

The following files in folderPath/slprj/ert/_sharedutils are not
allowed in the existing shared code area and will not be copied:

 rtGetInf.c
 rtGetInf.h
 rtGetNaN.c
 rtGetNaN.h
 rt_nonfinite.c
 rt_nonfinite.h

Continue yes/no:

For more information, see Cross-Release Shared Utility Code Reuse.

Enhanced traceability between variables and modeling elements in
Code view
Previously, bidirectional traceability between block output signals and the variables in the generated
code was not available. In R2020b, you can obtain bidirectional traceability between block output
signals and the variables in the generated code. This traceability is available only in Code view. For
example, consider rtwdemo_comments model. You can trace the signal indexed_data by clicking

R2020b

6-14

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/use-protected-models-from-previous-releases-to-generate-code-and-perform-sil-testing.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/use-protected-models-from-previous-releases-to-generate-code-and-perform-sil-testing.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/sharedcodeupdate.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/cross-release-shared-code-reuse.html

the signal in the model. You can then view the highlighted variable in the generated code.

For more information, see Verify Generated Code by Using Code Tracing.

Same name error message for Simulink.Bus object and data in C++
code
Previously, during C++ code generation, if the Simulink.Bus object and its corresponding data
element, such as signal or block, had the same name, the code generator produced a warning. The
generated code was not compilable.

In R2020b, during C++ code generation, if the Simulink.Bus object and its corresponding data
element have the same name, the code generator produces an error.

Standardization of header guards in header files
Previously, for models with shared utilities, header guards in the header files (shared files) were
generated as:

#ifndef SHARE_MultiWordSignedWrap
#define SHARE_MultiWordSignedWrap

In R2020b, for models with shared utilities, header guards in the header files (shared files) are
generated as:

#ifndef RTW_HEADER_MultiWordSignedWrap_h_
#define RTW_HEADER_MultiWordSignedWrap_h_

 Code Generation

6-15

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/verify-generated-code-by-using-code-tracing.html

Deployment

Texas Instruments C2000: Support of UDP and Hardware Interrupt
Blocks for F2838x (ARM Cortex-M4) Processor in Embedded Coder
Support Package for Texas Instruments C2000 Processors
F2838x (ARM Cortex-M4) processor now supports UDP Send, UDP Receive, and Hardware Interrupt
blocks in Embedded Coder Support Package for Texas Instruments C2000 Processors.

Texas Instruments C2000: Support Code Generation for SDFM Module
in F2807x, F2837x, F28004x and F2838x Processors for Embedded
Coder Support Package for Texas Instruments C2000 Processors
Embedded Coder Support Package for Texas Instruments C2000 Processors supports code generation
for Sigma Delta Filter Module (SDFM) in F2837x, F2807x, F28004x, and F2838x processors.

R2020b

6-16

Performance
SIMD code generated using Intel AVX-512 code replacement library
In R2020a, you generated code using the Intel AVX code replacement library, which enables the
generated code to process 256 bits of data in parallel on shared-memory, multicore platforms. In
R2020b, you can generate code for models and MATLAB code by using the improved Intel
AVX-512 code replacement library. The generated code processes 512 bits of data in parallel. The
increase in the register size of the data processed, improves execution speed. To generate code, in
the Configuration Parameters dialog box, set the Code replacement library parameter by clicking
Select and adding Intel AVX-512(Windows) or Intel AVX-512(Linux) to the Selected code
replacement libraries - prioritized list pane.

Consider this model mDiv with a Divide block.

In R2020a, when you chose an Intel AVX code replacement library, the mDiv_step function contained
this code:
void mDiv_step(void)
{
int32_T i;
for (i = 0; i <= 24; i += 8) {
 _mm256_storeu_ps(&mDiv_Y.Out2[i], _mm256_div_ps(_mm256_loadu_ps
 (&mDiv_U.In1[i]), _mm256_loadu_ps(&mDiv_U.In2[i])));
 }
}

The function _mm256_div_ps was able to process 256 bits of data in parallel.

In R2020b, when you choose an Intel AVX-512 code replacement library, the mDiv_step function
contains this code:

void mDiv_step(void)
{
int32_T i;
for (i = 0; i <= 16; i += 16) {
 _mm512_storeu_ps(&mDiv_Y.Out2[i],
 _mm512_div_ps(_mm512_loadu_ps
 (&mDiv_U.In1[i]), _mm512_loadu_ps(&mDiv_U.In2[i])));
 }
}

The function _mm512_div_ps processes 512 bits of data in parallel. This increase in the number of
bits processed in parallel improves the execution speed of the code.

For more information, see Generate Code Containing Single Instruction Multiple Data for Simulink
Models and Generate Code Containing Single Instruction Multiple Data for MATLAB Code.

 Performance

6-17

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/simd.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/simd.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/single-instruction-multiple-data.html

Improved cache performance of generated code that has loop
interchange
In R2020a, the generated code contained loops as modelled in Simulink. In R2020b, you can generate
optimized code that can interchange the order of execution of loops with constant bounds. This loop
interchange avoids cache misses by accessing data from a single cache block. This optimization
improves the execution speed of generated code for Intel and ARM targets.

Consider this model mdl_loopinterchange that has a For-iterator Subsystem.

The For-iterator Subsystem shown below has another nested for-iterator subsystem. The top level
For-iterator Subsystem has a For-iterator block with an Iteration limit (N) of 600.

The nested For-iterator Subsystem shown below has a For-iterator block with an Iteration limit (N)
of 800.

R2020b

6-18

In R2020a, the code generator produced this code.
void mdl_loopinterchange_step(void)
{
 int32_T y;
 int32_T x;

 /* Outputs for Iterator SubSystem: '<Root>/For Iterator Subsystem' incorporates:
 * ForIterator: '<S1>/For Iterator'
 */
 for (y = 0; y < 600; y++) {
 /* Outputs for Iterator SubSystem: '<S1>/For Iterator Subsystem' incorporates:
 * ForIterator: '<S2>/For Iterator'
 */
 for (x = 0; x < 800; x++) {
 /* Assignment: '<S2>/Assignment' incorporates:
 * Outport: '<Root>/Out1'
 * Sum: '<S2>/Add'
 */
 mdl_loopinterchange_Y.Out1[y + 600 * x] = x + y;
 }

 /* End of Outputs for SubSystem: '<S1>/For Iterator Subsystem' */
 }

 /* End of Outputs for SubSystem: '<Root>/For Iterator Subsystem' */
}

The signal x was present in the innermost subsystem of the Simulink model. Hence the generated
code contained variable x as the innermost loop.

In R2020b, with the loop interchange, the code generator produces this code.
void mdl_loopinterchange_step(void)
{
 int32_T y;
 int32_T x;

 /* Outputs for Iterator SubSystem: '<Root>/For Iterator Subsystem' incorporates:
 * ForIterator: '<S1>/For Iterator'
 */
 /* Outputs for Iterator SubSystem: '<S1>/For Iterator Subsystem' incorporates:
 * ForIterator: '<S2>/For Iterator'
 */

 Performance

6-19

 for (x = 0; x < 800; x++) {
 for (y = 0; y < 600; y++) {
 /* Assignment: '<S2>/Assignment' incorporates:
 * Outport: '<Root>/Out1'
 * Sum: '<S2>/Add'
 */
 mdl_loopinterchange_Y.Out1[y + 600 * x] = x + y;
 }
 }

The signal x is present in the innermost subsystem of the Simulink model. But the variable y is
evaluated in the inner loop of the generated code, allowing a sequential access of the memory that
avoids cache misses. This optimization improves the execution speed of the generated code.

SIMD vectorization of loops in Simulink models
In R2020b, the generated code contains SIMD optimizations for MATLAB Function blocks and For-
Each Subsystem blocks that contains for-loops. SIMD vectorizations improve speed and efficiency in
the generated code.

Consider the model mLoopVectorization that has a For Each Subsystem and a MATLAB Function
block.

The For Each Subsystem contains a Gain block that executes 100 times. The MATLAB Function block
contains code with a for-loops that performs element-wise operations:

function y = fcn(u, v)
y = coder.nullcopy(u);

for i = 1:numel(u)
 y(i) = (u(i) .* v(i)) + (u(i) .* v(i));
end

end

In R2020a, the code generator produced this C code for the MATLAB Function and the For-Each
Subsystem block:
for (i = 0; i < 10000; i++) {
 Out4_tmp = mloopVectorization_U.u[i] * mloopVectorization_U.v[i];
 mloopVectorization_Y.Out4[i] = Out4_tmp + Out4_tmp;
}

R2020b

6-20

for (i = 0; i < 100; i++) {
for (ForEach_itr = 0; ForEach_itr < 100; ForEach_itr++) {
 /* Gain: '<S1>/Gain' incorporates:
 * ForEachSliceSelector generated from: '<S1>/In1'
 */
 Out3_tmp = 100 * i + ForEach_itr;
 mloopVectorization_Y.Out3[Out3_tmp] = mloopVectorization_U.v[Out3_tmp] *
 57.0;
}
}

The loop incremented by one for single, double, and integer data types.

In R2020b, the code generator produces this snippet of vectorized code for the MATLAB Function
block and, For-Each Subsystem block when you select the Intel SSE code replacement library:
for (i = 0; i <= 9998; i += 2) {
/* Inport: '<Root>/u' incorporates:
 * MATLAB Function: '<Root>/mlfb_forLoop'
 */
tmp_0 = _mm_loadu_pd(&mloopVectorization_U.u[i]);

/* Inport: '<Root>/v' incorporates:
 * MATLAB Function: '<Root>/mlfb_forLoop'
 */
tmp_1 = _mm_loadu_pd(&mloopVectorization_U.v[i]);

/* MATLAB Function: '<Root>/mlfb_forLoop' */
_mm_storeu_pd(&mloopVectorization_Y.Out4[i], _mm_add_pd(_mm_mul_pd(tmp_0,
 tmp_1), _mm_mul_pd(tmp_0, tmp_1)));
}
for (i = 0; i < 100; i++) {
for (ForEach_itr = 0; ForEach_itr <= 98; ForEach_itr += 2) {
 /* Gain: '<S1>/Gain' incorporates:
 * ForEachSliceSelector generated from: '<S1>/In1'
 */
 tmp = 100 * i + ForEach_itr;
 _mm_storeu_pd(&mloopVectorization_Y.Out3[tmp], _mm_mul_pd(_mm_loadu_pd
 (&mloopVectorization_U.v[tmp]), _mm_set1_pd(57.0)));
}
}

The loop increments by two because the input data type is double. Incrementing by two instead of
one occurs because the SIMD functions in the loop body process data in parallel. If the input data
type is int64, the loop increments by two. If the data type is single or int32 , the loop increments
by four. This optimization increases the execution speed of the generated code. For more information,
see Generate Code Containing Single Instruction Multiple Data for Simulink Models and Generate
Code Containing Single Instruction Multiple Data for MATLAB Code.

The generated code does not contain SIMD optimization if the Partition Dimension parameter of a
For Each subsystem is below the Loop unrolling threshold configuration parameter.

Generated code optimization through SIMD for integer data type
In R2020a, the generated code contained SIMD optimizations for single precision and double
precision data types. In R2020b, for Intel SSE or AVX processors, the generated code for models
contains SIMD optimizations for 32 and 64 bit integer data types. The generated code from MATLAB
code can contain SIMD optimizations for 8-, 16-, 32- and, 64- bit integer data types.

To generate the code, select an Intel SSE or AVX code replacement library.

Consider this Simulink model mAdd that has an Add block:

 Performance

6-21

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/simd.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/single-instruction-multiple-data.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/single-instruction-multiple-data.html

In R2020a, the code generator produced this C code:
void mAdd_step(void)
{
int32_T i;

/* Outport: '<Root>/Out2' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 * Sum: '<Root>/Add'
 */
for (i = 0; i < 140; i++) {
 mAdd_Y.Out2[i] = mAdd_U.In1[i] + mAdd_U.In2[i];
}

/* End of Outport: '<Root>/Out2' */
}

The loop incremented by one for the variable i.

In R2020b, the code generator produces this SIMD vectorized code for the Intel SSE code
replacement library:
void mAdd_step(void)
{
int32_T i;
for (i = 0; i <= 138; i += 2) {
 /* Outport: '<Root>/Out2' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 */
 _mm_storeu_si128((__m128i *)&mAdd_Y.Out2[i], _mm_add_epi64(_mm_loadu_si128
 ((__m128i *)&mAdd_U.In1[i]), _mm_loadu_si128((__m128i *)&mAdd_U.In2[i])));
 }
}

The loop increments by two because the input data type is int64. Incrementing by two instead of one
occurs because the SIMD functions in the loop body process data in parallel. If the input data type is
int32, the loop increments by four. This optimization increases the execution speed of the generated
code. For more information, see Generate Code Containing Single Instruction Multiple Data for
Simulink Models and Generate Code Containing Single Instruction Multiple Data for MATLAB Code.

Enhanced Image Processing Toolbox functions in generated code
In R2020b, if possible, you can generate improved C and C++ code from MATLAB code and models
containing MATLAB Function and MATLAB System blocks, containing the functions in the Image
Processing Toolbox, for embedded targets. The optimizations available are multithreading, data
parallelization, and SIMD code generation. These enhancements enable you to improve the speed of
function execution.

R2020b

6-22

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/simd.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/simd.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/single-instruction-multiple-data.html

To enable multithreading, in the Embedded Coder app, select the parameters Specify custom
optimizations and Generate parallel for loops.

To enable SIMD, in the Embedded Coder app, set the Code replacement library parameter to Intel
SSE or Intel AVX.

The optimized functions are:

• imwarp
• edge,
• medfilt2
• multithresh
• imresize
• regionprops
• imhist
• imopen
• imclose
• imdilate
• imerode
• rgb2ycbcr
• ycbcr2rgb
• houghlines
• hough

The edge function supports SIMD code generation for Intel SSE and AVX processors.

In R2020a, the code generator produced this C code snippet for a MATLAB function containing an
image processing function edge:
...
for (j = 0; j < 1920; j++) {
 memset(&cj[0], 0, 1080U * sizeof(float));
 for (jb = 0; jb < 3; jb++) {
 for (ib = 0; ib < 3; ib++) {
 bij = b[(3 * (2 - jb) - ib) + 2];
 for (i = 0; i < 1080; i++) {
 cj[i] += (float)bij * a[(i + ib) + 1082 * (j + jb)];
 }
 }
 }

 memcpy(&c[j * 1080], &cj[0], 1080U * sizeof(float));
 }
...

The loop executed sequentially one incremented value at a time.

In R2020b, the code generator produces this snippet of code:
...
for (ix = 0; ix < 1920; ix++) {
 for (i = 0; i <= 1064; i += 8) {
 r = _mm256_loadu_ps(&temp[i + 1080 * ix]);
 bx_tmp = (i + 1080 * ix) + 1;
 r1 = _mm256_loadu_ps(&temp[bx_tmp]);
 r2 = _mm256_loadu_ps(&temp[(i + 1080 * ix) + 2]);

 Performance

6-23

 _mm256_storeu_ps(&by[bx_tmp], _mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(r,
 _mm256_set1_ps(0.465302438F)), _mm256_mul_ps(r1, _mm256_set1_ps(0.0F))),
 _mm256_mul_ps(r2, _mm256_set1_ps(-0.465302438F))));
 }
...

The loop increments by 8. Incrementing by eight instead of one occurs because the SIMD functions in
the loop body process data in parallel. This optimization improves the execution speed of the
generated code.

Distribution of execution times for generated code internal functions
If the generated code for your model contains nested functions, you can run software-in-the loop (SIL)
and processor-in-the-loop (PIL) simulations that generate pie charts showing the relative execution
times of caller and called functions. The pie charts, which show average and maximum execution time
distributions, can help you to identify functions that are bottlenecks in code execution.

For more information, see View and Compare Code Execution Times.

Hardware timer for code execution profiling during PIL simulations
For code execution profiling during processor-in-the-loop (PIL) simulations, you can create a timer
object by using the target package. For more information, see step 6 in Set Up PIL Target
Connectivity by Using target Package.

Caching of array elements to scalar variables reduces computations in
generated code
In R2020a, for some modeling patterns, the generated code contained additional computations of an
array element’s address. These computations occurred for code that read the same array element at
multiple locations and did not use a constant value to index into the array.

In R2020b, the code generator is more likely to cache these array elements into scalar variables that
can be read at multiple locations in the generated code reducing the number of computations.

This table shows one example.

R2020a R2020b
return (table[iLeft + 1U] - table[iLeft]) * frac + table[iLeft];yL_0d0 = table[iLeft];

return (table[iLeft + 1U] - yL_0d0) * frac + yL_0d0;

In the R2020a, array elements are not cached into scalar variables. In R2020b, the array element
table[iLeft] is cached in the variable yL_0d0 that is read twice.

This table shows another example.

R2020b

6-24

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/view-and-compare-code-execution-times.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/set-up-pil-target-connectivity-by-using-target-package.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/set-up-pil-target-connectivity-by-using-target-package.html

R2020a R2020b
for (jy = 0; jy <= iy; jy++) {
 kBcol = 6 * jy - 1;
 j_0 = (jy + jj) + 1;
 if (A[j_0] != 0.0) {
 for (ix = 0; ix < 6; ix++) {
 ijA = ix + 1;
 c = ijA + jj;
 y[c] -= A[j_0] * y[ijA + kBcol];
 }
 }
}

for (jy = 0; jy <= iy; jy++) {
 kBcol = 6 * jy - 1;
 smax = A[(jy + jj) + 1];
 if (smax != 0.0) {
 for (ix = 0; ix < 6; ix++) {
 c = (ix + jj) + 1;
 y[c] -= smax * y[(ix + kBcol) + 1];
 }
 }
}

In R2020a, just the array index value was cached in a variable j_0. In R2020b the array element
A[(jy + jj) + 1] is cached in the variable smax that is read twice, including in a nested loop.

 Performance

6-25

Verification

Target connectivity for PIL simulations
You can set up target connectivity for processor-in-the-loop (PIL) simulations by using the target
Package, which provides new classes for registering connection and communication details:

• target.Board
• target.CommunicationInterface
• target.TargetConnection
• target.Timer

The classes enable you to define concisely your target hardware. To register target connectivity, use
the target.create, target.get, and target.add classes. You do not need rtwTargetInfo.m or
sl_customization.m files for the registration process.

For more information, see Set Up PIL Target Connectivity by Using target Package.

SIL and PIL testing of reusable library subsystems
Create test harnesses for reusable library subsystems and use the SIL/PIL Manager to test
pregenerated code.

1 Create a test harness in a library for a unique subsystem and function interface pair.
2 Using the SIL/PIL Manager:

a Run normal mode and SIL/PIL simulations of the subsystem.
b Compare numeric results in the Simulation Data Inspector.
c View the Simulink Coverage analysis report.

For more information, see:

• Test Library Blocks (Simulink Test)
• Library-Based Code Generation for Reusable Library Subsystems

Signal and state logging for SIL and PIL simulations
For top-model and Model block software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulations,
you can log:

• Signals by setting the SignalLogging configuration parameter of the top model to 'on'.
Previously, signal logging was supported through the creation of a C API data interface.

• State data by setting the SaveState configuration parameter of the top model to 'on'.

In the SIL/PIL Manager, you can test the numerical equivalence between a model and generated code
by using logged signals and state data.

For more information, see Log Signals of a Component and SIL/PIL Manager Verification Workflow.

R2020b

6-26

https://www.mathworks.com/help/releases/R2020b/ecoder/ref/target-package.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/target-package.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/target.board-class.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/target.communicationinterface-class.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/target.targetconnection-class.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/target.timer-class.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/target.create.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/target.get.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ref/target.add.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/set-up-pil-target-connectivity-by-using-target-package.html
https://www.mathworks.com/help/releases/R2020b/sltest/ug/test-library-blocks.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/library-based-code-generation-for-subsystems-shared-across-models.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/configure-and-run-pil-simulation.html#bvb7g1f_sep_br74o58-1
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/verification-workflow-with-silpil-manager.html

Removal of top-model SIL and PIL limitations
R2020b removes previous limitations of top-model SIL and PIL simulations by providing:

• Support for bus element ports, inline variants, and Dataset logging for export-function models.
• Enhanced support for Initialize Function, Reset Function, and Terminate Function blocks of

models.

For more information, see SIL and PIL Limitations.

SIL/PIL Manager settings
The SIL/PIL Manager Settings gallery has new buttons.

The Profile Code button is removed.

Button Description
Portable Word Sizes Toggles PortableWordSizes between 'on' or 'off'.
Task Profiling Toggles CodeExecutionProfiling between 'on' or 'off'.
Save Options If you select Task Profiling, clicking this button sets

CodeProfilingSaveOptions cyclically to 'SummaryOnly', 'AllData',
and 'MetricsOnly'.

If you do not select Task Profiling, the button is dimmed.
Functions Sets CodeProfilingInstrumentation cyclically to 'off', 'coarse',

and 'detailed'.

For more information, see SIL/PIL Manager Verification Workflow and Run SIL Simulation That
Generates Execution-Time Metrics.

 Verification

6-27

https://www.mathworks.com/help/releases/R2020b/ecoder/ug/sil-and-pil-simulation-limitations.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/verification-workflow-with-silpil-manager.html
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/view-and-compare-code-execution-times.html#mw_397eac9d-79a4-476c-871f-d0ab9dc8ef28
https://www.mathworks.com/help/releases/R2020b/ecoder/ug/view-and-compare-code-execution-times.html#mw_397eac9d-79a4-476c-871f-d0ab9dc8ef28

Functionality being removed or changed
silblocktype function produces an error for legacy argument
Errors

In R2020b, running the command silblocktype('legacy') produces this error:

The 'legacy' SIL block type is no longer supported.
Use only the 'unified' SIL block type.

R2020b

6-28

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

6-29

https://www.mathworks.com/support/bugreports/

R2020a

Version: 7.4

New Features

Bug Fixes

Compatibility Considerations

7

Code Generation from MATLAB Code

R2020a

7-2

Model Architecture and Design

Function arguments to match graphical block interface for
nonreusable subsystems
When generating C/C++ code for nonreusable subsystems, you can specify the function interface in
the generated code to use arguments that match the graphical interface of the subsystem block. The
arguments represent the input and output ports of the subsystem. This specification generates a
predictable interface that can be useful for testing, debugging, and integrating with external code.

To match the function arguments with the graphical interface of the subsystem block, in the
Subsystem Block Parameters dialog box, on the Code Generation tab, set the Function packaging
parameter to Nonreusable function. The Function packaging parameter enables the Function
interface (Simulink) parameter. Set the Function interface parameter to the new Allow
arguments (Match graphical interface) value. For example, if the subsystem block has four
inputs and three outputs, the generated code also has four inputs and three outputs. For more
information, see Generate Predictable Function Interface to Match Graphical Block Interface.

To generate an optimized function that has arguments in the generated code, set Function interface
to Allow arguments (Optimized) (previously named Allow arguments). The generated
function that has arguments might not match the graphical interface of the subsystem block.

External I/O visibility for C++ class interface
In R2019b, when you set the model configuration parameter Code interface packaging to C++
class, the code generator produced the external input/output type definitions as public or
protected members of the model class. In R2020a, you can configure the visibility of external input/
output type definitions by using the new model configuration parameter External I/O visibility.
Choose from these values:

• public
• protected
• private (default)

The default specification for the External I/O access parameter is now Inlined structure-
based method (previously, None).

When you open an existing model saved in R2019b or earlier, the default specification for the
External I/O visibility parameter is public if the External I/O access parameter is set to None.
Otherwise, the default specification is protected.

The generated code reduces the MISRA C++ 2008 Rule 11-0-1 violations.

C++ message-based communication provides length argument for
service functions
C/C++ message support now generates an additional parameter to specify message payload length in
service functions. For more information, see Generate C++ Code from Top Models for Message-Based
Communication By Using External Message Protocols.

 Model Architecture and Design

7-3

https://www.mathworks.com/help/releases/R2020a/simulink/slref/subsystem.html#btqa3p_-1
https://www.mathworks.com/help/releases/R2020a/simulink/slref/subsystem.html#btqa3p_-1
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/generate-predictable-interface.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/external-io-visibility.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/external-io-access.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/generate-cpp-code-for-top-model-for-passing-messages-using-external-message-protocols.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/generate-cpp-code-for-top-model-for-passing-messages-using-external-message-protocols.html

Zero initialization code model configuration parameters disabled for C
++ class interface
Starting in R2020a, members of a C++ model class are initialized in the class constructor. For new
and existing models, when the model configuration parameter Code interface packaging is set to C
++ class, the check boxes of these model configuration parameters are selected and set to 'off'
(command line):

• Remove root level I/O zero initialization (ZeroExternalMemoryAtStartup)
• Remove internal data zero initialization (ZeroInternalMemoryAtStartup)

You cannot change the values of these model configuration parameters.

R2020a

7-4

Code Interface Configuration and Integration

Alias property of Simulink.CoderInfo renamed Identifier
The Alias property of the Simulink.CoderInfo object, which you use to specify an alternative
name for a data object in the generated code, is renamed Identifier. For data objects with a non-
Auto storage class:

• Identifier replaces Alias in user interfaces.
• At the command line, autocomplete provides Identifier instead of Alias as a property

available for the Simulink.CoderInfo object.
• Identifier is saved to MATLAB files. Alias is still saved elsewhere, including in MAT-files.
• At the command line, you can use Identifier and Alias properties interchangeably. Setting

one property results in the other property having the same value.

For more information on this property, see Simulink.CoderInfo.

Model type definitions within class namespace
In R2019b, when generating code for a C++ class interface, the code generator produced model type
definitions in the global namespace.

In R2020a, when generating code for a C++ class interface, you can choose to generate the model
type definitions within the class namespace. Select the new model configuration parameter Include
model types in model class. When you open an existing model saved in R2019b or earlier, this
parameter is cleared by default. When you create a new model and Code interface packaging is set
to C++ class, this parameter is selected by default.

Model type definitions include:

• Root-level inports and outports
• Block inputs and outputs
• DWork vectors
• Block parameters and constant parameters
• Continuous states
• Real-time model data structure (rtM)

The generated code reduces the MISRA 7-3-1 violations.

User-defined type such as Simulink.Bus object or type defined in a MATLAB Function block or
Stateflow charts is still generated in the global namespace.

Dimension preservation of multidimensional arrays for Data Store
Memory blocks, states, and signals
In R2019b, when the model configuration parameter Array layout was set to Row-major, you could
preserve dimensions for root-level Inport and Outport blocks, parameters, and lookup tables.

 Code Interface Configuration and Integration

7-5

https://www.mathworks.com/help/releases/R2020a/simulink/slref/simulink.coderinfo.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/include-model-types-in-model-class.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/include-model-types-in-model-class.html

In R2020a, when the model configuration parameter Array layout is set to Row-major, you can
preserve the dimensions of multidimensional array data used in Data Store Memory blocks, states,
and signals.

From the Code Mappings editor, you can configure the default configurations to preserve dimensions
of:

• Shared local data stores
• Global data stores
• Internal data

For these elements, select the PreserveDimensions property in the Property Inspector window
when Storage Class is set to these supported storage classes:

• Volatile
• ExportToFile
• ImportFromFile
• FileScope (not supported for Global data stores)
• Localizable

In the Embedded Coder Dictionary, to preserve dimensions when you design your own custom
storage class, select the Preserve array dimensions property in the Property Inspector. You can
apply the supported storage class to these data default categories:

• Shared local data stores
• Global data stores
• Internal data

You can also select the Preserve array dimensions property in the data object interface.

For more details, see Preserve Dimensions of Multidimensional Arrays in Generated Code.

Compatibility Considerations
Starting in R2020a, the model configuration parameter Preserve Stateflow local data array
dimensions is not supported. When you open a model saved in R2019b and earlier releases, a
warning is issued if this parameter is selected. In R2020a, select the Preserve array dimensions
property for the Internal data data default category in the Code Mappings editor to preserve
dimensions for the Stateflow local data.

Storage class change for model workspace parameter converted to
Simulink.Parameter
Previously, in the Model Explorer or Model Data Editor, converting a parameter to a
Simulink.Parameter object resulted in a parameter object configured with the storage class
Model default. In R2020a, this conversion results in an object with the storage class set to Auto.
To prevent code generation optimizations from eliminating storage for the variable, you can manually
change the Storage Class setting to Model default or another storage class.

For more information, see Choose Storage Class for Controlling Data Representation in Generated
Code.

R2020a

7-6

https://www.mathworks.com/help/releases/R2020a/ecoder/ug/preserve-dimensions-of-multidimensional-arrays-in-generated-code.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html

Functionality being removed or changed
TypeQualifier property for built-in storage classes is not recommended
Still runs

The property TypeQualifier for built-in storage classes, such as ExportedGlobal and
ImportedExtern, is not recommended. When you specify the property, the code generator adds C
qualifiers, such as const and volatile, to the beginning of data declarations and definitions.
Instead of using the TypeQualifier property, configure data objectsby using a storage class that
specifies the C qualifier of interest (see Choose Storage Class for Controlling Data Representation in
Generated Code). If none of the available storage classes meets your application data requirements,
define a new storage class by using the Embedded Coder Dictionary (see Define Storage Classes,
Memory Sections, and Function Templates for Software Architecture) or Custom Storage Class
Designer (see Create Storage Classes by Using the Custom Storage Class Designer).

Simulink.CoderInfo object Alignment property for data configured within a model is not
recommended
Still runs

The Simulink.CoderInfo object Alignment property is not recommended for data configured for
code generation within a model. This includes data represented by:

• Outports
• Signal lines
• Block states
• Data stores
• Parameter objects in the model workspace

To use the Alignment property, represent data with data objects outside of the model. For example,
do the following:

Type of Data Element Action
Parameter object in the model
workspace

Use the Model Explorer to move the object from the model
workspace to the base workspace or a data dictionary. Then,
set the storage class and alignment properties of the object.
Save the model.

Signal line Open the Signal Properties dialog box, specify a name for the
signal and select Must resolve to signal object (storage
class must be Auto). Create a Simulink.Signal object in
the base workspace or a data dictionary and set the storage
class and alignment properties of the object. Save the model.

Block state Open the Block Parameters dialog box, specify a name for the
state and select State must resolve to signal object
(storage class must be Auto). Create a Simulink.Signal
object in the base workspace or a data dictionary and set the
storage class and alignment properties. Save the model.

 Code Interface Configuration and Integration

7-7

https://www.mathworks.com/help/releases/R2020a/ecoder/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/design-custom-storage-classes-and-memory-sections.html

Code Generation

std::array support in C++ code generation
In C++ 11, std::array is a template class that represents fixed-size arrays. When the model
configuration parameter Code interface packaging is set to C++ class, you can generate a C++
class interface that uses an std::array, instead of C-style arrays, by specifying the new model
configuration parameter Array container type as std::array.

You can also choose to preserve the C-style arrays by specifying Array container type as C-style
array. This specification is the default.

In R2019b, the generated code contained C-style arrays:

real_T const_val[4] = { 1.0, 2.0, 3.0, 4.0 } ;

In R2020a, if specified, the generated code can contain an std::array:

std::array<real_T, 4> const_val = { { 1.0, 2.0, 3.0, 4.0 } };

Allow Arguments for non-reusable subsystems with C++
In R2019b, when you generated code for a C++ class interface and set Function interface
(Simulink) to Allow arguments, the code generator produced a function that passed data as global
variables. For example:

HeadingMode();

In R2020a, when you generate code for a C++ class interface and set Function interface to Allow
arguments (Optimized) or Allow arguments (Match graphical interface), the code
generator produces a function that uses arguments instead of passing data as global variables. For
example, this code is the generated code when Function interface is set to Allow arguments
(Optimized):

HeadingMode(rtU.HDG_Ref, rtU.Psi, rtU.TAS, &rtb_Sum1);

For more details on Allow arguments (Match graphical interface), see the release note on
“Function arguments to match graphical block interface for nonreusable subsystems” on page 7-3.

$R token in Memory Sections of Embedded Coder Dictionary
In R2019b, when you created memory sections in Embedded Coder Dictionary, the $N token was the
only supported token available to use in Pre Statement and Post Statement properties.

In R2020a, when you create memory sections in Embedded Coder Dictionary, you can use the $R
token and the $N token in Pre Statement and Post Statement properties. $R expands to the model
name and $N expands to the name of the data element or function. Use only one instance of $R and
$N in a specification. You can use the $R token when the Statements Surround property is set to
Each variable or Group of variables. For more information, seeEmbedded Coder Dictionary.

$R is not supported for memory sections that you create by using the Custom Storage Class Designer.

R2020a

7-8

https://www.mathworks.com/help/releases/R2020a/ecoder/ref/array-container-type.html
https://www.mathworks.com/help/releases/R2020a/simulink/slref/subsystem.html#btqa3p_-1
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/embeddedcoderdictionary.html

Reduction in identifier collisions in model reference hierarchy
In R2019b, when you generated code for a model reference hierarchy, all global variables and types
were exported from child models to the top model. This export process sometimes resulted in
identifier clashes. For example, the variable name StorageClass2_mModelRefAutoData was used
in the top model and not the child model, but the code generator inserted name mangling:

/* Storage class 'StorageClass2' */
mModelRefAutoDa_StorageClass2_n StorageClass2_mModelRefAutoDa_n;/* '<Root>/Model

In R2020a, only used global variables and types are exported from child models to the top model.
When you generate code for a model reference hierarchy, you might see fewer identifier collisions
and better naming for global variables and types. Also, the generated code is more readable. For
example, the variable name StorageClass2_mModelRefAutoData is used only in the top model
and the code generator does not insert name mangling:

/* Storage class 'StorageClass2' */
mModelRefAutoDa_StorageClass2_n StorageClass2_mModelRefAutoData;/* '<Root>/Model

Static code metrics in Code view without code generation report
In R2020a, you can generate static code metrics for your generated code without generating a code
generation report. To generate static code metrics, select model configuration parameter Generate
static code metrics and then generate code. Previously, the configuration parameter Static code
metrics was disabled when you cleared the Create code generation report parameter.

In R2020a, the Static code metrics parameter is renamed to Generate static code metrics and
does not depend on the Create code generation report parameter. To view the code metrics for a
variable or function, place your cursor over the variable or function in the Code view. For more
information, see View Static Code Metrics and Definitions Within the Generated Code.

In R2020a, when you generate code by using the Embedded Coder app, the Code view opens by
default to display the generated code next to your model. The default values for ERT-based targets
have changed from On to Off in these configuration parameters:

• Create code generation report
• Open report automatically
• Code-to-model
• Model-to-code
• Eliminated / virtual blocks
• Traceable Simulink blocks
• Traceable Stateflow objects
• Traceable MATLAB functions

Compatibility Considerations
Previously, the static code metrics file codeMetrics.mat was generated in the html subfolder in the
build folder. In R2020a, the codeMetrics.mat file is generated in the folder slprj/target/
model/tmwinternal.

 Code Generation

7-9

https://www.mathworks.com/help/releases/R2020a/ecoder/ref/static-code-metrics.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/static-code-metrics.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/create-code-generation-report.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html#bui7brc
https://www.mathworks.com/help/releases/R2020a/rtw/ref/create-code-generation-report.html
https://www.mathworks.com/help/releases/R2020a/rtw/ref/open-report-automatically.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/code-to-model.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/model-to-code.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/eliminated-virtual-blocks.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/traceable-simulink-blocks.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/traceable-stateflow-objects.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ref/traceable-matlab-functions.html

SIL or PIL simulations with protected model AUTOSAR code from
R2018b or later
If you have protected models that contain AUTOSAR code generated by using R2018b or a later
release and the AUTOSAR code is generated with a Top model code interface, in R2020a, you can
run Model block software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations that reference
the protected models.

If the AUTOSAR code in the protected model requires shared utility code, you can use
sharedCodeUpdate to copy the required code to an existing shared utility code folder.

For more information, see Reference a Protected Model (Simulink).

Storage classes on signal lines
Previously, only built-in storage classes and storage classes that you created by using the Custom
Storage Class Designer were displayed on signal lines in the block diagram. In R2020a, the block
diagram also displays the names of storage classes that you create in an Embedded Coder Dictionary.
When you apply the storage class Model default to a signal, the signal line displays the name of
the default storage class for the internal data category in the form <name>. If the default storage
class for internal data is unspecified (Default), the signal line does not display a storage class name.
To display storage class names on signal lines, on the Debug tab, click Information Overlays >
Storage Class. For more information, see Apply Storage Classes to Individual Signal, State, and
Parameter Data Elements.

Removal of preprocessor guards in C++ code
In R2019b, when generating C++ code, the code generator included preprocessor guards to check
the inclusion of some common header files. For example:

#ifndef RTW_HEADER_rtwdemo_comments_h_
#define RTW_HEADER_rtwdemo_comments_h_
#ifndef rtwdemo_comments_COMMON_INCLUDES_
define rtwdemo_comments_COMMON_INCLUDES_
#include "rtwtypes.h"
#endif

In R2020a, when generating C++ code, the code generator removes these preprocessor guards to
reduce MISRA 16-2-1 violations in the generated code. For example:

#ifndef RTW_HEADER_rtwdemo_comments_h_
#define RTW_HEADER_rtwdemo_comments_h_
#include "rtwtypes.h"

Removal of configuration parameter limitations for Simulink string
code generation
In R2019b, to generate code with the std:string library instead of C char_T arrays you had to
ensure that:

• You selected the Use dynamic memory allocation for model initialization parameter.

R2020a

7-10

https://www.mathworks.com/help/releases/R2020a/ecoder/ref/sharedcodeupdate.html
https://www.mathworks.com/help/releases/R2020a/simulink/ug/use-a-protected-model-in-simulation.html#mw_6bff2e8c-4a03-4fee-b520-f82cb9d9e775
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/apply-storage-classes-to-data.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/apply-storage-classes-to-data.html

• You selected the Use dynamic memory allocation for model block instantiation parameter.
• You cleared the Remove root level I/O zero initialization parameter in the Configuration

Parameters dialog box.
• You cleared the Remove internal data zero initialization parameter in the Configuration

Parameters dialog box.

In R2020a, you can generate C++ code from model blocks by using the standard C++ string library
without configuration parameter restrictions. You can set the parameters to any value. The generated
C++ code contains functions and data types from the standard C++ string library.

For more information, see Generate Code for String Blocks by using the Standard C++ String
Library.

 Code Generation

7-11

https://www.mathworks.com/help/releases/R2020a/ecoder/ug/generate-Cpluplus-string-code.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/generate-Cpluplus-string-code.html

Deployment

FFT code replacement library (CRL) support for ARM Cortex-A and
Cortex-M processors
In R2020a, you can generate optimized code for fast Fourier transform (FFT) algorithms by using the
code replacement library (CRL). You get improved code performance for these MATLAB functions:

• fft
• ifft
• fft2
• ifft2
• fftn
• ifftn

The generated code can now run on ARM Cortex-A and ARM Cortex-M processors. For more
information on how to install and get started with these support packages, see Embedded Coder
Support Package for ARM Cortex-A Processors and Embedded Coder Support Package for ARM
Cortex-M Processors.

R2020a

7-12

https://www.mathworks.com/help/releases/R2020a/matlab/ref/fft.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/ifft.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/fft2.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/ifft2.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/fftn.html
https://www.mathworks.com/help/releases/R2020a/matlab/ref/ifftn.html
https://www.mathworks.com/help/releases/R2020a/supportpkg/armcortexa/index.html
https://www.mathworks.com/help/releases/R2020a/supportpkg/armcortexa/index.html
https://www.mathworks.com/help/releases/R2020a/supportpkg/armcortexm/index.html
https://www.mathworks.com/help/releases/R2020a/supportpkg/armcortexm/index.html

Performance

Data Store Memory block reuse to reduce data copies in subsystems
In R2019b, for models that used Data Store Memory blocks to store large bus structures, the
generated code contained redundant data copies when the Data Store Memory blocks were read from
and written to across the boundaries of subsystems. In R2020a, the code generator can eliminate
redundant data copies across subsystem hierarchies when the data store read and write operation
happens within subsystems. Eliminating the extra data copies reduces RAM and ROM consumption
and improves execution speed.

Consider the model MultipleDsrDsw with a Data Store Read block that reads a bus structure from a
Data Store Memory block called dsm1. The signal is input to a subsystem block Branch2.

Inside the subsystem Branch2, a bus is output from the Subsystem block and written by a Data Store
Write block to the Data Store Memory dsm1 in top-level model.

 Performance

7-13

In R2019b, the code generator produced this code:

void mBusMultipleDsrDsw_step(RT_MODEL *const rtM, int32_T rtU_In1, boolean_T
 rtU_In2)
{
 BusType1 rtb_DSR2;
 rtb_DSR2 = rtM->dwork.dsm1;
 if (rtU_In1 > 0) {
 if (rtU_In2) {
 rtM->dwork.mBusDsmBot1 = rtb_DSR2;
 mBusDsmBot_step((&(rtM->mBusDsmBot1)), &(rtM)->dwork.mBusDsmBot1);
 }

 rtM->dwork.dsm1 = rtM->dwork.mBusDsmBot1;
 }
}

The code contained an unnecessary data copy to the variable rtb_DSR2.

In R2020a, the code generator produces this code:

void mBusMultipleDsrDsw_step(RT_MODEL *const rtM, int32_T rtU_In1, boolean_T
 rtU_In2)
{
 if (rtU_In1 > 0) {
 if (rtU_In2) {
 rtM->dwork.mBusDsmBot1 = rtM->dwork.dsm1;
 mBusDsmBot_step((&(rtM->mBusDsmBot1)), &(rtM)->dwork.mBusDsmBot1);
 }

 rtM->dwork.dsm1 = rtM->dwork.mBusDsmBot1;
 }
}

The code does not contain the local variable rtb_DSR2 and the data copy, which improves the
efficiency of generated code. For more information, see Data Copy Reduction for Data Store Read and
Data Store Write Blocks.

R2020a

7-14

https://www.mathworks.com/help/releases/R2020a/ecoder/ug/data-store-buffer-reduction.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/data-store-buffer-reduction.html

Buffer reuse optimization for multidimensional arrays
You can reuse buffers for multidimensional arrays that you specify to preserve dimensions by
selecting the model configuration parameter Reuse local block outputs (Simulink Coder)
(BufferReuse).

Consider the model NDSignals_ReusableSS that has two reusable subsystems.

When you clear the model configuration parameter Reuse local block outputs, this code is
generated:

void NDSignals_ReusableSS_step(void)
{
 real_T AddOutSignal[2][3];
 real_T ReusableSsOuterSignal[2][3];
 real_T rtb_Gain_e[6];
 int32_T i;
 int32_T i_0;
 for (i_0 = 0; i_0 < 2; i_0++) {
 for (i = 0; i < 3; i++) {
 AddOutSignal[i_0][i] = rtIn1[i_0][i] + matrixParam[i_0][i];
 }
 }

 ReusableSs1((&(AddOutSignal[0][0])), rtb_Gain_e);
 for (i_0 = 0; i_0 < 2; i_0++) {
 for (i = 0; i < 3; i++) {
 ReusableSsOuterSignal[i_0][i] = rtb_Gain_e[3 * i_0 + i];
 }
 }

 ReusableSs1((&(ReusableSsOuterSignal[0][0])), &rtOut1[0][0]);
}

The code generator uses additional buffer for the Gain parameter.

This is the generated code when the model configuration parameter Reuse local block outputs is
selected:
void NDSignals_ReusableSS_step(void)
{
 real_T AddOutSignal[2][3];
 real_T ReusableSsOuterSignal[2][3];
 int32_T i;
 int32_T i_0;
 for (i_0 = 0; i_0 < 2; i_0++) {
 for (i = 0; i < 3; i++) {
 AddOutSignal[i_0][i] = rtIn1[i_0][i] + matrixParam[i_0][i];

 Performance

7-15

https://www.mathworks.com/help/releases/R2020a/rtw/ref/reuse-local-block-outputs.html

 }
 }

 ReusableSs1((&(AddOutSignal[0][0])), (&(ReusableSsOuterSignal[0][0])));
 ReusableSs1((&(ReusableSsOuterSignal[0][0])), &rtOut1[0][0]);
}

The code generator does not generate a separate buffer for the Gain variable and reuses the existing
buffers.

Logical operators conversion to bitwise operators in generated code
In R2019b, in the generated code, bitwise operations in the model were represented as logical
operators. In R2020a, you can generate code by using either bitwise or logical operators or a
combination of both. Certain processors might improve ROM efficiency when the code contains
bitwise operators. You can set the new configuration parameter Operator to represent Bitwise and
Logical Operator blocks to enable this optimization.

Consider the model logicalandbitwise with a Logical AND block that connects to a Bitwise AND
block.

To generate code, in the Configuration Parameters dialog box, set the Operator to represent
Bitwise and Logical Operator blocks parameter. Choose from these settings:

• Same as modeled
• Logical operator
• Bitwise operator

In R2019b, the code generator produced this code:
void logicalandbitwise_step(void)
{
 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/Input'
 * Inport: '<Root>/Input1'
 * Inport: '<Root>/Input2'
 * Logic: '<Root>/Logical AND'
 * S-Function (sfix_bitop): '<Root>/Bitwise AND'
 */

R2020a

7-16

 logicalandbitwise_Y.Out1 = (logicalandbitwise_U.Input &&
 (logicalandbitwise_U.Input1 && logicalandbitwise_U.Input2));
}

The code contained only logical operators &&, where the Bitwise AND block in the model were cast as
logical operators.

In R2020a, when you select the parameter setting Same as modeled, the code generator produces
this code:

void logicalandbitwise_step(void)
{
 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/Input'
 * Inport: '<Root>/Input1'
 * Inport: '<Root>/Input2'
 * Logic: '<Root>/Logical AND'
 * S-Function (sfix_bitop): '<Root>/Bitwise AND'
 */
 logicalandbitwise_Y.Out1 = logicalandbitwise_U.Input &
 (logicalandbitwise_U.Input1 && logicalandbitwise_U.Input2);
}

The generated code contains both bitwise and logical operators in the generated code corresponding
to the blocks in the models. Presence of bitwise operators might improve ROM efficiency. For more
information, see Control Operator Type in Generated Code.

Enhanced Image Processing Toolbox functions in generated code
In R2019b, the generated portable C code did not support multi-threading for functions in the Image
Processing Toolbox. In R2020a, you can generate code for image processing toolbox functions with
multi-threading capabilities. This enhancement enables you to improve the speed of function
execution.

The functions with the new multi-threading capability are edge, imwarp, imrotate, imfilter,
medfilt2, multithresh and rgb2gray.

In R2019b, the code generator produced this C code snippet for a MATLAB function containing an
image processing function imwarp:
void medfilt2(unsigned char b[65536])
{...
 for (j = 0; j < 384; j++) {
 for (i = 0; i < 384; i++) {
 dstXIntrinsic_tmp = i + 384 * j;
 dstXIntrinsic[dstXIntrinsic_tmp] = (((double)j + 1.0) - 1.0) + 1.0;
 dstYIntrinsic[dstXIntrinsic_tmp] = (((double)i + 1.0) - 1.0) + 1.0;
 }
 }...
}

The loop executed sequentially.

In R2020a, the code generator produces this snippet of code:
void medfilt2(unsigned char b[65536])
{...

#pragma omp parallel for \
 num_threads(omp_get_max_threads()) \
 private(srcYWorld_val,srcXWorld_val,rowIdx,srcXIntrinsic_tmp)

 for (colIdx = 0; colIdx < 384; colIdx++) {

 Performance

7-17

https://www.mathworks.com/help/releases/R2020a/ecoder/ug/Control-operators-gen-code.html

 for (rowIdx = 0; rowIdx < 384; rowIdx++) {
 srcXWorld_val = (1.3333333333333333 * ((((double)colIdx + 1.0) - 0.5) +
 1.25) + -0.66666666666666663 * ((((double)rowIdx + 1.0) - 0.5) + 1.25))
 + -0.33333333333333337;
 srcYWorld_val = (-0.66666666666666663 * ((((double)colIdx + 1.0) - 0.5) +
 1.25) + 1.3333333333333333 * ((((double)rowIdx + 1.0) - 0.5) + 1.25)) +
 -0.33333333333333331;
 srcXIntrinsic_tmp = rowIdx + 384 * colIdx;
 srcXIntrinsic[srcXIntrinsic_tmp] = (srcXWorld_val - 0.5) + 0.5;
 srcYIntrinsic[srcXIntrinsic_tmp] = (srcYWorld_val - 0.5) + 0.5;
 }
 }
....
}

The generated code has the pragma for OpenMP (Open Multiprocessing) before the body of the loop.
OpenMP enables shared-memory, multicore platforms to execute loops in parallel. This parallel
execution improves the execution speed of the generated code. For more information, see Speed Up
for-Loop Implementation in Code Generated by Using parfor.

Capture main code execution profiling metrics on target hardware
For code execution profiling, to reduce the communication channel bandwidth usage during a
software-in-the-loop simulation, processor-in-the-loop simulation, or XCP external mode simulation,
you can capture and store only these profiling metrics on the target hardware:

• Maximum execution time of code section
• Average execution time of code section
• Number of calls to code section

At the end of the simulation, Simulink uploads the metrics from the target hardware to your
development computer.

For more information, see Capture Main Profiling Metrics on Target Hardware.

Efficient code for model-reference builds in presence of function
prototype control
In R2019b, the generated code for model reference builds contained redundant variable copies or
dead code in the presence of the function prototype control. In R2020a, the generated code for a
model reference build is optimized to remove dead code and data copies. Eliminating dead code and
data copies conserves ROM consumption and improves execution speed.

Consider the model MdlReferences with a referenced model refMdl.

The step function interface of the referenced model is:

void MdlReferences_step([* self], arg_a1, arg_a2, * arg_IC)

R2020a

7-18

https://www.mathworks.com/help/releases/R2020a/ecoder/ug/Speed-Up-for-loop-implementation-in-the-Code-Generated-using-parfor.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/Speed-Up-for-loop-implementation-in-the-Code-Generated-using-parfor.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/capture-main-profiling-metrics-on-target-hardware.html

In R2019b, the code generator for the referenced model produced this code:

/* Model step function */
void MdlReferences_step(RT_MODEL_testRef3 * const testRef3_M, real_T arg_a1, real_T
 arg_a2, BusObject *arg_IC)
{
 BusObject arg_IC_0;
 arg_IC_0 = *arg_IC;

 /* ModelReference: '<Root>/Model' */
 refMdl_step((&(testRef3_M->Model)), arg_a1, arg_a2, arg_IC);
}

The code contained a variable arg_IC_0, which was not used.

In R2020a, the code generator produces this code:
/* Model step function */
void MdlReferences_step(real_T arg_a1, real_T arg_a2, BusObject *arg_IC)
{
 /* ModelReference: '<Root>/Model' incorporates:
 * Inport: '<Root>/a1'
 * Inport: '<Root>/a2'
 */
 refMdl_step(&Model, arg_a1, arg_a2, arg_IC);
}

The code does not contain the variable arg_IC_0 or unnecessary data copies, which improves the
efficiency of generated code. For more information, see Override Default C Step Function Interface.

Symbolic dimension support for Reshape blocks
In R2020a, you can generate code by using symbolic dimensions as inputs for Reshape blocks. Select
the model configuration parameter Allow symbolic dimension specification. For more information,
see Implement Dimension Variants for Array Sizes in Generated Code. You can now use symbolic
dimensions to set constraints for signal dimensions and as block parameters for the Reshape block.

Compatibility Considerations
When you specify the input port dimensions of a Reshape block by using symbolic dimensions, code
generation behavior changes.

Before R2020a R2020a
Code generation results in an error. To resolve
the error:

• In the Model Configuration Parameters dialog
box, clear the Allow symbolic dimension
specification check box.

Code generation is successful.

 Performance

7-19

https://www.mathworks.com/help/releases/R2020a/ecoder/ug/configure-c-step-function-arguments.html
https://www.mathworks.com/help/releases/R2020a/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2020a

7-20

https://www.mathworks.com/support/bugreports/

R2019b

Version: 7.3

New Features

Bug Fixes

Compatibility Considerations

8

Code Generation from MATLAB Code

Customize C/C++ code file names generated from MATLAB code
The code generator produces file names for your C/C++ code that correspond to your MATLAB code
functionality, file names, and the code generation settings. In R2019b, you can generate file names
customized with additional characters and tokens. Customize the file names to avoid name clashes
when integrating multiple code projects together. See Customize C/C++ File Names Generated from
MATLAB Code.

Custom type definitions from external header files
In R2019b, you can import your custom type definitions from external header files. You can then use
your own type definitions in the generated C/C++ code.

For more information, see Import Custom Data Type Definitions from External Header Files.

Disable generation of initialize function
By default, the code generator produces an initialize function that initializes the data used by the
entry-point functions. However, in R2019b, you can disable the generation of the initialize function
while generating standalone code. If the body of your initialize function is empty, you can make this
choice to avoid generation of redundant code.

The default behavior of the code generator is to produce the initialize function, even if it is empty. To
disable the generation of the initialize function, do one of the following:

• In a coder.EmbeddedCodeConfig object, set IncludeInitializeFcn to false.
• In the MATLAB Coder app, on the All Settings tab, set Initialize function required to No.

Function profiling for SIL and PIL execution
Previously, software-in-the-loop (SIL) and processor-in-the-loop (PIL) execution supported profiling for
generated function code only at the entry-point level. In R2019b, SIL and PIL execution also supports
profiling for functions that are called inside entry-point functions.

For more information, see:

• Generate Execution Time Profile
• View Execution Times
• Analyze Execution Time Data

R2019b

8-2

https://www.mathworks.com/help/releases/R2019b/ecoder/ug/customize-cc-file-names-generated-from-matlab-code.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/customize-cc-file-names-generated-from-matlab-code.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/import-custom-type-definitions-from-external-header-files.html
https://www.mathworks.com/help/releases/R2019b/coder/ref/coder.embeddedcodeconfig.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/configure-execution-time-profiling.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/view-execution-time-profile-1.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/view-execution-time-profile.html

Model Architecture and Design

Symbolic dimension support for Stateflow Data
In R2019b, when you select the model configuration parameter Allow symbolic dimension
specification, Stateflow charts that use C as the action language can propagate the symbolic
dimensions of Stateflow data through the model. The symbolic dimensions go into the generated
code. For more information, see Propagate Symbolic Dimensions of Stateflow Data (Stateflow) and
Implement Dimension Variants for Array Sizes in Generated Code.

Compatibility Considerations
When you specify the size of a Stateflow data object by using a Simulink parameter with a storage
class that is not supported for symbolic dimensions, code generation behavior changes.

Before R2019b R2019b
In the generated code, the symbolic dimensions
were replaced by their constant values. No error
or warning occurred.

Code generation results in an error. To resolve
the error:

• Change the storage class for the Simulink
parameter.

• In the Model Configuration Parameters dialog
box, clear the Allow symbolic dimension
specification check box.

Generate C++ Code for Software Compositions with Message-Based
Communication
R2019b introduces C++ and C code generation for message-based communication between Simulink
model components using Messages & Events library Send, Receive, and Queue blocks. This release
also introduces C++ code generation for message-based communication between Simulink top
models and external message protocol services (middleware or operating systems).

For more information about code generation for message-based communication, see Generate C or C
++ Code for Message-Based Communication in Simulink and Generate C++ Code from Top Models
for Message-Based Communication By Using External Message Protocols. For more information
about the blocks, see Send, Receive, and Queue block descriptions.

Cut, copy, and paste code definitions in Embedded Coder Dictionary
In R2019b, you can cut, copy, and paste code definitions into Embedded Coder Dictionaries. In the
Embedded Coder Dictionary dialog box, select code definitions, and click the Cut button or the Copy
button on the quick access toolbar. To add copies of the code definitions, click the Paste button in the
same dictionary or another dictionary. For more information, see Embedded Coder Dictionary.

Configure Embedded Coder Dictionary programmatically
Previously, you could create and alter code definitions only in the Embedded Coder Dictionary dialog
box. In R2019b, you can use the Embedded Coder Dictionary API to configure code definitions

 Model Architecture and Design

8-3

https://www.mathworks.com/help/releases/R2019b/stateflow/ug/sizing-stateflow-data.html#bstks_7
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/send.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/receive.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/queue.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/generate-cpp-or-c-code-for-message-based-communication-in-simulink.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/generate-cpp-or-c-code-for-message-based-communication-in-simulink.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/generate-cpp-code-for-top-model-for-passing-messages-using-external-message-protocols.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/generate-cpp-code-for-top-model-for-passing-messages-using-external-message-protocols.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/send.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/receive.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/queue.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/embeddedcoderdictionary.html

programmatically. To interact with an Embedded Coder Dictionary and its definitions, use these new
classes and new functions.

Class Description
coder.Dictionary Configure an Embedded Coder Dictionary
coder.dictionary.Section Access code definitions in one section of an Embedded

Coder Dictionary
coder.dictionary.Entry Interact with one code definition
Function Description
coder.dictionary.create Create an Embedded Coder Dictionary
coder.dictionary.open Access an existing Embedded Coder Dictionary

A coder.Dictionary object contains a coder.dictionary.Section object for each type of code
definition: storage classes, memory sections, and function customization templates. A
coder.dictionary.Section object contains coder.dictionary.Entry objects, which represent
the code definitions stored in that section of the Embedded Coder Dictionary.

You can apply the definitions in the dictionary to model elements by configuring settings in the Code
Mappings Editor. For an example of the feature, see Configure Code Definitions Programmatically.

R2019b

8-4

https://www.mathworks.com/help/releases/R2019b/ecoder/ref/coder.dictionary-class.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/coder.dictionary.section-class.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/coder.dictionary.entry-class.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/coder.dictionary.create.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/coder.dictionary.open.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/config_code_defs_programmatically_example.html

Data, Function, and File Definition

Generated code calibration and monitoring through XCP and third-
party tools
You can generate code that supports parameter tuning and signal monitoring through an ASAM
MCD-1 XCP communication channel and third-party calibration tools, for example, ETAS® INCA and
Vector CANape®. The XCP communication channel supports the XCP on Ethernet (TCP/IP) and XCP
on SxI (SCI) transport layers.

The code generator creates:

• An XCP external mode target application to which you can connect the third-party XCP calibration
tools.

• In an ASAP2 file, an IF_DATA XCP block that describes the Simulink Coder XCP slave
configuration.

For more information, see Calibrate Generated Code and Monitor Signals Through XCP and Third-
Party Tools.

Argument specifications not required for Function Caller blocks that
invoke scoped Simulink functions
Prior to R2019b, to configure the function prototype for a scoped Simulink Function block that is
invoked by a Function Caller block in the parent model, you had to specify input and output
arguments for the Function Caller block. Starting in R2019b, this is no longer required.

For more information, see Customize Entry-Point Function Interfaces for Simulink Function and
Function Caller Blocks.

Implicit validation occurs when configuring C function prototypes
When you configure prototypes for generated C entry-point functions, Simulink implicitly validates
the configuration for you. Because validation occurs implicitly, you do not need to call the
runValidation method. The runValidation method is no longer supported.

For more information about configuring C function prototypes, see Customize Generated C Function
Interfaces.

Map storage classes defined in Embedded Coder Dictionary to
nonreusable subsystems with separate data
In R2019b, if your model contains a nonreusable subsystem configured with the subsystem parameter
Function with separate data selected, you can use the Code Mappings editor to associate the
separate internal data for the subsystem with storage classes defined in an Embedded Coder
Dictionary. Generating a function with separate data for a nonreusable function can improve the
traceability and testability of code because the subsystem data is declared separately from the parent
model data structures.

 Data, Function, and File Definition

8-5

https://www.mathworks.com/help/releases/R2019b/ecoder/ug/calibrate-generated-code-and-monitor-signals-via-xcp-and-third-party-tools.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/calibrate-generated-code-and-monitor-signals-via-xcp-and-third-party-tools.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/configure-simulink-function-code-interface.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/configure-simulink-function-code-interface.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/function-prototype-control.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/function-prototype-control.html

Apply the new storage classes that you create to a model element category in Code Mappings >
Data Defaults. For more information, see Configure Default C Code Generation for Categories of
Model Data and Functions.

Code Mappings Editor Changes
These changes were made to the Code Mappings editor:

• Entry-Point Functions tab was renamed to Functions.
• The tab order, from left to right, was changed to Data Defaults, Function Defaults, and

Functions.
• On the Data Defaults tab, parameter categories were renamed.

• Local parameters was renamed to Model parameters.
• Parameter arguments was renamed to Model parameter arguments.
• Global parameters was renamed to External parameter objects.

For more information, see Code Mappings Editor.

Function rtw.asap2SetAddress extracts DWARF debug symbols from
binaries compiled using MinGW compiler
If you are generating Executable and Linkable Format (ELF) or Program Database (PDB) files for an
embedded target, you can use the rtw.asap2SetAddress function to automate replacement of ECU
Address placeholder memory address values with actual addresses in a generated ASAP2 file. You
specify a call to the function with the name of the generated ASAP2 file and the name of the
generated executable ELF, PDB, or DWARF debug information file for the model. Prior to R2019b, if
you had an executable program file (.exe) produced with the MinGW compiler, you had to extract
DWARF content from that file and pass the file containing the extracted DWARF content to
rtw.asap2SetAddress. As of R2019b, you can pass the executable program file as produced with
the MinGW compiler, without the extraction, to the function.

For more information, see Automatic ECU Address Replacement for ASAP2 Files (Embedded Coder).

R2019b

8-6

https://www.mathworks.com/help/releases/R2019b/ecoder/ug/configure-default-code-generation-for-categories-of-model-data-and-functions.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/configure-default-code-generation-for-categories-of-model-data-and-functions.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/codemappingseditor.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/asap2-data-measurement-and-calibration.html#bsqg34r-1

Code Generation

Optimized C++ generated code for reusable functions
In R2019a and earlier releases, the code generator packaged reusable subsystem code as functions
outside the class definition in the file model.h file. In R2019b, during C++ code generation, the code
generator generates reusable functions as private methods inside a class, unless reused across
models. For example, here is the code in mBasic.h
class mBasicModelClass {
 public:
 ExtU_mBasic_T mBasic_U;
 ExtY_mBasic_T mBasic_Y;
 void initialize();
 void step();
 void terminate();
 mBasicModelClass();
 ~mBasicModelClass();
 RT_MODEL_mBasic_T * getRTM();
 private:
 DW_mBasic_T mBasic_DW;
 RT_MODEL_mBasic_T mBasic_M;
 void mBasic_Subsystem(real_T rtu_In, real_T *rty_Out, DW_Subsystem_mBasic_T
 *localDW);
};

The subsystem mBasic_Subsystem is a member of the model class MyClass and has access to the
internals like static parameters and private functions.

The exceptions are when you perform one of these:

• Code generation of reusable functions linked to a library.
• Library-based code generation of reusable library subsystem.

For more information, see Generate C++ Class Interface to Model or Subsystem Code.

Embedded Coder contextual tabs on the Simulink Toolstrip
To assist you in your code generation workflow, use the Embedded Coder contextual tabs.

To access the C Code or the C++ Code tab, open the new Embedded Coder app from the Apps
gallery tab on the Simulink Toolstrip. To support common code generation workflow tasks, the tab
provides Embedded Coder functionality corresponding to each task. The Embedded Coder app places
the model in the Simulink Editor Code perspective. For information about the Embedded Coder app,
see Embedded Coder.

The Embedded Coder app supports models configured with ERT-based system target files. If you have
not configured your model or model hierarchy with an ERT-based system target file, Embedded Coder
prompts you to either open an app that supports your model's system target file or change your
model's system target file to ert.tlc.

 Code Generation

8-7

https://www.mathworks.com/help/releases/R2019b/ecoder/ug/generate-class-interface-to-model-or-subsystem-code.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/embeddedcoder-app.html

For more information, see “Simulink Toolstrip: Access and discover Simulink capabilities when you
need them”.

Simulink strings through standard C++ string library
In R2019b, you can generate C++ code from model blocks by using the standard C++ string library. In
R2019a, the generated code relied on the character-array-based C string library.

The C++ string library provides consistent C++ code and improves functionality, such as string length
retrieval. The C++ string library contains functionality, such as concatenation, string copy, string
swapping, string comparison and substring computations. You implement these functionalities in the
model by using the corresponding blocks in the string library.

To use the C++ string library in the generated code, set these configuration parameters:

• Language parameter to C++.
• Code interface packaging parameter to the default C++ class value.
• Standard math library parameter to the default C++03(ISO) value.

Consider the model mStrfindSubStr with a string "Hello!" as input and a String Find block with
a value of "abcde". The block models a substring find operation.

In R2019a, the code generator produced this code in the header file:
typedef struct {
 char_T In1[256];
} ExtU_mStrfindSubStr_T;

The code instantiated a character array In1 .

In R2019a, the code generator produced this code in the C++ source file:
// Model step function
void untitled1ModelClass::step()
{
 const char_T *tmp;
 uint16_T tmp_0;
 uint16_T tmp_1;

 // StringFind: '<Root>/String Find' incorporates:
 // Inport: '<Root>/In1'
 // StringConstant: '<Root>/String Constant'

R2019b

8-8

 tmp = strstr(&mStrfindSubStr_P.StringConstant_String[0],
 &mStrfindSubStr_U.In1[0]);
 if (tmp == NULL) {
 // Outport: '<Root>/Out1'
 mStrfindSubStr_Y.Out1 = -1;
 } else {
 // Outport: '<Root>/Out1'
 mStrfindSubStr_Y.Out1 = (int32_T)(tmp -
 &mStrfindSubStr_P.StringConstant_String[0]) + 1;
 }
}

The code used multiple array copies to determine if "abcde" was a substring of "Hello!".

In R2019b, the code generator produces this code in the header file:
typedef struct {
 std::string In1;
} ExtU_mStrfindSubStr_T;

The code instantiates a std:string object In1 .

In R2019b, the code generator produces this code in the C++ source file:
// Model step function
void untitled1ModelClass::step()
{
 uint32_T tmpOut;

 // StringFind: '<Root>/String Find' incorporates:
 // Inport: '<Root>/In1'
 // StringConstant: '<Root>/String Constant'

 tmpOut = mStrfindSubStr_P.StringConstant_String.find(mStrfindSubStr_U.In1);
 if (tmpOut == (uint32_T)std::string::npos) {
 // Outport: '<Root>/Out1'
 mStrfindSubStr_Y.Out1 = -1;
 } else {
 // Outport: '<Root>/Out1'
 mStrfindSubStr_Y.Out1 = static_cast<int32_T>(tmpOut) + 1;
 }

The code uses a clearer method of looking for the first character match, by using the find function,
which is present in the C++ string library. This code executes faster and is easier to read.

The current implementation has these limitations:

• An array of bus that contains std:string is not supported in software-in-loop and processor-in-
loop simulations.

• Code generation using std:string library does not work and the generated code uses C char_T
arrays if:

• Use dynamic memory allocation for model initialization parameter is selected.
• Use dynamic memory allocation for model block instantiation parameter is selected.
• Remove root level I/O zero initialization parameter is cleared on the configuration

parameters dialog box.
• Remove internal data zero initialization parameter is cleared on the configuration

parameters dialog box.

For more information, see “Generate Code for String Blocks by Using the Standard C++ String
Library”.

 Code Generation

8-9

C++ static_cast in generated code
In R2019b, when generating C++ code, in the model.cpp file, the code generator replaces C-style
type casting with static_cast<>() syntax. The C-style casts are difficult to locate in the generated
code and cannot be checked during compile time. The static_cast<>() syntax makes the
generated code more readable. The compiler can check the static_cast<>() at compile time.

For example, in R2019a, the code generator produced this code:

void CPPCodeModelClass::initialize()
{
 // Registration code

 // initialize error status
 rtmSetErrorStatus((&mMemsetCast_M), (NULL));

 // states (dwork)
 (void) memset((void *)&mMemsetCast_DW, 0,
 sizeof(DW_mMemsetCast_T));

 // external inputs
 (void)memset(&mMemsetCast_U, 0, sizeof(ExtU_mMemsetCast_T));

 // external outputs
 (void) memset((void *)&mMemsetCast_Y, 0,
 sizeof(ExtY_mMemsetCast_T));
}

In R2019b, the code generator produced this code:

void CPPCodeModelClass::initialize()
{
 // Registration code

 // states (dwork)
 (void) std::memset(static_cast<void *>(&mMemsetCast_DW), 0,
 sizeof(DW_mMemsetCast_T));

 // external inputs
 (void)std::memset(&mMemsetCast_U, 0, sizeof(ExtU_mMemsetCast_T));

 // external outputs
 (void) std::memset(static_cast<void *>(&mMemsetCast_Y), 0,
 sizeof(ExtY_mMemsetCast_T));
}

When you enable the MAT-file logging model configuration parameter, the code generated in
model.cpp might still use C-style casts.

Inline traceability for variable and type definitions
R2019b provides line-level traceability coverage for the variable and type definitions in header files.
Inline traceability is available with or without comments.

From the code generation report, click a hyperlinked line of code to navigate to corresponding blocks
in the model. From the Code view in Code perspective, place your cursor over or click a hyperlinked
line of code to navigate to corresponding blocks in the model.

R2019b

8-10

For more information, see Verify Generated Code by Using Code Tracing.

 Code Generation

8-11

https://www.mathworks.com/help/releases/R2019b/ecoder/ug/verify-generated-code-by-using-code-tracing.html

Deployment

R2019b

8-12

Performance
Improved Data Store Memory block reuse to reduce data copies
In R2019b, the generated code contains fewer data copies for models that use Data Store Memory
blocks to store large bus structures in a model reference hierarchy. Eliminating these data copies
conserves RAM and ROM consumption and improves execution speed.

Consider the model mDatastore with a Data Store Read block that reads a bus structure from a Data
Store Memory block called trajectory. The signal is input to a reference model refMdl_fpc_1.
The bus is output from the referenced model and written by a Data Store Write block to the Data
Store Memory trajectory.

In R2019a, the code generator produced this code:

/* Model step function */
void mg1963253_step(void)
{
 /* local block i/o variables */
 int32_T rtb_Model2;

 /* DataStoreRead: '<Root>/Data Store Read' */
 rtb_Model2 = mg1963253_DW.trajectory;

 /* ModelReference: '<Root>/Model2' */
 refMdl_fpc_1_step(&Model2, &rtb_Model2);

 /* DataStoreWrite: '<Root>/Data Store Write' */
 mg1963253_DW.trajectory = rtb_Model2;
}

The code contained an unnecessary data copy to the variable rtb_Model2.

In R2019b, the code generator produces this code:
/* Model step function */
void mg1963253_step(void)
{
 /* ModelReference: '<Root>/Model2' incorporates:
 * DataStoreWrite: '<Root>/Data Store Write'
 */
 refMdl_fpc_1_step(&Model2, &mg1963253_DW.trajectory);
}

 Performance

8-13

The code does not contain the local variable rtb_Model2 and data copy, increasing the efficiency of
generated code.

SIMD vectorization for loops
In R2019b, for Intel SSEor AVX processors and the ARM Neon® processors, SIMD intrinsics can
vectorize loops and arrays. Vectorized loops process a vector of data as a single instruction, thereby
improving execution speed. This vectorization is currently available for MATLAB Coder. The
vectorization provides improved speed and efficiency in generated code.

To generate the code, select an Intel SSE or AVX or ARM Neon code replacement library.

Consider the MATLAB function:
function [a] = simple(w, x)
 a = w .* 0.0;
 for i = 1:numel(w)
 a(i) = (w(i) + x(i)) .* (w(i) + x(i));
 end
end

In R2019a, the code generator produced this C code:
 for (i = 0; i < 16641; i++) {
 a_tmp = w[i] + x[i];
 a[i] = a_tmp * a_tmp;
 }

The loop incremented by one for single and double data types.

In R2019b, the code generator produces this vectorized code for Intel SSE code replacement library:
 for (i = 0; i <= 16636; i += 4) {
 r = _mm_add_ps(_mm_loadu_ps(&w[i]), _mm_loadu_ps(&x[i]));
 _mm_storeu_ps(&a[i], _mm_mul_ps(r, r));
 }

The loop increments by 4 because the input data type is single. Incrementing by four instead of one
occurs because the SIMD functions in the loop body process data in parallel. If the input data type is
double, the loop increments by two. This optimization increases the execution speed of the
generated code. For more information, see What Is Code Replacement? (MATLAB Coder).

Optimized code execution speed for Ceiling, Floor, Minimum and
Maximum SIMD intrinsic functions
In R2019b, for Intel SSE or AVX processors, you can optimize the Rounding Function and MinMax
blocks for models, in parallel in the generated code by using SIMD intrinsics. This optimization
results in improved execution speed of the generated code. The optimization of MinMax blocks is also
available for the ARM Neon code replacement library. To generate this code, in the Configuration
Parameters dialog box, set the Code replacement library parameter.

For Intel SSE or AVX processors, you can optimize and compute the ceil, floor, max, min, and
sqrt functions in parallel in the generated code by using SIMD intrinsics. To generate this code, in
the MATLAB Coder app, on the Custom Code tab, set the Code replacement library parameter.

Use the rounding operation for element-wise operations involving single and double data types.
The rounding-off operations are Ceiling and Floor. These operations calculate the rounded-up and the
rounded-down whole number values of the input.

R2019b

8-14

https://www.mathworks.com/help/releases/R2019b/coder/ug/what-is-code-replacement-mc.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/roundingfunction.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/minmax.html
https://www.mathworks.com/help/releases/R2019b/simulink/slref/minmax.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/ceil.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/floor.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/max.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/min.html
https://www.mathworks.com/help/releases/R2019b/matlab/ref/sqrt.html

The maxima and minima operations require two inputs involving single or double data types.
Calculating the maxima and minima operations yield one element.

Consider the model mFunctions that has inputs in single data type.

In R2019a, the code generator produced this code:

for (i = 0; i < 80; i++) {
 /* Outport: '<Root>/Outport' incorporates:
 * Inport: '<Root>/In1'
 * Rounding: '<Root>/Ceil'
 */
 mFunctions_Y.Outport[i] = ceilf(mFunctions_U.In1[i]);

 /* Outport: '<Root>/Outport1' incorporates:
 * Inport: '<Root>/In3'
 * Rounding: '<Root>/Floor'
 */
 mFunctions_Y.Outport1[i] = floorf(mFunctions_U.In3[i]);

 /* Outport: '<Root>/Outport2' incorporates:
 * Inport: '<Root>/In5'
 * Inport: '<Root>/In6'
 * MinMax: '<Root>/Min'
 */
 mFunctions_Y.Outport2[i] = fminf(mFunctions_U.In5[i], mFunctions_U.In6[i]);

 /* Outport: '<Root>/Outport3' incorporates:
 * Inport: '<Root>/In2'
 * Inport: '<Root>/In4'

 Performance

8-15

 * MinMax: '<Root>/Max'
 */
 mFunctions_Y.Outport3[i] = fmaxf(mFunctions_U.In2[i], mFunctions_U.In4[i]);
}

The loop incremented by one for single and double data types.

In R2019b, the code generator produces this code:

 for (idx = 0; idx <= 76; idx += 4) {
 /* Inport: '<Root>/In1' */
 tmp = _mm_loadu_ps(&mFunctions_U.In1[idx]);

 /* Outport: '<Root>/Outport' */
 tmp_0 = _mm_ceil_ps(tmp);
 _mm_storeu_ps(&mFunctions_Y.Outport[idx], tmp_0);

 /* Inport: '<Root>/In3' */
 tmp = _mm_loadu_ps(&mFunctions_U.In3[idx]);

 /* Outport: '<Root>/Outport1' */
 tmp_0 = _mm_floor_ps(tmp);
 _mm_storeu_ps(&mFunctions_Y.Outport1[idx], tmp_0);

 /* Inport: '<Root>/In5' */
 tmp = _mm_loadu_ps(&mFunctions_U.In5[idx]);

 /* Inport: '<Root>/In6' */
 tmp_0 = _mm_loadu_ps(&mFunctions_U.In6[idx]);

 /* Outport: '<Root>/Outport2' */
 tmp_1 = _mm_min_ps(tmp, tmp_0);
 _mm_storeu_ps(&mFunctions_Y.Outport2[idx], tmp_1);

 /* Inport: '<Root>/In2' */
 tmp = _mm_loadu_ps(&mFunctions_U.In2[idx]);

 /* Inport: '<Root>/In4' */
 tmp_0 = _mm_loadu_ps(&mFunctions_U.In4[idx]);

 /* Outport: '<Root>/Outport3' */
 tmp_1 = _mm_max_ps(tmp, tmp_0);
 _mm_storeu_ps(&mFunctions_Y.Outport3[idx], tmp_1);
}

The loop increments by four because the input data type is single. Incrementing by four instead of
one occurs because the SIMD functions in the loop body process data in parallel. This optimization
increases the execution speed of the generated code. If the input data type is double, the loop
increments by two. For more information, see Code replacement library (Simulink Coder).

SIMD vectorization for loops without compile-time bounds
In R2019b, for Intel SSE or AVX processors and the ARM Neon processor, SIMD intrinsics can
vectorize loops and arrays whose bounds are not set at compile time. Vectorization processes a vector
of data as a single instruction, improving execution speed. Vectorization is currently available for
MATLAB Coder. This optimization improves speed and efficiency in generated code. Using SIMD on
loops also improves the ease of coding because you do not need to specify the bounds for the loops
while programming.

R2019b

8-16

https://www.mathworks.com/help/releases/R2019b/rtw/ref/code-replacement-library.html

To generate the code, select either Intel SSE or AVX or the ARM Neon code replacement library.

Consider the MATLAB function:
function C = dynamic(A, B)
 assert(all(size(A) <= [100 100]));
 assert(all(size(B) <= [100 100]));
 assert(isa(A, 'single'));
 assert(isa(B, 'single'));

 C = zeros(size(A), 'like', A);
 for i = 1:numel(A)
 C(i) = (A(i) .* B(i)) + (A(i) .* B(i));
 end
end

In R2019a, the code generator produced this C code:
void dynamic(const float A_data[], const int A_size[2], const float B_data[],
 const int B_size[2], float C_data[], int C_size[2])
{
 signed char unnamed_idx_0;
 signed char unnamed_idx_1;
 int loop_ub;
 int i;
 float C_data_tmp;
 (void)B_size;
 unnamed_idx_0 = (signed char)A_size[0];
 unnamed_idx_1 = (signed char)A_size[1];
 C_size[0] = unnamed_idx_0;
 C_size[1] = unnamed_idx_1;
 loop_ub = unnamed_idx_0 * unnamed_idx_1;
 if (0 <= loop_ub - 1) {
 memset(&C_data[0], 0, (unsigned int)(loop_ub * (int)sizeof(float)));
 }

 loop_ub = A_size[0] * A_size[1];
 for (i = 0; i < loop_ub; i++) {
 C_data_tmp = A_data[i] * B_data[i];
 C_data[i] = C_data_tmp + C_data_tmp;
 }
}

The code sequentially computed the product of sums operation of the array in the loop one iteration
at a time. The loop bound was unspecified at compile time and was represented by the variable
loop_ub.

In R2019b, the code generator produces this C code by using Intel SSE code replacement library:
void dynamic(const float A_data[], const int A_size[2], const float B_data[],
 const int B_size[2], float C_data[], int C_size[2])
{
 signed char unnamed_idx_0;
 signed char unnamed_idx_1;
 int loop_ub;
 int scalarLB;
 int vectorUB;
 int i;
 __m128 r;
 float C_data_tmp;
 (void)B_size;
 unnamed_idx_0 = (signed char)A_size[0];
 unnamed_idx_1 = (signed char)A_size[1];
 C_size[0] = unnamed_idx_0;
 C_size[1] = unnamed_idx_1;
 loop_ub = unnamed_idx_0 * unnamed_idx_1;
 if (0 <= loop_ub - 1) {
 memset(&C_data[0], 0, loop_ub * sizeof(float));
 }

 Performance

8-17

 loop_ub = A_size[0] * A_size[1];
 scalarLB = loop_ub & -4;
 vectorUB = scalarLB - 4;
 for (i = 0; i <= vectorUB; i += 4) {
 r = _mm_mul_ps(_mm_loadu_ps(&A_data[i]), _mm_loadu_ps(&B_data[i]));
 _mm_storeu_ps(&C_data[i], _mm_add_ps(r, r));
 }

 for (i = scalarLB; i < loop_ub; i++) {
 C_data_tmp = A_data[i] * B_data[i];
 C_data[i] = C_data_tmp + C_data_tmp;
 }
}

The loop increments by four because the input data type is single. Incrementing by four instead of
one occurs because the SIMD functions in the loop body process data in parallel. If the input data
type is double, the loop increments by two. This optimization increases the execution speed of the
generated code. For more information, see What Is Code Replacement? (MATLAB Coder).

SIMD for row-major operations
In R2019a, the code generator produced C/C++ SIMD code with column-major array layout. In
R2019b, for MATLAB Coder and for Intel SSE or AVX processors and ARM Neon processors, the code
generator can produce code with SIMD intrinsics for C/C++ code that uses row-major array layout.
See Row-Major and Column-Major Array Layouts (MATLAB Coder).

Generating row-major layout and adding SIMD processing can improve performance for certain
algorithms and ease integration with other code that uses row-major layout.

To generate the code, select an Intel SSE or AVX or ARM Neon code replacement library.

Consider the MATLAB function:
function C = rowmajor2(A, B)
 assert(all(size(A) == [100 100]));
 assert(all(size(B) == [100 100]));
 assert(isa(A, 'single'));
 assert(isa(B, 'single'));

 C = zeros(size(A), 'like', A);
 for i = 1:100
 for j = 1:100
 C(i,j) = (A(i,j) + B(i,j)) .* (A(i,j) + B(i,j));
 end
 end
end

In R2019a, the code generator produced this C code:
 for (i = 0; i < 100; i++) {
 for (j = 0; j < 100; j++) {
 b_i = j + 100 * i;
 C_tmp = A[b_i] + B[b_i];
 C[b_i] = C_tmp * C_tmp;
 }
 }

The vectorized code sequentially computed the product of sums operation of the array in the loop one
iteration at a time for the row major iterator j.

In R2019b, the code generator produces this C code with Intel SSE code replacement library:
 for (i = 0; i < 100; i++) {
 for (j = 0; j <= 96; j += 4) {

R2019b

8-18

https://www.mathworks.com/help/releases/R2019b/coder/ug/what-is-code-replacement-mc.html
https://www.mathworks.com/help/releases/R2019b/coder/ug/what-are-column-major-and-row-major-representation-1.html

 simd_tmp = j + 100 * i;
 r = _mm_add_ps(_mm_loadu_ps(&A[simd_tmp]), _mm_loadu_ps(&B[simd_tmp]));
 _mm_storeu_ps(&C[simd_tmp], _mm_mul_ps(r, r));
 }
 }

The vectorized code sequentially computes the product of sums operation of the array in the loop for
the row major iterator j. The loop increments by four because the input data type is single.
Incrementing by four instead of one occurs because the SIMD functions in the loop body process data
in parallel. If the input data type is double, the loop increments by two. This optimization increases
the execution speed of the generated code. For more information, see What Is Code Replacement?
(MATLAB Coder).

Specification of upper constraint limit for symbolic dimensions
In R2019a, you generated code that checked whether a symbolic dimension was bound by an lower
limit. In R2019b, you can generate code that also checks whether it is bound by a upper limit. The
code for this check is placed in a header file as a preprocessor directive in the form of a macro.

Symbolic dimensions placed in blocks and data objects help simulate dimension choices without
regenerating code for every set as the model passes through simulation and code generation. You can
choose to specify these dimensions in between certain positive upper and lower limit values.

Having both the lower and upper limit in the generated code means you can accurately validate the
bounds of the parameter values linked to symbolic dimensions before deployment.

Consider the model rtwdemo_dimension_variants with multiple modeling patterns. In the model,
is an Inport labeled 1 with port dimensions defined by symbol A.

 Performance

8-19

https://www.mathworks.com/help/releases/R2019b/coder/ug/what-is-code-replacement-mc.html

In R2019a, the code generator produced this code:
#if A <= 1
error "The preprocessor definition 'A' must be greater than '1'"
#endif

The rtwdemo_dimension_variants.h file contained data definitions and preprocessor
conditionals that defined constraints established between the symbols during simulation. The value of
A was checked for only a lower constraint, which is 1.

In R2019b, the code generator produces this code:
#if A <= 1
error "The preprocessor definition 'A' must be greater than '1'"
#endif
#if A >= 11
error "The preprocessor definition 'A' must be less than '11'"
#endif

The rtwdemo_dimension_variants.h file contains data definitions and preprocessor conditionals
that define constraints established between the symbols during simulation. The value of A is checked
for both lower and upper constraints of 1 and 11. This verification improves the accuracy of the signal
dimension during compile time and deployment. For more information, see Implement Dimension
Variants for Array Sizes in Generated Code.

R2019b

8-20

https://www.mathworks.com/help/releases/R2019b/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html

Parameter expression saturation
In R2019b, you can control whether the generated code contains saturation code that protects
against out-of -range values for tunable parameter expressions. Turning off saturation improves the
execution efficiency of the generated code.

To remove saturation from the generated code, in the Configuration Parameters dialog box, select the
Remove code from tunable parameter expressions that saturate out of range values
parameter. The generated code is free of any saturation check bounds and runs more efficiently. For
more information, see Remove Code from Tunable Parameter Expressions That Saturate Against
Integer Overflow.

You can use the Model Advisor to check the model for configuration parameters that might generate
inefficient saturation code. In the Model Advisor, select and run By Product > Embedded Coder >
Check configuration parameters for generation of inefficient saturation code. For more
information, see Check configuration parameters for generation of inefficient saturation code.

Changes to zero initialization code model configuration parameter
default settings
In R2019b, the default settings of the Remove root level I/O zero initialization (Simulink Coder) and
Remove internal data zero initialization (Simulink Coder) parameters have changed. The Remove
root level I/O zero initialization and Remove internal data zero initialization check boxes are
selected by default. At the command line, ZeroExternalMemoryAtStartup and
ZeroInternalMemoryAtStartup are set to 'off' for a model in which the Code interface
packaging (Simulink Coder) model configuration parameter is set to Nonreusable function.
Removing zero initialization code improves the execution efficiency of the generated code and
conserves ROM usage.

During startup, standards-compliant C and C++ compilers initialize global data to zero, eliminating
the need to include zero initialization code for this data in the generated code. Standards-compliant
compilers do not necessarily initialize dynamically allocated data and local variables to zero. Before
leaving the Remove root level I/O zero initialization and Remove internal data zero
initialization check boxes selected, confirm:

• If your compiler is not standards-compliant, that it initializes global data to zero.
• If you set the Code Interface packaging to Reusable function or C++ Class, that data is

either statically allocated or that dynamically allocated data is initialized to zero.

If you set the Code interface packaging parameter to Reusable function and select the Use
dynamic memory allocation for model initialization (Simulink Coder) parameter, the Remove root
level I/O zero initialization and Remove internal data zero initialization check boxes are
cleared and ZeroExternalMemoryAtStartup and ZeroInternalMemoryAtStartup are set to
'on'.

For a model in which the Code interface packaging parameter is set to C++ Class and the Use
dynamic memory allocation for model block instantiation (Simulink Coder) parameter is selected, the
Remove internal data zero initialization check box is cleared and
ZeroInternalMemoryAtStartup is set to 'on' and is read-only.

For more information, see Remove Zero Initialization Code.

 Performance

8-21

https://www.mathworks.com/help/releases/R2019b/ecoder/ug/Remove-code-from-tunable-parameter-expressions-that-saturate-out-of-range-values.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/Remove-code-from-tunable-parameter-expressions-that-saturate-out-of-range-values.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_61431d9c-e333-4788-96fd-5384de18d851
https://www.mathworks.com/help/releases/R2019b/rtw/ref/remove-root-level-io-zero-initialization.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/remove-internal-data-zero-initialization.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/code-interface-packaging.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/code-interface-packaging.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/use-dynamic-memory-allocation-for-model-initialization.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/use-dynamic-memory-allocation-for-model-initialization.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/use-dynamic-memory-allocation-for-model-block-instantiation.html
https://www.mathworks.com/help/releases/R2019b/rtw/ref/use-dynamic-memory-allocation-for-model-block-instantiation.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/removing-unnecessary-initialization-code.html

Compatibility Considerations
• When you load an existing model, the Remove root level I/O zero initialization and the

Remove internal data zero initialization check boxes are cleared and
ZeroExternalMemoryAtStartup and ZeroInternalMemoryAtStartup are set to 'on' for a
model in which the Code interface packaging parameter is set to Reusable function and you
select the Use dynamic memory allocation for model initialization parameter.

• When you load an existing model, the Remove internal data zero initialization checkbox is
cleared and the ZeroInternalMemoryAtStartup is set to 'on' (command line) and is read-only
for a model in which the Code interface packaging parameter is set to C++ Class and the Use
dynamic memory allocation for model block initialization check box is selected.

• When you load a model configuration set from a MATLAB script that was created in R2014a or
later, and this script sets the Remove internal data zero initialization and Remove root level
I/O zero initialization parameters to values other than their default R2019b values, these
parameters have the default R2019b values. These parameters have these values because scripts
exported in R2014a or later set these parameters in this order:

cs.set_param('ZeroExternalMemoryAtStartup', 'on');
cs.set_param('ZeroInternalMemoryAtStartup', 'on');
...
...
cs.set_param('TargetLang', 'C');
cs.set_param('CodeInterfacePackaging', 'Nonreusable function');

In R2019b, to load a configuration set by using this MATLAB script, modify the script so that these
parameters are set in the correct order for R2019b. The R2019b order sets the TargetLang and
CodeInterfacePackaging parameters before the ZeroExternalMemoryAtStartup and
ZeroInternalMemoryAtStartup parameters. You must set these parameters at the beginning
of the script immediately after the line in which the SystemTargetFile parameter is set. The
SystemTargetFile parameter is set by using the switchTarget function in scripts created in
R2016a or later.

• When you load a model configuration set from a MATLAB script that was created in R2013b or
earlier, change the order in which the parameters are set if the TargetLang parameter is set to C
++ (Encapsulated). In R2013b or earlier, the script does not contain the
CodeInterfacePackaging line, so you must move the TargetLang line to the beginning of the
script immediately after the line in which the SystemTargetFile parameter is set.

For more information on saving and loading model configuration sets, see Manage a Configuration
Set (Simulink).

Enhanced code execution profiling report
Through the enhanced code execution profiling report, you can:

• Compare execution times of two software-in-the-loop (SIL) or processor-in-the-loop (PIL)
simulations.

• Display the CPU usage of generated tasks.
• Display the execution-time distribution for each profiled function.

For more information, see:

R2019b

8-22

https://www.mathworks.com/help/releases/R2019b/simulink/ug/setting-up-configuration-sets.html
https://www.mathworks.com/help/releases/R2019b/simulink/ug/setting-up-configuration-sets.html

• View and Compare Code Execution Times
• report

Elimination of unused writes to global variables
In R2019a, the generated code contained some unused write statements to global variables. In
R2019b, for some modeling patterns, the code generator eliminates these write statements, which
results in less ROM consumption and improved execution speed.

For example, the model writeInsideFunction contains a subsystem
conditionalWriteToGlobal that conditionally writes to the global data store A. The subsystem
writeToGlobal1 writes to A. The subsystem readGlobal reads from the global data store A.

 Performance

8-23

https://www.mathworks.com/help/releases/R2019b/ecoder/ug/view-and-compare-code-execution-times.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/report.html

In R2019a, the code generator produced this code in the writeInsideFunction.c file.

real_T A;
real_T B;
ExtU rtU;
ExtY rtY;
static void readGlobal(void);
static void writeToGlobal_1(void);
static void readGlobal(void)
{
 rtY.Out1 = A + -5.0;
}

static void writeToGlobal_1(void)
{
 A = 2.0 * rtY.Out1;
}

void writeInsideFunction_step(void)
{
 if (B <= -3.4) {
 A = -4.2 * rtU.In2;
 } else {
 A = -3.0 * rtU.In2;
 }

 rtY.Out1 = 2.5 * rtU.In2;
 writeToGlobal_1();
 readGlobal();
}

The generated code contained conditional write statements to the global variable A.

In R2019b, the code generator produces this code in the writeInsideFunction.c file.

real_T A;
real_T B;
ExtU rtU;
ExtY rtY;
static void readGlobal(void);
static void writeToGlobal_1(void);
static void readGlobal(void)
{
 rtY.Out1 = A + -5.0;
}

static void writeToGlobal_1(void)
{
 A = 2.0 * rtY.Out1;
}

void writeInsideFunction_step(void)
{
 rtY.Out1 = 2.5 * rtU.In2;
 writeToGlobal_1();
 readGlobal();
}

R2019b

8-24

void writeInsideFunction_initialize(void)
{
 A = 2.0;
 B = 20.0;
}

The generated code does not contain the conditional write statements to the global variable A. These
write statements are unnecessary because the function writetoGlobal_1 writes to A immediately
after the if-else statement.

 Performance

8-25

Verification

SIL/PIL Manager
The SIL/PIL Manager is an app that simplifies verification of code that you generate from a model.
You can:

• With one click, test numeric equivalence between the model and generated code by running back-
to-back model simulations and software-in-the-loop (SIL) or processor-in-the-loop (PIL)
simulations.

• Configure SIL or PIL simulations to produce code coverage and execution-time profiling metrics.
• Enable your debugger for SIL simulations.
• Export automatically generated test cases for Simulink Test.

The app is in the SIL/PIL tab. From the Apps tab on the Simulink toolstrip, click SIL/PIL Manager.
Or, in the C Code tab, click Verify Code > SIL/PIL Manager.

For more information, see:

• SIL/PIL Manager Verification Workflow
• SIL/PIL Manager

Code coverage information in Code view
In R2019b, when you edit your model in the Embedded Coder app, you can view code coverage
information in the Code view. To view code coverage information, enable a code coverage tool in the
Configuration Parameters dialog box Verification pane. Simulate the model in simulation-in-the-loop
(SIL) mode or processor-in-the-loop (PIL) mode. To display coverage highlighting, on the Coverage
tab, click Coverage Highlighting. The code coverage information is displayed in the Code view. You
can still access the code coverage information in the code generation report and in the code coverage
report. For more information, see Code Coverage for Models in Software-in-the-Loop (SIL) Mode and
Processor-in-the-Loop (PIL) Mode.

Data logging and signal viewer block support for export function
models
R2019b adds logging and signal viewer block support for export function models. You can use logging
and signal viewer blocks to test export-function models as top or referenced models and in the
context of a test harness. For examples, see Test Export-Function Model Simulation Using Function-
Call Generators (Simulink), Test Export-Function Model Simulation Using Stateflow Chart (Simulink),
and Test Export-Function Model Simulation Using Schedule Editor (Simulink).

SIL/PIL for AUTOSAR Classic Software Components containing
referenced models
You can run software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulations of a top-level
AUTOSAR Software Component (SWC) that contains referenced models. You can run top-model or
Model block (Code interface set to Top model) SIL or PIL simulations. In the simulations, the
software:

R2019b

8-26

https://www.mathworks.com/help/releases/R2019b/ecoder/ug/verification-workflow-with-silpil-manager.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ref/silpilmanager-app.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/coverage-for-models-in-sil-mode.html
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/coverage-for-models-in-sil-mode.html
https://www.mathworks.com/help/releases/R2019b/simulink/ug/test-export-function-model-simulation-using-function-call-generators.html
https://www.mathworks.com/help/releases/R2019b/simulink/ug/test-export-function-model-simulation-using-function-call-generators.html
https://www.mathworks.com/help/releases/R2019b/simulink/ug/test-export-function-model-simulation-using-stateflow-chart.html
https://www.mathworks.com/help/releases/R2019b/simulink/ug/test-export-function-model-simulation-using-schedule-editor.html

• Before compilation of referenced models, generates AUTOSAR Runtime Environment (RTE)
header files.

• Provides the RTE include path for referenced model compilation.

You can also run Model block (Code interface set to Model reference) SIL or PIL simulations for
a referenced model within the top-level AUTOSAR SWC. In this case, before you run a simulation, you
must build the parent component to generate the RTE header files. If you do not build the parent
component, the SIL or PIL simulation fails.

For more information, see AUTOSAR Runtime Environment.

Traceability for hidden blocks
The code generator sometimes inserts hidden blocks during the code generation process for various
reasons, for example, to maintain data integrity. Comments for the hidden blocks are included in the
generated code. In R2019b, these comments, and the code generated from the hidden block, trace
back to the original block in the model that triggered the insertion of the hidden block. For more
information, see Traceability to Hidden Blocks.

 Verification

8-27

https://www.mathworks.com/help/releases/R2019b/ecoder/ug/about-sil-and-pil-simulations.html#mw_fdd474ae-f5fc-41f9-9330-02dfc3ec07d0
https://www.mathworks.com/help/releases/R2019b/ecoder/ug/trace-simulink-model-objects-in-generated-code.html#mw_23ca754f-0c86-4a4b-b537-1ba7bb6946e2

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2019b

8-28

https://www.mathworks.com/support/bugreports/

R2019a

Version: 7.2

New Features

Bug Fixes

Compatibility Considerations

9

Code Generation from MATLAB Code

Custom Data Type Replacement: Specify custom data type names for
MATLAB data types
Before R2019a, to specify the data type in the generated code, you used either the built-in C data
types or MathWorks typedefs.

Starting in R2019a, you can specify custom names for the MATLAB data types in the generated code.
This specification improves the readability of the generated code. For more information, see
Customize Data Type Replacement

R2019a

9-2

https://www.mathworks.com/help/releases/R2019a/ecoder/ug/customize-data-type-replacement.html

Model Architecture and Design

Library-based code generation for reusable subsystem function
interfaces
In R2019a, for a top-level reusable library subsystem, you can create function interfaces in which you
specify subsystem input and output block parameter settings and model configuration parameter
settings. Function interfaces are independent models that you save with an accompanying library.
Use function interfaces to lock down subsystem behavior so that the library and not the model owns
the generated code.

You can create function interfaces from within a library or a model by right-clicking the reusable
library subsystem and selecting C/C++ Function Interfaces > Create Function Interface. Once
you create a function interface, a badge appears at the lower-right corner of the subsystem. To create
function interfaces from within a model, enable the code perspective.

From within a library, you can choose from the following methods of creating function interfaces:

• Selecting an existing instance of a reusable library subsystem.
• Configure function interfaces directly in a library.
• Export a function interface. Configure it as a standalone model, and then import it to the library.

After you specify function interfaces for all subsystems in your library, before you generate code for
your model, generate code for the library. When you generate code for a model that contains an
instance of a reusable library subsystem that can use the pregenerated library code, the model links
to the library code. If the model is unable to use the library code, you can specify whether Embedded
Coder produces a warning, error, or neither during code generation by setting the new Behavior
when pregenerated library subsystem code is missing model configuration parameter.

For more information, see Library-Based Code Generation for Reusable Library Subsystems

AUTOSAR Blockset product replaces Embedded Coder Support
Package for AUTOSAR Standard
In R2019a, the AUTOSAR Blockset product replaces the Embedded Coder Support Package for
AUTOSAR Standard. To generate AUTOSAR-compliant C/C++ code and XML component descriptions
for AUTOSAR Classic and Adaptive Platforms, you install AUTOSAR Blockset.

Compatibility Considerations
If you are upgrading to AUTOSAR Blockset from Embedded Coder Support Package for AUTOSAR
Standard, review information about compatibility and upgrade issues in the AUTOSAR Blockset
release notes.

MISRA C:2012 and Secure Coding checks to improve compliance of
generated code
Modifications to existing Model Advisor checks that you use to verify compliance with MISRA C:2012
and Secure Coding standards are outlined in this table.

 Model Architecture and Design

9-3

https://www.mathworks.com/help/releases/R2019a/simulink/gui/behavior-when-pregenerated-library-subsystem-code-is-missing.html
https://www.mathworks.com/help/releases/R2019a/simulink/gui/behavior-when-pregenerated-library-subsystem-code-is-missing.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/library-based-code-generation-for-subsystems-shared-across-models.html

Model Advisor Check Description of Change
Check configuration parameters for MISRA
C:2012

Check configuration parameters for secure
coding standards

Checks now analyze the setting for these configuration
parameters:

• Include comments (GenerateComments)
• MATLAB user comments (MATLABFcnDesc)

Check for missing error ports for AUTOSAR
receiver interfaces

When an error port is missing, the check flags receiver
interface ports with these AUTOSAR data access mode
types:

• ImplicitReceive
• ExplicitReceive
• EndToEndRead

R2019a

9-4

https://www.mathworks.com/help/releases/R2019a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_d21f1cb1-cc30-4fff-95d8-b0d64f6d7dde
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_d21f1cb1-cc30-4fff-95d8-b0d64f6d7dde
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_de730875-cf58-488c-a2f9-4d5dcdfb8014
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_de730875-cf58-488c-a2f9-4d5dcdfb8014

Data, Function, and File Definition

Preserve array dimensions for root-level inports and outports in
generated code
When configuration parameter Array layout is set to Row-major, you can preserve the dimensions
of multidimensional array data for:

• Root-level inports and outports
• Simulink.Signal objects associated with root-level inport and outport

From the code mapping editor in the code perspective, you can configure default configurations to
preserve dimensions of:

• Inports
• Outports
• Global parameters
• Local parameters

In the Embedded Coder Dictionary, to preserve dimensions when you design your own custom
storage class, select the Preserve array dimensions option in the Property Inspector.

From the Model Data Editor, you can preserve dimensions of these elements by selecting the
Preserve array dimensions property from the Property Inspector:

• Root-level inport and outport
• Simulink.Parameter object
• Simulink.LookupTable object

For more details, see Preserve Dimensions of Multidimensional Arrays in Generated Code.

Custom storage class with different code generation settings for
single-instance and multi-instance data
In R2019a, you can create custom storage classes that use different settings for single-instance and
multi-instance data. For example, the data for a top model is single-instance. If the top model
references another model multiple times, the data for the referenced model can be multi-instance.
You can create a storage class that uses different storage settings for these two different cases.

In the Embedded Coder Dictionary, define a custom storage class and specify its settings in the
Property Inspector pane. Select the new property Use different property settings for single-
instance and multi-instance data. For single-instance data, you can specify the storage type and
structure properties. You can separately specify the structure properties for multi-instance data.

When you apply the storage class to a data item, the Embedded Coder Dictionary implements either
the single-instance settings or the multi-instance settings depending on the type of data and the
context of the model within the model reference hierarchy. For more information, see Flexible
Storage Class for Different Model Hierarchy Contexts.

 Data, Function, and File Definition

9-5

https://www.mathworks.com/help/releases/R2019a/ecoder/ug/preserve-dimensions-of-multidimensional-arrays-in-generated-code.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/define-a-storage-class-with-different-settings-based-on-model-hierarchy-context.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/define-a-storage-class-with-different-settings-based-on-model-hierarchy-context.html

Code generation definitions in multiple packages from Embedded
Coder Dictionary
Previously, in an Embedded Coder Dictionary, you could load only one package of code generation
definitions at a time. In R2019a, you can load and refer to definitions in multiple packages
simultaneously. To load and unload packages from an Embedded Coder Dictionary, click Manage
Packages and select the package from the drop-down list. For more information, see Refer to Code
Generation Definitions in a Package.

Storage classes with get and/or set data access functions in
Embedded Coder Dictionary
Starting in R2019a, in the Embedded Coder Dictionary, you can define a storage class for a root-level
inports, root-level outports, and local parameters so they can be accessed by customizable get and/or
set functions. Such customization can be useful, for example, to abstract layers of software, gain
access to data from an external file, or control access to critical sections of code.

You configure data access customization for a storage class by setting the Data Access property to
Function. You have the option of configuring:

• Data Scope: Scope of the access functions, which is currently only imported.
• Header File: Naming rule for the header file declaring the access functions.
• Access Mode: Whether the access functions return data by value or by pointer.
• Allowed Access: Whether to allow read and write access, read-only access, or write-only access

to the data.
• Name of Getter: Naming rules for the get functions.
• Name of Setter: Naming rules for the set functions.

For more information, see Embedded Coder Dictionary and Access Data Through Functions by
Using Storage Classes in Embedded Coder Dictionary.

Code definitions from local and shared Embedded Coder Dictionaries
Previously, if a model contained local Embedded Coder Dictionary definitions, the Code Mappings
editor did not use definitions from any linked data dictionaries. The editor used either the local
dictionary or the shared dictionary, but not both.

In R2019a, you can use definitions from both the local Embedded Coder Dictionary and shared
Embedded Coder Dictionaries contained in linked data dictionaries. When you link a shared data
dictionary with code definitions to your model, those definitions are read-only in the local Embedded
Coder Dictionary. The shared definitions also appear in the Code Mappings editor where you can
apply them to model data. For more information, see Deploy Code Generation Definitions to Users.

Also in R2019a, opening the code perspective creates a local dictionary that contains the built-in
storage classes in the model.

Compatibility Considerations
Previously, you used the function coder.dictionary.remove with sourceName set to the name of
the model to remove the local Embedded Coder Dictionary from a model. In R2019a, when you use

R2019a

9-6

https://www.mathworks.com/help/releases/R2019a/ecoder/ref/embeddedcoderdictionary.html#mw_a95f157e-7abb-48e1-8e18-e8bcbd9241f1
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/embeddedcoderdictionary.html#mw_a95f157e-7abb-48e1-8e18-e8bcbd9241f1
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/embeddedcoderdictionary.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/access-data-through-functions-with-coder-dictionary-defaults.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/access-data-through-functions-with-coder-dictionary-defaults.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html#mw_f3df0d3a-a806-4951-8a45-1cf4c219afff
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/coder.dictionary.remove.html

the function coder.dictionary.remove on a model, the function does not remove the local
dictionary. Instead, the function removes the local definitions from packages that you have loaded and
local custom definitions. The model still contains the local dictionary with definitions from the
SimulinkBuiltIn package.

Code packaging support for model arguments
Previously, you could not configure the packaging of model arguments in the generated code. In
R2019a, you can configure the packaging for these parameters in the model where they are defined.
In the Model Data Editor, set the storage class for a model argument to Model default. With this
setting, the parameters acquire the default code generation settings that you specify for Parameter
arguments. The Model default must be a structured storage class. Parameter values must be finite.

For more information, see Configure Packaging of Parameter Arguments in Generated Code.

Model argument support for top models
In R2019a, you can generate code for a top model that promotes Model block or model workspace
parameters as model arguments.

• For Model block parameters, specify that the parameter is an argument.
• For parameters in the model workspace, specify that the parameter is an argument and specify

the storage class as Model default.

The parameter becomes part of a data structure in the generated code. If you generate code that uses
the reusable code format, access the data structure through a pointer in the real-time model for the
top model instance.

For more information about model arguments in the generated code, see Configure Packaging of
Parameter Arguments in Generated Code.

Compatibility Considerations
Previously, you accessed parameter data in the top model through a pointer in the real-time model. If
you generated code that used the reusable code format, you could define different parameter values
for each instance of a top model. You defined these different values by setting the pointer to different
memory with different sets of parameter values. In R2019a, for multi-instance top models and top
models that use a malloc memory model, parameter data in the top model is declared as a standalone
global variable. For C++ code generation, the parameter data is a static member of the model class.
To define different parameter values for each instance of a top model, you must configure model
arguments in the same way that you configure model arguments for referenced models. Define the
parameter in the model workspace then, in the Model Data Editor, Property Inspector, or Model
Explorer, select the Argument check box.

C entry-point function prototype preview and customization in the
Code Mapping Editor
In R2018b, you could preview and customize names of entry-point functions in the Code Mapping
Editor column, Function Name. You could also customize the arguments of Simulink functions and
step functions by selecting the vertical dots in the column to open a configuration dialog box.

 Data, Function, and File Definition

9-7

https://www.mathworks.com/help/releases/R2019a/ecoder/ref/coder.dictionary.remove.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/configure-the-packaging-of-parameter-arguments-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/configure-the-packaging-of-parameter-arguments-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/configure-the-packaging-of-parameter-arguments-in-the-generated-code.html

In R2019a, you can preview and customize prototypes of entry-point functions in a new Code
Mapping Editor column, Function Preview. To customize entry-point function names, and the
arguments of Simulink functions and step functions, you can select the prototype hyperlink to open a
configuration dialog box.

For more information, see Override Default Naming for Individual C Entry-Point Functions and
Override Default C Step Function Interface.

R2019a

9-8

https://www.mathworks.com/help/releases/R2019a/ecoder/ug/configure-names-for-generated-c-initialize-and-step-functions.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/configure-c-step-function-arguments.html

Code Generation

Code metrics information in code view
Code metrics information was previously available only in the code generation report. In R2019a, you
can also view code metrics directly in the code view.

To view the code metrics for a variable or function, place your cursor over the variable or function in
the code view. You can still access the metrics in the code generation report. For more information,
see Static Code Metrics.

Cross-release code import without opening previous release
Previously, you needed the crossReleaseExport function for the cross-release code integration
workflow. The function opened a previous release and generated a cross-release artifact in a folder
within the current working folder. In R2019a, the crossReleaseExport function is not required. To
import generated code from a previous release, when you run either the crossReleaseImport or
sharedCodeUpdate functions, specify the location of the build folder.

For more information, see:

• Cross-Release Code Integration
• Integrate Generated Code by Using Cross-Release Workflow

The crossReleaseExport function will be removed in a future release.

Compatibility Considerations
In R2019a, the crossReleaseExport function does not:

• Open a previous release.
• Generate cross-release artifacts.

You can continue to use scripts from previous releases that:

• Run the crossReleaseExport function.
• Specify cross-release artifact folders as arguments for the crossReleaseImport and

sharedCodeUpdate functions.

This table lists examples of how the functions behave.

Scenario Behavior
Script runs crossReleaseExport:
artifactLocation = crossReleaseExport(pathToBuildFolder);

Warning produced.

crossReleaseExport returns
value of pathToBuildFolder.

 Code Generation

9-9

https://www.mathworks.com/help/releases/R2019a/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/crossreleaseimport.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/sharedcodeupdate.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/cross-release-code-integration-workflow.html
https://www.mathworks.com/help/releases/R2019a/ecoder/examples/integrate-generated-code-using-cross-release-wWorkflow-ed7ac5629629.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/crossreleaseimport.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/sharedcodeupdate.html

Scenario Behavior
Location of artifact folder from previous release passed to
crossReleaseImport:
blockHandles = crossReleaseImport(pathToArtifact, configSet, ...
 'Simulationmode', 'SIL');

Warning produced.

From the artifact,
crossReleaseImport extracts
path to build folder and then
imports code from the build folder.

Value of 'CodeLocation' passed to crossReleaseImport:
blockHandles = crossReleaseImport(pathToArtifact, configSet, ...
 'Simulationmode', 'SIL', ...
 'CodeLocation', pathToAnchorFolder);

Warning produced.

From the artifact,
crossReleaseImport extracts
path to build folder relative to an
anchor, and then imports code from
the build folder.

Location of artifact folder from previous release passed to
sharedCodeUpdate:
blockHandles = sharedCodeUpdate(pathToArtifact, pathToExistingSharedCode);

Warning produced.

From the artifact,
sharedCodeUpdate extracts path
to shared code folder and then
imports code from the shared code
folder.

Value of 'CodeLocation' passed to sharedCodeUpdate:
sharedCodeUpdate(pathToArtifact, pathToExistingSharedCode, ...
 'CodeLocation', pathToAnchorFolder);

Warning produced.

From the artifact,
sharedCodeUpdate extracts path
to shared code folder relative to an
anchor, and then imports code from
the shared code folder.

Import of code from previous release for code generation-only
workflow
The crossReleaseImport function supports a new value for SimulationMode. If you specify the
name-value pair, SimulationMode, 'none', the function creates a Cross-Release Code Integration
block that:

• Supports generation of code that calls the imported code.
• Does not support simulation.

The function does not compile the imported code. You can use the block, for example, in workflows
where compilation occurs on a different computer.

Maximum line width for generated code
You can specify the maximum line width for wrapping generated code. Select the Configurations
Parameters > Code Generation > Code Style > Maximum line width parameter. The default
value is 80. You can specify any integer in the range of 50–1000.

If the comments exceed the maximum line width specified, the tail comments are generated on a new
line with right justification. These are not affected:

R2019a

9-10

https://www.mathworks.com/help/releases/R2019a/ecoder/ref/crossreleaseimport.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/crossreleaseimport.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/crossreleaseimport.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/crossreleaseimport.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/sharedcodeupdate.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/sharedcodeupdate.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/sharedcodeupdate.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/sharedcodeupdate.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/crossreleaseimport.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/maximum-line-width.html

• #define tail comments
• Simulink block comments
• Stateflow object comments
• Banner comments

Symbolic dimension support for %roll directive
You can now write an S-function that has symbolic dimensions by using the %roll directive.

Before R2019a, you wrote a separate code path and checked every block property for symbolic
dimensions, for example:

%function Outputs(block, system) Output
 %assign outputHasSymbolicWidth = LibBlockOutputHasSymbolicWidth(0)
 %if outputHasSymbolicWidth || LibBlockInputHasSymbolicWidth(0)
 %assign symbolicWidth = outputHasSymbolicWidth ...
 ? LibBlockOutputSignalSymbolicWidth(0) ...
 : LibBlockInputSignalSymbolicWidth(0)
 {
 int_T i0;
 for (i0 = 0; i0 < (%<symbolicWidth>); i0++) {
 %assign u0 = LibBlockInputSignal(0, "", "i0", 0)
 %assign k0 = LibBlockParameter(Gain, "", "i0", 0)
 %assign rhs = "%<k0> * %<u0>"
 %<LibBlockAssignOutputSignal(0, "", "i0", 0, rhs)>
 }
 }
 %else
 %assign rollVars = ["U", "Y", "P"]
 %roll sigIdx = RollRegions, lcv = 5, block, "Roller", rollVars
 %assign u0 = LibBlockInputSignal(0, "", lcv, sigIdx)
 %assign k0 = LibBlockParameter(Gain, "", lcv, sigIdx)
 %assign rhs = "%<k0> * %<u0>"
 %<LibBlockAssignOutputSignal(0, "", lcv, sigIdx, rhs)>
 %endroll
 %endif
%endfunction

In R2019a, you do not have to maintain the separate code path, for example:

%function Outputs(block, system) Output
 %assign rollVars = ["U", "Y", "P"]
 %roll sigIdx = RollRegions, lcv = 5, block, "Roller", rollVars
 %assign u0 = LibBlockInputSignal(0, "", lcv, sigIdx)
 %assign k0 = LibBlockParameter(Gain, "", lcv, sigIdx)
 %assign rhs = "%<k0> * %<u0>"
 %<LibBlockAssignOutputSignal(0, "", lcv, sigIdx, rhs)>
 %endroll
%endfunction

For details about configuring symbolic dimensions for S-functions, see Configure Dimension Variants
for S-Function Blocks.

 Code Generation

9-11

https://www.mathworks.com/help/releases/R2019a/ecoder/ug/configure-dimension-variants-for-simulink-function-s-function-blocks.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/configure-dimension-variants-for-simulink-function-s-function-blocks.html

Embedded Coder contextual tabs on the Simulink Toolstrip Tech
Preview
In R2019a, you have the option to turn on the Simulink Toolstrip. For more information, see “Simulink
Toolstrip Tech Preview replaces menus and toolbars in the Simulink Desktop”.

The Simulink Toolstrip includes contextual tabs, which appear only when you need them. The
Embedded Coder contextual tabs include options for completing actions that apply only to Embedded
Coder.

• To access the C Code tab, open the Embedded Coder app from the App gallery tab on the
Simulink Toolstrip. If the C++ Code tab opens, select C code from the Output section of the
gallery.

• To access the C++ Code tab, open the Embedded Coder app from the App gallery tab on the
Simulink Toolstrip. If the C Code tab opens, select C++ code from the Output section of the
gallery.

• To access the SIL/PIL tab, open the SIL/PIL Manager app from the App gallery tab on the
Simulink toolstrip. Or, click Verify > SIL/PIL Simulation in the C Code tab.

• To access the Hardware tab, in the C Code tab, select Verify > Run on Custom Hardware.

Documentation does not reflect the addition of the Embedded Coder contextual tabs.

R2019a

9-12

Deployment

Embedded Coder Support Package for PX4 Autopilots: Generate, build
and deploy Simulink models on Pixhawk flight controllers
The Embedded Coder Support Package for PX4® Autopilots is available from release R2019a
onwards. You can use the support package to generate, build, and deploy Simulink models on
Pixhawk® series flight controllers.

The support package uses the PX4 toolchain, and includes a library of Simulink blocks that help you
to develop PX4 autopilot models that use the various uORB topics, sensors, and PWM-based
actuators.

DSP System Toolbox Support Packages for ARM Cortex -A and ARM
Cortex -M Processors will be removed
Starting in R2019a, the DSP System Toolbox Support Package for ARM Cortex-A Processors and DSP
System Toolbox Support Package for ARM Cortex-M Processors will no longer be available for
download. This functionality has been moved to Embedded Coder Support Package for ARM Cortex-A
Processors and Embedded Coder Support Package for ARM Cortex-M Processors, respectively. For
more details on installing and getting started with these support packages, see Setup and
Configuration (Embedded Coder Support Package for ARM Cortex-A Processors) and Setup and
Configuration (Embedded Coder Support Package for ARM Cortex-M Processors).

 Deployment

9-13

https://www.mathworks.com/help/releases/R2019a/supportpkg/armcortexa/setup-and-configuration.html
https://www.mathworks.com/help/releases/R2019a/supportpkg/armcortexa/setup-and-configuration.html
https://www.mathworks.com/help/releases/R2019a/supportpkg/armcortexm/setup-and-configuration.html
https://www.mathworks.com/help/releases/R2019a/supportpkg/armcortexm/setup-and-configuration.html

Performance

Reusable custom storage classes across referenced models
In R2019a, you can configure the code generation for models that have Reusable custom storage
classes and referenced models by using the configuration parameter Detect non-reused custom
storage classes (Simulink) on the Data Validity pane. This configuration reduces the number of
global variables in the code and RAM usage.

The default behavior of the parameter settings varies with the presence of Reusable custom storage
classes and referenced models.

When there are Reusable custom storage classes and referenced models present, the parameter
settings are:

None
Simulink software generates a message for you to set the parameter to Error.

Warning
Simulink software generates a message for you to set the parameter to Error

Error
If Reusable custom storage classes can be combined Simulink software generates code. If not, it
generates an error.

For example, the model MultiModelRCSC contains a Reusable custom storage class created with a
void-void interface and a model reference.

This model reference reuses the custom storage class.

The code generated from the combined Reusable custom storage class is:

 #include "mMultiModelRCSC.h"

 /* Exported data definition */

 /* Definition for custom storage class: Reusable */
 real_T rcsc;

R2019a

9-14

https://www.mathworks.com/help/releases/R2019a/simulink/gui/reusable-csc-has-incompatible-usages.html
https://www.mathworks.com/help/releases/R2019a/simulink/gui/reusable-csc-has-incompatible-usages.html

 /* Model step function */
 void mMultiModelRCSC_step(void)
 {
 /* Gain: '<Root>/Gain' */
 rcsc = -3.0 * rcsc;

 /* ModelReference: '<Root>/Model' */
 mMultiModelRCSC_ref1();

 /* ModelReference: '<Root>/Model1' */
 mMultiModelRCSC_ref2();
 }

The variable rcsc is reused with a gain of -3.0 without additional global variable.

For models without a Reusable custom storage class shared among referenced models, the
parameter functions the same way as it has in earlier releases.

Parallelization of execution of for-loops
In R2019a, you can compute for-loops in parallel by using multithreading to improve the speed of
code execution of MATLAB Function, MATLAB System, and For Each blocks.

Consider a model like parForExample with a MATLAB Function block.

To turn on the parallel loop computation, in the Configuration Parameters dialog box on the
Optimization pane, select the Maximize execution speed option from the Priority drop-down
list. The parameter Generate parallel for loops is automatically selected. The parameter enables
the compiler to compute loops in parallel.

The function inside the MATLAB Function block contains this code with the statement parfor for
looping.

function y = access3a(u) %#codegen

% Copyright 2019 The MathWorks, Inc.

persistent pA;
if isempty(pA)
 pA = 0;
end
A = ones(20,50);
t = 0;

parfor (i = 1:10,4) % SIV - trivial
 A(i,1) = A(i,1) + 1;

 Performance

9-15

https://www.mathworks.com/help/releases/R2019a/coder/ref/parfor.html

end

y = A(1,4) + u + t + pA;

In R2019a, the code generator produces this code:

#pragma omp parallel for num_threads(4 >
 omp_get_max_threads() ? omp_get_max_threads() : 4)

In the generated code, the pragma instructs the compiler to execute the looping in parallel. This
parallel execution results in an increase of the speed of execution of the generated code. For more
information, see Speed Up for-Loop Implementation in Code Generated by Using parfor.

Subsystem output with internal signals for buffer reduction
In R2019a, for more modeling patterns, the code generator can reuse variables for subsystem output
signals and signals internal to the system. Reusing these variables conserves RAM consumption.

For example, the model subsystem_out_reuse contains the reusable subsystem RSYS1. This
subsystem contains a series of connected MATLAB blocks.

In R2018b, the code generator produced this code:
/* Output and update for atomic system: '<Root>/RSYS1' */
void subsystem_out_reuse_RSYS1(const real_T rtu_In1[2], real_T rty_Out1[2])
{
 real_T rtb_y_d[2];
 real_T rtb_y_a[2];

 /* MATLAB Function: '<S1>/MyFunc1' */
 subsystem_out_reuse_MyFunc1(rtu_In1, rtb_y_d);

 /* MATLAB Function: '<S1>/MyFunc2' */
 subsystem_out_reuse_MyFunc2(rtb_y_d, rtb_y_a);

 /* MATLAB Function: '<S1>/MyFunc3' */
 subsystem_out_reuse_MyFunc2(rtb_y_a, rtb_y_d);

 /* MATLAB Function: '<S1>/MyFunc4' */
 subsystem_out_reuse_MyFunc2(rtb_y_d, rty_Out1);
}

R2019a

9-16

https://www.mathworks.com/help/releases/R2019a/ecoder/ug/Speed-Up-for-loop-implementation-in-the-Code-Generated-using-parfor.html

The generated code contained two local buffers for holding values between the inputs and the
outputs of each MATLAB Function block.

In R2019a, the code generator produces this code:
/* Output and update for atomic system: '<Root>/RSYS1' */
void subsystem_out_reuse_RSYS1(const real_T rtu_In1[2], real_T rty_Out1[2])
{
 real_T rtb_y_d[2];

 /* MATLAB Function: '<S1>/MyFunc1' */
 subsystem_out_reuse_MyFunc1(rtu_In1, rtb_y_d);

 /* MATLAB Function: '<S1>/MyFunc2' */
 subsystem_out_reuse_MyFunc2(rtb_y_d, rty_Out1);

 /* MATLAB Function: '<S1>/MyFunc3' */
 subsystem_out_reuse_MyFunc2(rty_Out1, rtb_y_d);

 /* MATLAB Function: '<S1>/MyFunc4' */
 subsystem_out_reuse_MyFunc2(rtb_y_d, rty_Out1);
}

The generated code contains one local buffer for holding intermediate values between the inputs and
outputs of each MATLAB Function block. For more information, see “Enable and Reuse Local Block
Outputs in Generated Code”.

Optimized code execution speed for Single Instruction, Multiple Data
(SIMD) intrinsic division operation
In R2019a, for Intel processors with SSE or AVX support, you can optimize and compute the division
operation for models in parallel in the generated code by using SIMD intrinsics. To generate the code,
in the Configuration Parameters dialog box, for the Code replacement library parameter, choose an
Intel SSE or Intel AVX code replacement library.

The division operation is for element-wise arithmetic operations involving single and double data
types.

Consider the model MDiv with inputs in single and double data type.

 Performance

9-17

In R2018b, the code generator produced this code:

void mDiv_step(void)
{
 int32_T i;
 for (i = 0; i < 140; i++) {
 /* Outport: '<Root>/Out2' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 * Product: '<Root>/Divide'
 */
 mDiv_Y.Out2[i] = mDiv_U.In1[i] / mDiv_U.In2[i];

 /* Outport: '<Root>/Out3' incorporates:
 * Inport: '<Root>/In5'
 * Inport: '<Root>/In6'
 * Product: '<Root>/Divide2'
 */

R2019a

9-18

 mDiv_Y.Out3[i] = mDiv_U.In5[i] / mDiv_U.In6[i];
 }
}

The code sequentially computes the for-loop 4 to 8 byte values at a time depending on whether the
data type is single or double.

In R2019a, the code generator produces this code:

void mDiv_step(void)
{
 int32_T idx;
 __m128 tmp;
 __m128 tmp_0;
 __m128 tmp_1;
 __m128d tmp_2;
 __m128d tmp_3;
 __m128d tmp_4;
 for (idx = 0; idx <= 136; idx += 4) {
 /* Inport: '<Root>/In1' */
 tmp = _mm_loadu_ps(&mDiv_U.In1[idx]);

 /* Inport: '<Root>/In2' */
 tmp_0 = _mm_loadu_ps(&mDiv_U.In2[idx]);

 /* Outport: '<Root>/Out2' */
 tmp_1 = _mm_div_ps(tmp, tmp_0);
 _mm_storeu_ps(&mDiv_Y.Out2[idx], tmp_1);
 }

 for (idx = 0; idx <= 138; idx += 2) {
 /* Inport: '<Root>/In5' */
 tmp_2 = _mm_loadu_pd(&mDiv_U.In5[idx]);

 /* Inport: '<Root>/In6' */
 tmp_3 = _mm_loadu_pd(&mDiv_U.In6[idx]);

 /* Outport: '<Root>/Out3' */
 tmp_4 = _mm_div_pd(tmp_2, tmp_3);
 _mm_storeu_pd(&mDiv_Y.Out3[idx], tmp_4);
 }
}

The code computes the division operation at 16 byte values at a time for single or double data
types. The parallel computing increases the execution speed of the generated code. For more
information, see Code replacement library (Simulink Coder).

Optimized code for Switch Case blocks
In R2018b, for Switch Case blocks, the generated code might have contained case statements that
did not execute because the control expression in the switch statement did not equal the constant
expression in the case statement. This unused code increased ROM consumption and reduced
execution speed.

In R2019a, where possible, the code generator eliminates these unreachable case statements
reducing ROM consumption and increasing execution speed.

 Performance

9-19

https://www.mathworks.com/help/releases/R2019a/rtw/ref/code-replacement-library.html

For example, the model switch_case_optimization contains a Repeating Sequence block whose
values range from -2 to 3. The output signal from this block directly connects to the subsystem
switch_case1. This signal contains a branch to a Saturation block with a Max value of 0 and a Min
value of -1. This signal connects to the subsystem switch_case2. These subsystems each contain a
Switch-Case block that connects to Switch Case Action Subsystem blocks.

In R2018b, the code generator produced this code for the outofrange and twoCasesLeft Switch
Case blocks.

/* SwitchCase: '<S2>/outofrange' */
 switch (rtb_Saturation4) {
 case -1:
 rtAction = 0;
 break;

 case 0:
 rtAction = 1;
 break;

R2019a

9-20

 case 1:
 rtAction = 2;
 break;

 case 512:
 rtAction = 3;
 break;

 case -8192:
 rtAction = 4;
 break;

 default:
 rtAction = 5;
 break;
 }
...
/* SwitchCase: '<S3>/twoCasesLeft' */
 switch (rtb_Saturation4) {
 case -1:
 rtAction = 0;
 break;

 case 2:
 rtAction = 1;
 break;

 case 3:
 rtAction = 2;
 break;

 case 1:
 rtAction = 3;
 break;

 case -8192:
 rtAction = 4;
 break;

 default:
 rtAction = 5;
 break;
 }

For outofrange, the generated code contained six case statements even though cases 3 and -8192
did not execute because they are outside the input range of -2 through 3. For twoCasesleft, the
generated code contained six case statements even though only case -1: is within the input range
of 0 through -1.

In R2019a, the code generator produces this code for the outofrange and twoCasesLeft blocks.

...
/* SwitchCase: '<S2>/outofrange' */
 switch (rtb_Saturation4) {
 case -1:
 rtAction = 0;
 break;

 Performance

9-21

 case 0:
 rtAction = 1;
 break;

 case 1:
 rtAction = 2;
 break;

 default:
 rtAction = 5;
 break;
 }
...
/* SwitchCase: '<S3>/twoCasesLeft' */
 if (rtb_Saturation4 == -1) {
 rtAction = 0;
 } else {
 rtAction = 5;
 }

In R2019a, the generated code does not contain the case statements that do not execute. If only one
case and the default statement remain, the generated code contains an if-else statement. For
more information, see Switch.

Removal of instrumentation overhead from execution-time profiling
R2019a provides improved execution-time profiling of generated code that is run on deterministic
hardware.

• You can run a processor-in-the-loop (PIL) simulation that automatically discards the time overhead
that the code instrumentation introduces.

• You can use the target hardware to estimate the average overhead value or you can specify the
value manually.

• The software filters the execution times of AUTOSAR Runtime Environment (RTE) code and
functions that run within Simulink, for example, Function Caller blocks.

For more information, see:

• Remove Instrumentation Overheads from Execution Time Measurements
• rtw.connectivity.Config

Improvement in execution speed through common subexpression
elimination
Previously, for models that contained redundant subexpressions that were numerically and logically
equivalent, and commutative such as addition and multiplication, the generated code repeatedly
calculated the value of the subexpression. In R2019a, the generated code contains a temporary
variable that holds the value of these subexpressions and eliminates the redundant calculations. This
optimization improves the execution speed of the generated code. The parameter Eliminate
superfluous local variables (expression folding) enables this optimization.

Consider a model like addExpr.

R2019a

9-22

https://www.mathworks.com/help/releases/R2019a/ecoder/ug/switch.html
https://www.mathworks.com/help/releases/R2019a/simulink/slref/functioncaller.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ug/remove-instrumentation-overhead-from-execution-time-measurements.html
https://www.mathworks.com/help/releases/R2019a/ecoder/ref/rtw.connectivity.config.html

In R2018b, the code generator produced this code:
void addExpr_step(void)
{
 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 * Sum: '<Root>/Add'
 */
 rtY.Out1 = rtU.In1 + rtU.In2;

 /* Outport: '<Root>/Out2' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 * Sum: '<Root>/Add1'
 */
 rtY.Out2 = rtU.In2 + rtU.In1;
}

The same addition operation occurred repeatedly and the values were stored in rtY.Out1 and
rtY.Out2.

In R2019a, the code generator produces this code:

void addExpr_step(void)
{
 real_T Out1_tmp;

 /* Sum: '<Root>/Add' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 * Sum: '<Root>/Add1'
 */
 Out1_tmp = rtU.In1 + rtU.In2;

 /* Outport: '<Root>/Out1' incorporates:
 * Sum: '<Root>/Add'
 */
 rtY.Out1 = Out1_tmp;

 /* Outport: '<Root>/Out2' */
 rtY.Out2 = Out1_tmp;

 Performance

9-23

}

The generated code contains the temporary variable Out1_tmp for holding the result of the addition
operation thereby eliminating the redundancy. For more information, see Eliminate superfluous local
variables (Expression folding) (Simulink Coder).

Data copy reduction in function calls
In R2019a, the code generator avoids large temporary buffers and redundant data copies of
structures that are passed to MATLAB functions. Some of the coding patterns that you can optimize
include passing a structure or an array as the first argument, and then an element of the structure or
the array as the second argument of a function.

Consider a sample MATLAB code snippet:
#callee function

sfunction b = func1(a, b)
%#codegen
coder.inline('never');
b.result = single(0.0);
len = int32(length(b.array));
if a.start > int32(0) && a.start <= len && a.stop > int32(0) && a.stop <= len
 for n = a.start : a.stop
 b.result = b.result + (a.a1 + a.a2 + a.a3 + a.a4 + a.a5)
 * abs(b.array(n) * a.a6(n));
 end;
else
 b.result = single(0);
end;
end

#caller function
function [handle] = topFunc(handle)
%#codegen
[handle.struct(1)] = func1(handle, handle.struct(1));
[handle.struct(2)] = func1(handle, handle.struct(2));
end

A structure handle and an element of the structure handle.struct(1) are passed to a function
func1.

In R2018b, the code generator produced this C code for the preceding MATLAB script.
void topFunc(struct0_T *handle)
{
 static float t0_a6[1000000];
 memcpy(&t0_a6[0], &handle->a6[0], 1000000U * sizeof(float));
 func1(handle->start, handle->stop, handle->a1, handle->a2, handle->a3,
 handle->a4, handle->a5, t0_a6, &handle->b_struct[0]);
 memcpy(&t0_a6[0], &handle->a6[0], 1000000U * sizeof(float));
 func1(handle->start, handle->stop, handle->a1, handle->a2, handle->a3,
 handle->a4, handle->a5, t0_a6, &handle->b_struct[1]);
}

There are multiple data copies of the array t0_a6.

In R2019a, the code generator produces this C code instead:
void topFunc(struct0_T *handle)
{
 func1(handle, &handle->b_struct[0]);
 func1(handle, &handle->b_struct[1]);
}

The generated code does not contain multiple data copies, which improves the efficiency of the
generated code.

R2019a

9-24

https://www.mathworks.com/help/releases/R2019a/rtw/ref/eliminate-superfluous-local-variables-expression-folding.html
https://www.mathworks.com/help/releases/R2019a/rtw/ref/eliminate-superfluous-local-variables-expression-folding.html

Code generation for lookup table optimization
In R2019a, if you have a Simulink Check™ license, you can generate more efficient code for your
model by using refactored Lookup Table blocks. For more information, see “Improve Efficiency of
Simulation by Optimizing Prelookup Operation of Lookup Table Blocks” (Simulink Check).

 Performance

9-25

Verification

R2019a

9-26

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

9-27

https://www.mathworks.com/support/bugreports/

R2018b

Version: 7.1

New Features

Bug Fixes

Compatibility Considerations

10

Code Generation from MATLAB Code

Column Limit in Generated Code: Generate more readable code by
controlling line wrapping
In R2018b, to improve the readability of the generated code, you can specify the maximum number of
columns before a line break.

In an Embedded Coder configuration object, set the ColumnLimit property to the maximum number
of columns. For example:

cfg = coder.config('lib','ecoder',true);
cfg.ColumnLimit = 120;

The default ColumnLimit value is 80.

The equivalent MATLAB Coder app setting is Column limit on the All Settings tab.

Other rules for placement of the line break can take precedence over the column limit that you
specify.

Static Code Metrics On Demand: Run static code metrics analysis
when needed after code generation
In previous releases, you had to request a static code metrics report before code generation. If you
requested the static code metrics report, the static code metrics analysis ran at code generation time.
In R2018b, you can request a static code metrics report, if and when you need it, after code
generation. Code generation can be faster because the static code metrics analysis does not run at
code generation time.

To produce a static code metrics report, you must generate standalone code by using Embedded
Coder and enable production of a code generation report.

In previous releases, you requested a static code metrics report by using one of these methods:

• Specifying -report with codegen.
• In a configuration object, setting GenerateCodeMetricsReport to true.
• In the MATLAB Coder app, setting Static code metrics to Yes.

In R2018b, by default, in a configuration object, GenerateCodeMetricsReport is false. By
default, in the app, Static code metrics is No. If you generate code with the default setting for static
code metrics, static code metrics analysis does not run at code generation time. Instead, you can run
the analysis and produce the code metrics report later by clicking Code Metrics on the Summary
tab of a code generation report. For product and platform considerations for running the analysis
after code generation, see Generating a Static Code Metrics Report for Code Generated from
MATLAB Code.

Compatibility Considerations
If you want to run static code metrics analysis at code generation time as in previous releases:

R2018b

10-2

https://www.mathworks.com/help/releases/R2018b/ecoder/ug/generate-a-static-code-metrics-report-for-matlab-code.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/generate-a-static-code-metrics-report-for-matlab-code.html

• In a configuration object, set GenerateCodeMetricsReport to true.
• In the MATLAB Coder app, set Static code metrics to Yes.

In previous releases, if you generated standalone code by using codegen with -report, static code
metrics analysis always ran at code generation time, regardless of the value of
GenerateCodeMetricsReport. In R2018b, if you generate standalone code by using codegen with
-report, the analysis runs at code generation time only if GenerateCodeMetricsReport is true.
If GenerateCodeMetricsReport is false, you can run the analysis later by clicking Code Metrics
in the code generation report.

Single Instruction, Multiple Data (SIMD) Support: Generate Intel
SSE/AVX intrinsic in MATLAB Coder
In R2018b, for element-wise arithmetic operations involving single and double data types, you can
generate more efficient code that contains SIMD intrinsics. The code contains less data copies and no
wrapper functions for the SIMD intrinsics. To generate this code, select the code replacement library
to use for code generation in a project. On the Custom Code tab, set the Code replacement library
parameter to one of these new SIMD code replacement libraries:

• Intel SSE (Windows)
• Intel AVX (Windows)
• Intel SSE (Linux)
• Intel AVX (Linux)

Alternatively, in a code configuration object, set the CodeReplacementLibrary parameter. Note
that the code generator does not generate SIMD code for division operations.

 Code Generation from MATLAB Code

10-3

Model Architecture and Design

Multi-Instance Code Generation: Generate multi-instance code for top
and referenced models that are based on rates, exported functions, or
rates and exported functions
R2018b expands the modeling styles from which the code generator produces code. Previously, you
could not generate multi-instance (reentrant) code from models that used discrete and asynchronous
sample rates. Now you can generate multi-instance code for top and referenced models that use:

• Discrete sample rates
• Asynchronous sample rates (for example, with exported function models)
• Discrete and asynchronous sample rates

For more information, see Design Models for Generated Embedded Code Deployment.

Code Preview in Embedded Coder Dictionary: Verify pseudocode
preview as you select data, function, and memory section properties
R2018b adds a code preview capability to the Embedded Coder Dictionary for code definition
verification. As you configure property settings of a code definition for data, a function, or a memory
section, the code preview displays pseudocode that you can use to verify configuration results.

For more information, see:

• Embedded Coder Dictionary
• Define Storage Classes, Memory Sections, and Function Templates for Software Architecture
• Configure Default C Code Generation for Categories of Model Data and Functions

Embedded Coder Dictionary Mapping Control: Define storage classes
that restrict mappings to parameters or signals
In R2018b, when defining a storage class in the Embedded Coder Dictionary, you can specify whether
users can map the storage class to parameters, signals, or parameters and signals.

See Constrain Use of Storage Class Code Mappings.

Embedded Coder Dictionary Version Handling: Use and export code
definitions saved in previous releases with models created in later
releases
R2018b introduces Simulink data dictionary version handling, which includes version handling for
theEmbedded Coder Dictionary. You can:

• Link a model to a data dictionary that includes code definitions saved in a previous version of
Simulink–-for example, you can link a model that you develop with R2018b with a dictionary saved
in R2018a.

R2018b

10-4

https://www.mathworks.com/help/releases/R2018b/ecoder/ug/design-models-for-generated-embedded-code-deployment.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ref/embeddedcoderdictionary.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/configure-default-code-generation-for-categories-of-model-data-and-functions_mw_35ebc177-e1ee-439d-91af-f700d3ad7bf6.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html#mw_cd578de4-0019-4140-b59b-b7ff5d4c6e4a-1

• Continue developing a model, which has a local Embedded Coder Dictionary, that was created
with a version of Simulink that is older than the current version---for example, if you started
developing a model that uses a local Embedded Coder Dictionary in R2018a, you can open and
continue development of that model in R2018b).

• Export (save) an Embedded CoderDictionary for use in models created with a previous release of
the code generator.

For more information, see Dictionary Usage for Models Created with Different Versions of Simulink
(Simulink) and Embedded Coder Dictionary.

AUTOSAR Run-Time Calibration: Map internal signals, states, and
model workspace parameters to AUTOSAR component memory and
internal parameters for calibration
Map internal signals and states to AUTOSAR per-instance and static memory for calibration

In R2018b, in an AUTOSAR model, you can map internal signals and states to AUTOSAR
ArTypedPerInstanceMemory and StaticMemory for run-time calibration. Code Mapping Editor
adds Signals and States tabs for mapping individual internal signals and states and configuring their
attributes. For more information, see Map Block Signals and States to AUTOSAR Variables.

For referenced models within an AUTOSAR component model, Embedded Coder automatically maps
internal signal and states for model reference code generation. Internal signals and states
automatically map to AUTOSAR ArTypedPerInstanceMemory for multi-instance model reference,
or AUTOSAR StaticMemory for single-instance model reference.

In the AUTOSAR Runtime Environment (RTE), calibration and measurement tools can access
ArTypedPerInstanceMemory and StaticMemory generated from internal signals and states in the
AUTOSAR top model and referenced models.

Map model workspace parameters to AUTOSAR component internal parameters for
calibration

In R2018b, in an AUTOSAR model, you can map model workspace parameters to AUTOSAR
component internal SharedParameters and ConstantMemory for run-time calibration. Code
Mapping Editor adds a Parameters tab for mapping individual model workspace parameters,
including lookup table and breakpoint parameters, and configuring their attributes. For more
information, see Map Model Workspace Parameters to AUTOSAR Component Internal Parameters.

In the AUTOSAR Runtime Environment (RTE), calibration and measurement tools can access
component internal SharedParameters and ConstantMemory generated from model workspace
parameters in the AUTOSAR model.

Specify C type qualifiers for AUTOSAR static and constant memory

For an AUTOSAR component, you can configure C type qualifiers to customize generated AUTOSAR-
compliant C code for AUTOSAR static memory and AUTOSAR constant memory. For example, you can
apply C type qualifiers such as const or volatile to control compiler optimizations.

In R2018b, you can:

• Import C type qualifiers from arxml files into an AUTOSAR component model.

 Model Architecture and Design

10-5

https://www.mathworks.com/help/releases/R2018b/simulink/ug/what-is-a-data-dictionary.html#mw_9fd8048c-1777-4ad1-a500-924ebc3a12ea
https://www.mathworks.com/help/releases/R2018b/ecoder/ref/embeddedcoderdictionary.html
https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_d2893731-11bc-4ff4-ae5b-fe59935e8015
https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_e5dea389-b12e-4080-aba1-f6c0a419cb04

• In an AUTOSAR model, use Code Mapping Editor to configure C type qualifiers for model signals,
states, and parameters that are mapped to AUTOSAR StaticMemory or AUTOSAR
ConstantMemory.

• Build the model to export type qualifiers to arxml files and generate AUTOSAR-compliant C code
that uses the type qualifiers.

For more information, see Specify C Type Qualifiers for AUTOSAR Static and Constant Memory.

AUTOSAR Memory Sections: Use SwAddrMethods to control memory
placement of AUTOSAR runnable functions and internal data
AUTOSAR software components use software address methods (SwAddrMethods) to group data and
function definitions in memory, primarily for efficiency, performance, and data access by run-time
calibration tools. R2018b extends SwAddrMethod support to allow you to control the memory
placement of runnable (entry-point) functions and runnable internal data, including signals, states,
and parameters. In R2018b, you can:

• Add, delete, and modify SwAddrMethods in Simulink.
• Specify SwAddrMethods for runnable functions.
• Specify SwAddrMethods for runnable internal data.

When you build the AUTOSAR model, exported arxml descriptions for runnables reflect their
SwAddrMethod associations. Generated AUTOSAR-compatible C code groups runnable functions and
internal data together into memory sections based on the SwAddrMethod associations you
configured.

For more information, see Configure AUTOSAR SwAddrMethods, Map Entry-Point Functions to
AUTOSAR Runnables, and Configure SwAddrMethod.

AUTOSAR XML Import and Export: Round trip imported arxml file
structure and control packaging of new elements
R2018b improves the round trip of imported AUTOSAR XML file structure and content.

• When you import arxml files for an AUTOSAR component into Simulink, Embedded Coder
preserves the arxml file structure for export.

• AUTOSAR elements that you create in Simulink export to one or more modelname*.arxml files,
which are separate from the imported files. As before, you control the file packaging of new
elements by using AUTOSAR Dictionary parameter Exported XML file packaging.

• In the round-tripped arxml file content, import preserves AUTOSAR element UUIDs. If an
imported element does not have a UUID, none is created.

With the improvements, you can more easily compare pre-import and post-export arxml files and
track changes. Round-tripped arxml files are clearly differentiated from new arxml files. For
example, if you import 20 arxml files into a model, and then use Simulink to define additional
AUTOSAR interfaces and data, code generation exports the 20 imported files, along with
modelname*.arxml files containing the new AUTOSAR interface and data elements.

For more information, see Round-Trip Preservation of AUTOSAR XML File Structure and Element
Information.

R2018b

10-6

https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_f8f8aab0-d352-46e0-ae2f-9b3e3bdf5da9
https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/configure-autosar-component-using-autosar-properties-explorer.html#mw_18af1b29-1d1d-4b40-8279-339a408132ac
https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_6c3fa4b2-762a-4aa1-b4c0-4455b4df154b
https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/map-model-elements-using-simulink-autosar-mapping-explorer.html#mw_6c3fa4b2-762a-4aa1-b4c0-4455b4df154b
https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/configure-autosar-data-for-measurement-and-calibration.html#bubhd7l-1
https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/round-trip-preservation-of-autosar-elements-and-uuids.html
https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/round-trip-preservation-of-autosar-elements-and-uuids.html

AUTOSAR XML Import: Changes to ArTypedPerInstanceMemory and
StaticMemory import behavior
In R2018b, to support AUTOSAR run-time measurement and calibration, you can map internal signals
and states to AUTOSAR component memory and map model workspace parameters to AUTOSAR
internal calibration parameters. R2018b enhances the arxml importer to support the new component
data mapping, reduce clutter in the base workspace, and provide modeling flexibility.

• In general, importing AUTOSAR ArTypedPerInstanceMemory, StaticMemory, SharedParameter, or
ConstantMemory elements no longer creates data objects in the Simulink base workspace or data
dictionary. Scoping data to the AUTOSAR component better encapsulates component data for
participation in system-level modeling.

• In general, importing AUTOSAR ArTypedPerInstanceMemory or StaticMemory elements no longer
adds Data Store Memory blocks to the model. The software imports the elements more flexibly,
without adding Data Store Memory blocks. You can decide whether to model the imported
ArTypedPerInstanceMemory and StaticMemory elements by using signals, states, or data store
memory.

• In one case, an ArTypedPerInstanceMemory element with a Service Dependency, the importer
adds a Data Store Memory block and a corresponding AUTOSAR.Signal object to the model.

To use an imported ArTypedPerInstanceMemory or StaticMemory element in your AUTOSAR model,
reference the SHORT-NAME of the imported element in the name of a block signal or block state.

Then update Simulink-to-AUTOSAR mapping by using the Update button or the AUTOSAR
function autosar.api.syncModel. You can use Code Mapping Editor, Signals or States tab, to
view and configure the mapping of Simulink internal signals and states to AUTOSAR component
memory.

For imported ArTypedPerInstanceMemory and StaticMemory elements, the importer creates
Simulink signal objects in the model workspace. The signal objects are not required to model
AUTOSAR component memory. You can use the signal objects in your model or remove them.
Optionally, you can inspect the signal objects for their design properties, such as data type or min and
max values.

Compatibility Considerations
If existing AUTOSAR infrastructure expects the importer to add Data Store Memory blocks for all
imported ArTypedPerInstanceMemory and StaticMemory elements, update the infrastructure to
reflect the new importer behavior. Alternatively, after the import completes, manually add Data Store
Memory blocks and corresponding AUTOSAR.Signal objects to the AUTOSAR model.

Obsolete AUTOSAR signal and state map functions removed
In R2018b, you can individually map Simulink block signals and states to AUTOSAR
ArTypedPerInstanceMemory or StaticMemory for AUTOSAR run-time calibration. This replaces
an older mechanism in which you set the storage class of named signals and states to Model
default to generate ArTypedPerInstanceMemory.

In R2018b, you can no longer access the following autosar.api.getSimulinkMapping functions,
which are associated with the older signal and state mapping mechanism. The functions have been
removed from MATLAB help.

 Model Architecture and Design

10-7

https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/autosar.api.getsimulinkmapping.html

getDataDefaults Get AUTOSAR memory type for Simulink signals or discrete
states

mapDataDefaults Map Simulink signals or discrete states to AUTOSAR memory
type

Compatibility Considerations
If an AUTOSAR script relies on the older signal and state map functions getDataDefaults and
mapDataDefaults, update the script to use the new signal and state map functions, getSignal,
getState, mapSignal, and mapState.

MISRA C:2012 and Secure Coding Standards: Improve compliance of
generated code by using updated Model Advisor checks
Modifications to existing Model Advisor checks that you use to verify compliance with MISRA C:2012
and Secure Coding standards are outlined in this table.

Model Advisor Check Description of Change
Check configuration parameters for MISRA
C:2012

Check configuration parameters for secure
coding standards

Checks now analyze the setting for these configuration
parameters:

• External mode
• Undirected event broadcasts
• Compile-time recursion limit for MATLAB

functions
• Enable run-time recursion for MATLAB

functions
Check for blocks not recommended for
MISRA C:2012

Check for blocks not recommended for
secure coding standards

Checks now flag the usage of these blocks in a model
or subsystem:

• Compose String
• Scan String
• String to Double
• String to Single
• To String

R2018b

10-8

https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/autosar.api.getsimulinkmapping.getsignal.html
https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/autosar.api.getsimulinkmapping.getstate.html
https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/autosar.api.getsimulinkmapping.mapsignal.html
https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/autosar.api.getsimulinkmapping.mapstate.html
https://www.mathworks.com/help/releases/R2018b/slcheck/ref/misra-c2012-checks.html#bvegf3a.bsc06fj-1
https://www.mathworks.com/help/releases/R2018b/slcheck/ref/misra-c2012-checks.html#bvegf3a.bsc06fj-1
https://www.mathworks.com/help/releases/R2018b/slcheck/ref/secure-coding-checks-for-cert-c-cwe-and-isoiec-ts-17961-standards.html#mw_d21f1cb1-cc30-4fff-95d8-b0d64f6d7dde
https://www.mathworks.com/help/releases/R2018b/slcheck/ref/secure-coding-checks-for-cert-c-cwe-and-isoiec-ts-17961-standards.html#mw_d21f1cb1-cc30-4fff-95d8-b0d64f6d7dde
https://www.mathworks.com/help/releases/R2018b/slcheck/ref/misra-c2012-checks.html#bvegf3a.bsc06fh-1
https://www.mathworks.com/help/releases/R2018b/slcheck/ref/misra-c2012-checks.html#bvegf3a.bsc06fh-1
https://www.mathworks.com/help/releases/R2018b/slcheck/ref/secure-coding-checks-for-cert-c-cwe-and-isoiec-ts-17961-standards.html#mw_0970b686-2612-4e8e-ae93-dba6ee9306f8
https://www.mathworks.com/help/releases/R2018b/slcheck/ref/secure-coding-checks-for-cert-c-cwe-and-isoiec-ts-17961-standards.html#mw_0970b686-2612-4e8e-ae93-dba6ee9306f8
https://www.mathworks.com/help/releases/R2018b/simulink/slref/composestring.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/scanstring.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/stringtodouble.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/stringtosingle.html
https://www.mathworks.com/help/releases/R2018b/simulink/slref/tostring.html

Data, Function, and File Definition

Individual Function Mappings in Code Mapping Editor: Override
default function mappings with individual function mappings
R2018b simplifies configuration of functions for code generation. From the Code Mapping Editor in
the code perspective, you can configure default configurations for categories of functions. Then, from
the same interface, you can:

• Review a list of the entry-point functions that you can configure for a model.
• Override the default configuration for a category of functions with configurations for individual

functions.

You can configure each model entry-point function with a unique:

• Function customization template
• Function name
• Memory section

You can customize the interface arguments for the base-rate (first) step function for a model by
opening the Configure C Step Function Interface dialog box directly from the Code Mapping Editor.

For example, for a model that has three step functions, one for each of three rates, you can configure
the interface for each function differently.

For more information, see Customize Generated C Function Interfaces.

Compatibility Considerations
Previously:

• You would open the dialog box for customizing the C step entry-point function interface by using
the Configure Model Functions button on the Code Generation > Interface pane of the Model
Configuration Parameters dialog box. In R2018b, you open the dialog box from the Code
Mapping Editor. See Override Default C Step Function Interface.

• You would change the name of the C initialize entry-point function in the Configure C/C++
Function Interface dialog box. You opened that dialog box with the Configure Model Functions
button on the Code Generation > Interface pane of the Model Configuration Parameters dialog
box. In R2018b, you change the names of entry-point functions, including the initialize function, in
the Code Mapping Editor, on the Entry-Point Functions tab. See Override Default Naming for
Individual C Entry-Point Functions.

Function Interface Control: Access Configure C Step Function Interface
dialog box from Code Mapping Editor in code perspective
For C code generation, configuration of interface arguments for the base rate step function of a
model is more streamlined. You can open the Configure C Step Function Interface dialog box from the
Code Mapping Editor in the code perspective.

For more information, see Override Default C Step Function Interface.

 Data, Function, and File Definition

10-9

https://www.mathworks.com/help/releases/R2018b/ecoder/ug/function-prototype-control.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ref/codemappingeditor.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ref/codemappingeditor.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/configure-c-step-function-arguments.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ref/codemappingeditor.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/configure-names-for-generated-c-initialize-and-step-functions.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/configure-names-for-generated-c-initialize-and-step-functions.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/configure-c-step-function-arguments.html

Function Interface Control: Configure step functions for multi-
instance, rate-grouped, single-tasking models
As of R2018b, for C code generation, you can configure the interface for the step function of a multi-
instance, rate-grouped, single-tasking model. A multi-instance model is a top model with model
configuration parameter Code interface packaging set to Reusable function and a referenced
model with parameter Total number of instances allowed per top model set to Multiple. You
configure the interface in the Configure C Step Function Interface dialog box, which is accessible
from the Code Mapping Editor in the code perspective.

For more information, see Generate Reentrant Code from Top Models and Override Default C Step
Function Interface.

Shared Default Code Configurations for Data and Functions: Share
default code configuration settings between models
In R2018b, the code generator provides more flexibility for creating and managing Embedded Coder
Dictionaries that models and modeling teams can share. You can set up an Embedded Coder
Dictionary to configure default code definitions for categories of data and functions. If an Embedded
Coder dictionary is shared between models in a Simulink data dictionary, all models that are linked to
the data dictionary and have data or function categories mapped to storage class or function
customization template setting Dictionary Default use the same coder dictionary defaults. If you
make a change to the default settings in the shared Embedded Coder dictionary, the code generator
applies the updated default settings to all models that meet both of these conditions:

• Are linked to the shared data dictionary
• Have data or functions configured to use coder dictionary defaults.

For more information, see Configure Default Code Mapping in a Shared Dictionary.

Storage Class on Root-Level I/O: Access global data and functions in
multi-instance models
Currently, you cannot use a global storage class for signals and states in a multi-instance model. In
R2018b, you can generate code for model reference and multi-instance top models that enable each
model instance to access the same global data on its root-level I/O. Specify a global storage class on
the root-level I/O of a multi-instance model to:

• Read from global data and access functions for root inputs.
• Write to global data and access functions for root outputs.

For more information, see Use Storage Classes in Reentrant, Multi-Instance Models and Components.

R2018b

10-10

https://www.mathworks.com/help/releases/R2018b/ecoder/ug/generate-reentrant-code-from-top-models-1060a79aa9d9.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/configure-c-step-function-arguments.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/configure-c-step-function-arguments.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/deploy-code-generation-definitions.html#mw_5cbdccb9-584f-46f3-b50f-b91934e30032
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/use-storage-classes-in-reentrant-multi-instance-models-and-components.html

Code Generation

Code View in Code Perspective: View generated code directly in Code
Perspective
In the Code Perspective, you can view your generated code alongside your model by using the Code
view. This integration of the code and model in the Code Perspective helps you:

• Quickly navigate to locations in the model and the code.
• Understand the relationship between model elements and the code.
• Customize your generated code and check that the results are correct.

After generating code, open the Code Perspective. In the Code Perspective, select the Code tab in the
bottom-right corner. If the Code tab is not available, from the editor menu, select View > Code.
While customizing your code, the view enables you to:

• Search across all code files for function, variables, type definitions, and other code elements.
Based on the text in the search field, the search tool can provide suggested searches.

• Trace from the model to the code. Highlight the code related to a model element by selecting the
element in the model editor.

• Trace from the code to the model. Highlight the model element related to code by placing your
cursor over or clicking a code element hyperlink.

• Navigate within the code. Locate where a function or variable is defined by placing your cursor
over the code element. To go to the definition code, click the hyperlink in the information dialog
box.

• Highlight lines of code that have changed since you last generated code.
• View the storage class mapping for model elements such as root inports and outports. Place your

cursor over the corresponding variable declarations in the header file.

For an example of how to use the Code view during code customization, see Override Default C Step
Function Interface.

Data Coherency: Generate one variable for each Data Store read and
write operation
In R2018b, for models containing read and write operations for Data Store Memory blocks, the
generated code contains a single variable to hold the value for each Data Store Read and Write
operation. Generating one variable instead of multiple variables improves data access coherency. To
enable this feature, in the Configuration Parameters dialog box, on the Interface pane, select the
Implement each data store block as a unique access point parameter. This parameter is new in
R2018b. Its default setting is off. For further information see, Implement each data store block as a
unique access point (Simulink Coder) and the example Improve Data Coherency in Generated Code.

AUTOSAR Code Generation: Automatically generate AUTOSAR
platform data types in C code
In R2018b, code generation for AUTOSAR models automatically generates AUTOSAR platform data
types. For example, generated AUTOSAR-compliant C code uses AUTOSAR data types sint8, uint8,

 Code Generation

10-11

https://www.mathworks.com/help/releases/R2018b/ecoder/ug/configure-c-step-function-arguments.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/configure-c-step-function-arguments.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/implement-each-data-store-block-as-a-unique-access-point.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/implement-each-data-store-block-as-a-unique-access-point.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/improve-data-coherency-in-the-generated-code.html

sint16, uint16, sint32, uint32, float32, and float64 instead of Simulink code generation data
types int8_T, uint8_T, int16_T, uint16_T, int32_T, uint32_T, real32_T, and real64_T.

Automatic AUTOSAR type generation allows you to generate AUTOSAR platform data types for top
models, referenced models, and shared utilities without configuring Simulink data type replacement.
For more information, see Automatic AUTOSAR Data Type Generation.

Data Type Replacement: Specify replacement types for 64-bit integers
You can specify replacement types for data types uint64 and int64. Create a
Simulink.NumericType object to specify character vectors for the code generator to use as names
for the data types. In the Configuration Parameters dialog box, on the Code Generation > Data
Type Replacement pane, use uint64 and int64. For more information, see Control Names of 64-Bit
Integers.

You can control the data type limit identifiers in the generated code by using these fields under
Advanced Parameters.

Data Type Limit Identifier
Setting

Default Identifier Command-Line Parameter

64-bit integer maximum identifier MAX_int64_T MaxIdInt64
64-bit unsigned integer maximum
identifier

MAX_uint64_T MaxIdUint64

64-bit integer minimum identifier MIN_int64_T MinIdInt64

For more information, see Specify Boolean and Data Type Limit Identifiers.

Multi-Dimensional Arrays: Preserve array dimensions for parameters
and lookup tables in generated code
By default, the code generator generates one-dimensional arrays in the C/C++ code for multi-
dimensional model data. In R2018b, if the array layout of your model data is row-major, you can
preserve dimensions of multidimensional arrays used in parameters and lookup tables in the
generated code. Preserving array dimensions in generated code enhances integration with external
code.

For example, consider matrix A.

A =
 1 2 3
 4 5 6

Before R2018b, this is the generated code:

matrixParam[6] = {1, 4, 2, 5, 3, 6};

In R2018b, when you set the model configuration parameter Array layout (Simulink Coder) to Row-
major, you can preserve dimensions in the generated code, which looks like:

matrixParam[2][3] = {{1, 2, 3}, {4, 5, 6}};

For more information, see Dimension Preservation of Multidimensional Arrays and Preserve
Dimensions of Multidimensional Arrays in Generated Code.

R2018b

10-12

https://www.mathworks.com/help/releases/R2018b/ecoder/autosar/automatic-autosar-data-type-generation.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ref/replacement-name-uint64.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ref/replacement-name-int64.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/control-data-type-names-in-generated-code.html#mw_432e168c-1cd0-4b9b-95d6-9a34fb085b63
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/control-data-type-names-in-generated-code.html#mw_432e168c-1cd0-4b9b-95d6-9a34fb085b63
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/customize-boolean-and-data-type-limit-identifiers.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/array-layout.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/dimension-preservation-of-multidimensional-arrays.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/preserve-dimensions-of-multidimensional-arrays-in-generated-code.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/preserve-dimensions-of-multidimensional-arrays-in-generated-code.html

For details about row-major code generation, see Row-Major Array Layout: Simplify integration with
external C/C++ code for Lookup Table and other blocks (Simulink Coder).

Custom Storage Classes

Preserve array dimensions of parameters for these custom storage classes:

• Const
• Volatile
• ConstVolatile
• ExportToFile
• ImportFromFile
• FileScope

For Simulink.Parameter and Simulink.LookupTable, you can enable the property Preserve
Array Dimensions to preserve array dimensions.

Programmatically, to preserve array dimensions for a custom storage class, use these commands at
the command prompt:

temp = Simulink.Parameter;
temp.CoderInfo.StorageClass = 'Custom';
temp.CoderInfo.CustomStorageClass = 'ExportToFile';
temp.CoderInfo.CustomAttributes.PreserveDimensions = 'Yes';

To preserve dimensions when you design your own custom storage class, use the new Preserve
Array Dimensions property in the Custom Storage Class Designer. Preserve Array Dimensions
has these options:

• No: Flattens the multi-dimensional array to one dimension in the generated code. This is the
default option.

• Yes: Preserves array dimensions for all parameters with the specified custom storage class.
• Instance Specific: If you want to preserve array dimensions for each instance of the custom

storage class. You can enable the Preserve Array Dimensions property on the parameter object.
For Simulink package, this property is set to Instance Specific by default.

This property is not available in Embedded Coder Dictionary.

Stateflow Local Data

To preserve array dimensions for Stateflow local data, enable the model configuration parameter
Preserve Stateflow local data array dimensions on the Code Generation > Interface pane. For
more details, see Select Array Layout for Matrices in Generated Code (Stateflow)

AUTOSAR

For AUTOSAR target, if you set Array layout to Row-major, you can preserve dimensions of
AUTOSAR parameters, lookup tables and Stateflow local data in the generated code.

 Code Generation

10-13

https://www.mathworks.com/help/releases/R2018b/rtw/release-notes-R2018b.html#mw_cc0742f3-b45f-40f0-811c-3d7f33f4ccb3
https://www.mathworks.com/help/releases/R2018b/rtw/release-notes-R2018b.html#mw_cc0742f3-b45f-40f0-811c-3d7f33f4ccb3
https://www.mathworks.com/help/releases/R2018b/rtw/ref/preserve-stateflow-local-data-array-dimensions.html
https://www.mathworks.com/help/releases/R2018b/stateflow/ug/row-major-and-multidimensional-layout.html

Hardware Implementation Parameters: ProdHWDeviceType and
TargetHWDeviceType are case-insensitive
In R2018b, the values for the ProdHWDeviceType and TargetHWDeviceType command-line
parameters are case-insensitive. For example, these commands specify the same value for
ProdHWDeviceType:

• set_param(modelOrConfigurationSet, 'ProdHWDeviceType', 'atmel->avr')
• set_param(modelOrConfigurationSet, 'ProdHWDeviceType', 'Atmel->AVR')

Enumerated Types: Optimizations in generated code
In R2018b, the generated code for enumerated types may contain these optimizations:

Appearance of casts

Depending on the size of integers that your current hardware supports, enumerated constants might
contain type casting. For example:

Before R2018b After R2018b
#ifndef DEFINED_TYPEDEF_FOR_enum_colors_int32_
#define DEFINED_TYPEDEF_FOR_enum_colors_int32_

typedef int32_T enum_colors_int32;

#define red ((enum_colors_int32)1)
#define blue ((enum_colors_int32)2)
#define green ((enum_colors_int32)3)
#define yellow ((enum_colors_int32)4)

#endif

#ifndef DEFINED_TYPEDEF_FOR_enum_colors_int32_
#define DEFINED_TYPEDEF_FOR_enum_colors_int32_

typedef int32_T enum_colors_int32;
/* enum enum_colors_int32 */
#define red (1) /* Default value */
#define blue (2)
#define green (3)
#define yellow (4)

#endif

Appearance of unsigned integer

If the base type of an enumerated constant is an unsigned integer, the enumerated constant value
might contain the appendix U. For example:

Before R2018b After R2018b
#ifndef DEFINED_TYPEDEF_FOR_enum_motorspeed_uint8_
#define DEFINED_TYPEDEF_FOR_enum_motorspeed_uint8_

typedef uint8_T enum_motorspeed_uint8;

#define off ((enum_motorspeed_uint8)1)
#define slow ((enum_motorspeed_uint8)2)
#define medium ((enum_motorspeed_uint8)3)
#define fast ((enum_motorspeed_uint8)4)

#endif

#ifndef DEFINED_TYPEDEF_FOR_enum_motorspeed_uint8_
#define DEFINED_TYPEDEF_FOR_enum_motorspeed_uint8_

typedef uint8_T enum_motorspeed_uint8;
/* enum enum_motorspeed_uint8 */
#define off ((enum_motorspeed_uint8)1U) /* Default value */
#define slow ((enum_motorspeed_uint8)2U)
#define medium ((enum_motorspeed_uint8)3U)
#define fast ((enum_motorspeed_uint8)4U)

#endif

Enumerated comments

Comments for enumerated elements appear before the typedef. For example:

R2018b

10-14

Before R2018b After R2018b
#ifndef DEFINED_TYPEDEF_FOR_dCodeGenEnum1_
#define DEFINED_TYPEDEF_FOR_dCOodeGenEnum1_

typedef enum {
 a = 0 /* Default value */
 b,
 c
} dCodeGenEnum1; /* First enumerated data type*/

#endif

#ifndef DEFINED_TYPEDEF_FOR_dCodeGenEnum1_
#define DEFINED_TYPEDEF_FOR_dCOodeGenEnum1_
/* First enumerated data type*/
typedef enum {
 a = 0 /* Default value */
 b,
 c
} dCodeGenEnum1;

#endif

For more information on enumerated data types, see Enumeration.

 Code Generation

10-15

https://www.mathworks.com/help/releases/R2018b/ecoder/ug/enumeration.html

Deployment

Texas Instruments C2000: Use DMA and CAN blocks for all supported
C28x devices with the addition of DMA for F28x7x/F28004x and CAN
for F28004x
Texas Instruments C2000 F28x7x and F28004x processors support direct memory access (DMA). The
F28004x processor also supports the Controller Area Network (CAN) protocol. For more information,
see C28x-DMA_ch# (Embedded Coder Support Package for Texas Instruments C2000 Processors),
C28x CAN Calibration Protocol, C28x eCAN Receive, and C28x eCAN Transmit.

Code Generation Assumptions: Use standalone workflow to run checks
With the new buildStandaloneCoderAssumptions function, you can use a standalone workflow to
check code generation assumptions with reference to your target hardware. Previously, to perform
the checks, you ran a processor-in-the-loop (PIL) simulation. With the new workflow, you can perform
the checks before PIL target connectivity is available.

The code generation report displays the list of assumptions that you can check, which includes
assumptions about flush-to-zero (FTZ) and denormals-are-zero (DAZ) subnormal numbers.

For more information, see Check Code Generation Assumptions.

Build Process: Library and header files for model reference hierarchy
are not copied
Previously, the build process copied:

• Model reference library files to the build folder for the parent model
• Model reference header files to the referenced_model_includes subfolder of the build folder

for the parent model.

In R2018b, the build process does not copy model reference library or header files. The build process
creates a response file for the header file paths.

If you want the build process to copy model reference header files to the …/parentModel/
referenced_model_includes subfolder, set these new custom toolchain attributes to true:

• NoCompilerCommandFile
• CopyReferencedModelHeaders

For more information, see addAttribute.

The build argument MODELREF_LINK_LIBS is not supported. For example, the getBuildArgs
function does not extract the MODELREF_LINK_LIBS argument identifier and value from a build
information object.

The MODELREF_LINK_LIBS template makefile (TMF) token is still supported.

If you run a MATLAB script that uses the getBuildArgs function to extract an argument identifier
and value for MODELREF_LINK_LIBS, the script might fail.

R2018b

10-16

https://www.mathworks.com/help/releases/R2018b/supportpkg/texasinstrumentsc2000/ref/sect-hw-imp-pane-c28x-dma.html
https://www.mathworks.com/help/releases/R2018b/supportpkg/texasinstrumentsc2000/ref/c28xcancalibrationprotocol.html
https://www.mathworks.com/help/releases/R2018b/supportpkg/texasinstrumentsc2000/ref/c28xecanreceive.html
https://www.mathworks.com/help/releases/R2018b/supportpkg/texasinstrumentsc2000/ref/c28xecantransmit.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ref/buildstandalonecoderassumptions.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/_mw_24b925df-ae2b-4bba-94d0-994fe579640d.html
https://www.mathworks.com/help/releases/R2018b/coder/ref/coder.make.toolchaininfo.addattribute.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ref/getbuildargs.html

Build Process: MATLAB_INCLUDES is not required in custom template
makefiles
The MATLAB_INCLUDES macro is not required in custom template makefiles. In R2018b, the build
process extracts the required include paths from a build information object. You do not have to
remove the macro from existing template makefiles.

STM32F7 Tuning and Monitoring: Perform external mode simulation
on STM32F7 for parameter tuning and signal monitoring by using XCP
over TCP/IP or UART (Serial)
The Embedded Coder Support Package for STMicroelectronics Discovery Boards (STM32F746G and
STM32F769I) supports external mode simulation for parameter tuning and signal monitoring using
Universal Measurement and Calibration Protocol (XCP) over TCP/IP or UART as the transport layer.
XCP-based external mode enables signal monitoring using Simulation Data Inspector and Dashboard
blocks.

 Deployment

10-17

Performance

Execution-Time Profiling: Specify profiling granularity through model-
wide and block-specific controls
In a software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation, you can control the
granularity of execution-time profiling with these parameters:

• CodeProfilingInstrumentation –– This modified configuration parameter provides model-
wide control with three options:

• 'off' –– No function-level instrumentation, so execution times for functions in generated code
are not collected.

• 'coarse' –– Measure execution times only for function code generated from referenced
models and atomic subsystems.

• 'detailed' –– Measure execution times for all functions in generated code.
• CodeProfilingOverride –– This new block parameter provides control at the block-level with

three options:

• 'off' –– Disable profiling for block.
• 'on' –– Enable profiling for the block if profiling is enabled for the parent model.
• 'inherit' (default) –– Apply profiling settings of parent block.

Changing the block profiling configuration does not cause the regeneration of production code.

For more information, see Code Execution Profiling with SIL and PIL.

Compatibility Considerations
Previously, the CodeProfilingInstrumentation configuration parameter supported only two
options, 'on' and 'off'. When you load a model that you created in a previous release, R2018b
updates the value of CodeProfilingInstrumentation.

Value in Previous Release Value in R2018b
'off' 'off'
'on' 'detailed'

In R2018b, if you run set_param(modelName, 'CodeProfilingInstrumentation', 'on'),
the function sets 'CodeProfilingInstrumentation' to 'detailed' and produces a warning.

CodeProfilingOverride replaces the Tag block property value, DoNotProfile. In R2018b,
DoNotProfile is still supported, but the SIL or PIL simulation produces a warning. In a future
release, DoNotProfile will not be supported.

Global Variable Caching: Reduce access for global variable arrays with
custom storage classes
In R2018a, when you set the Optimize global data access parameter to Minimize Global Data
Access, the code generator reduced scalar global variable accesses by generating local variables. In

R2018b

10-18

https://www.mathworks.com/help/releases/R2018b/ecoder/ug/configuring-code-execution-profiling.html

R2018b, the code generator can generate local variables to reduce access for global variable arrays
with custom storage classes. This optimization improves execution speed because the code for local
variable references has a smaller overhead than the code for global variable references.

For example, the caching_example model contains two read operations from the global data store
A. A is a Simulink.Parameter with a custom storage class.

In R2018a, when you generate code with the Optimize global data access parameter set to
Minimize global data access, you get this code in the caching_example.c file.
static int16_T A[2];
static int16_T B;
static int16_T C[2];
RT_MODEL_caching_example_T caching_example_M_;
RT_MODEL_caching_example_T *const caching_example_M = &caching_example_M_;
void caching_example_step(void)
{
 int32_T i;
 for (i = 0; i < 2; i++) {
 C[i] = (int16_T)((int16_T)(A[i] + A[i]) + B);
 }
}

For accessing global data, the generated code contains the global array A. The reads occur to this
global variable.

In R2018b, when you generate code with the Optimize global data access parameter set to
Minimize global data access, you get this code in the caching_example.c file.
static int16_T A[2];
static int16_T B;
static int16_T C[2];
RT_MODEL_caching_example_T caching_example_M_;
RT_MODEL_caching_example_T *const caching_example_M = &caching_example_M_;
void caching_example_step(void)
{
 int32_T i;
 int16_T A_0;
 for (i = 0; i < 2; i++) {
 A_0 = A[i];
 C[i] = (int16_T)((int16_T)(A_0 + A_0) + B);
 }
}

The data reads are to the local scalar variable A_0 instead of the global array A. For more
information, see Optimize global data access (Simulink Coder) and Optimize Global Variable Usage.

 Performance

10-19

https://www.mathworks.com/help/releases/R2018b/rtw/ref/optimize-global-data-access.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/optimize-global-variable-usage.html

Data Copy Reduction: Eliminate unnecessary data copies for Mux
blocks
Previously, for models that contained Mux blocks followed by branching, extra data copies were in the
generated code. In R2018b, the code generator improves execution speed by eliminating these data
copies.

For example, the model multiplex_ex contains eight signals feeding into a Mux block. The result is
a 1-D vector signal with a width of eight.

In R2018a, the code generator produced this code:

void multiplex_ex_step(void)
{
 real_T tmpForInput[8];
 int32_T i;
 real_T tmp;
 tmpForInput[0] = rtU.In1;
 tmpForInput[1] = rtU.In2;
 tmpForInput[2] = rtU.In3;
 tmpForInput[3] = rtU.In4;
 tmpForInput[4] = rtU.In5;
 tmpForInput[5] = rtU.In6;
 tmpForInput[6] = rtU.In7;
 tmpForInput[7] = rtU.In8;
 tmp = rtU.In1;
 for (i = 0; i < 7; i++) {

R2018b

10-20

 if (!(tmp > tmpForInput[i + 1])) {
 tmp = tmpForInput[i + 1];
 }
 }

 rtY.maxOut = tmp;
 tmpForInput[0] = rtU.In1;
 tmpForInput[1] = rtU.In2;
 tmpForInput[2] = rtU.In3;
 tmpForInput[3] = rtU.In4;
 tmpForInput[4] = rtU.In5;
 tmpForInput[5] = rtU.In6;
 tmpForInput[6] = rtU.In7;
 tmpForInput[7] = rtU.In8;
 tmp = rtU.In1;
 for (i = 0; i < 7; i++) {
 if (!(tmp < tmpForInput[i + 1])) {
 tmp = tmpForInput[i + 1];
 }
 }

 rtY.sumOut = tmp;
 rtY.MinOut = tmp;
 tmpForInput[0] = rtU.In1;
 tmpForInput[1] = rtU.In2;
 tmpForInput[2] = rtU.In3;
 tmpForInput[3] = rtU.In4;
 tmpForInput[4] = rtU.In5;
 tmpForInput[5] = rtU.In6;
 tmpForInput[6] = rtU.In7;
 tmpForInput[7] = rtU.In8;
 tmp = -0.0;
 for (i = 0; i < 8; i++) {
 tmp += tmpForInput[i];
 }

 rtY.sumOut = tmp;
}

The code contained three data copies to each element of the temporary array tmpForInput.

In R2018b, the code generator produces this code:

#include "multiplex_ex.h"

ExtU rtU;
ExtY rtY;
void multiplex_ex_step(void)
{
 int32_T i;
 real_T tmp;
 real_T tmpForInput_tmp[8];
 real_T u1_tmp;
 tmpForInput_tmp[0] = rtU.In1;
 tmpForInput_tmp[1] = rtU.In2;
 tmpForInput_tmp[2] = rtU.In3;
 tmpForInput_tmp[3] = rtU.In4;
 tmpForInput_tmp[4] = rtU.In5;

 Performance

10-21

 tmpForInput_tmp[5] = rtU.In6;
 tmpForInput_tmp[6] = rtU.In7;
 tmpForInput_tmp[7] = rtU.In8;
 tmp = rtU.In1;
 for (i = 0; i < 7; i++) {
 u1_tmp = tmpForInput_tmp[i + 1];
 if (tmp <= u1_tmp) {
 tmp = u1_tmp;
 }
 }

 rtY.maxOut = tmp;
 tmp = rtU.In1;
 for (i = 0; i < 7; i++) {
 u1_tmp = tmpForInput_tmp[i + 1];
 if (tmp >= u1_tmp) {
 tmp = u1_tmp;
 }
 }

 rtY.sumOut = tmp;
 rtY.MinOut = tmp;
 tmp = -0.0;
 for (i = 0; i < 8; i++) {
 tmp += tmpForInput_tmp[i];
 }

 rtY.sumOut = tmp;
}

The code contains one data copy instead of three data copies to each element of the temporary array
tmpForInput_tmp.

Enhanced Buffer Reuse: Buffer reuse across the boundary of an
Iterator subsystem
In R2018a, for global signals, the code generator could not reuse an Iterator subsystem output with
signals outside of the Iterator subsystem. In R2018b, for global and local Iterator subsystem outputs,
the code generator can reuse these variables. Reusing these variables reduces memory usage.

For example, the model foriterator_ex contains three subsystems. In the subsystem block
parameters dialog box, the Function packaging parameter is set to Nonreusable function and

R2018b

10-22

the Function interface parameter is set to void-void.

In R2018a, the generated code was the following:

static void NRITER(void)
{
 int32_T s1_iter;
 real_T rtb_Sum;
 for (s1_iter = 0; s1_iter < 5; s1_iter++) {
 rtb_Sum = rtDW.Delay + rtDW.Delay_DSTATE_i[0];
 rtDW.IterOut_c = -rtb_Sum;
 rtDW.Delay_DSTATE_i[0] = rtDW.Delay_DSTATE_i[1];
 rtDW.Delay_DSTATE_i[1] = rtb_Sum;
 }
}

static void NRITER1(void)
{
 int32_T s2_iter;
 real_T rtb_Sum;
 for (s2_iter = 0; s2_iter < 5; s2_iter++) {
 rtb_Sum = rtDW.Delay1 + rtDW.Delay_DSTATE_h[0];
 rtDW.IterOut = -rtb_Sum;
 rtDW.Delay_DSTATE_h[0] = rtDW.Delay_DSTATE_h[1];
 rtDW.Delay_DSTATE_h[1] = rtb_Sum;
 }
}
...
void foriterator_ex_step(void)
{
 NRITER2();
 rtY.Out1 = rtDW.Delay * rtDW.Delay1;
 NRITER1();
 rtDW.Bias = rtDW.IterOut + 3.0;
 NRITER();

 Performance

10-23

 rtDW.Gain = 2.0 * rtDW.IterOut_c;
 NRITER2_Update();
}

The generated code contains two different global variables to hold the NRITER and NRITER1
subsystem outputs.

In R2018b, the generated code is the following:

static void NRITER(void)
{
 int32_T s1_iter;
 real_T rtb_Sum;
 for (s1_iter = 0; s1_iter < 5; s1_iter++) {
 rtb_Sum = rtDW.Delay + rtDW.Delay_DSTATE_i[0];
 rtDW.IterOut = -rtb_Sum;
 rtDW.Delay_DSTATE_i[0] = rtDW.Delay_DSTATE_i[1];
 rtDW.Delay_DSTATE_i[1] = rtb_Sum;
 }
}

static void NRITER1(void)
{
 int32_T s2_iter;
 real_T rtb_Sum;
 for (s2_iter = 0; s2_iter < 5; s2_iter++) {
 rtb_Sum = rtDW.Delay1 + rtDW.Delay_DSTATE_h[0];
 rtDW.IterOut = -rtb_Sum;
 rtDW.Delay_DSTATE_h[0] = rtDW.Delay_DSTATE_h[1];
 rtDW.Delay_DSTATE_h[1] = rtb_Sum;
 }
}
...
void foriterator_ex_step(void)
{
 NRITER2();
 rtY.Out1 = rtDW.Delay * rtDW.Delay1;
 NRITER1();
 rtDW.Bias = rtDW.IterOut + 3.0;
 NRITER();
 rtDW.Gain = 2.0 * rtDW.IterOut;
 NRITER2_Update();
}

The generated code contains the same variable rtDW.IterOut to hold the two subsystem outputs.
As a result, in R2018b, the DW global structure contains one less global variable than in R2018a.

Code Replacement: Optimize generated code with SIMD and row-
major order support and code replacement enhancements
R2018b includes these code replacement enhancements:

• Single Instruction, Multiple Data (SIMD) support for the MATLAB environment and enhanced for
the Simulink environment to include multidimensional signals, square root operations, and
operations between scalars and vectors.

R2018b

10-24

• New Inlined ARM NEON Intrinsics code replacement library for floating-point arithmetic
operations. Use the library to inline code that you generate for ARM Cortex-A processors.

• For the Simulink environment, there is now support for row-major order:

• Array layout supported by entry menu in the Code Replacement Tool for creating row-major
code replacement table entries. The menu appears when you set Argument type to Matrix.
You can set Array layout supported by entry to Column-major (default), Row-major, or
Column-and-Row.

• Code replacement table entry property ArrayLayout for specifying row-major order
programmatically. You can set the property to COLUMN_MAJOR, ROW_MAJOR, or
COLUMN_AND_ROW.

• For lookup table and interpolation functions, you can get and set the algorithm parameter
UseRowMajorAlgorithm with calls to getAlgorithmParameters and
setAlgorithmParameters.

See Define Code Replacement Mappings, Array Layout and Code Replacement, and Lookup Table
Function Code Replacement.

• Code replacement for shape-agnostic matrix addition, subtraction, and element-wise
multiplication. When you enable this option, if the total number of matrix elements matches the
code replacement library match criteria, code replacement occurs for shape-agnostic matrix
operations. For more information, see Code Replacement Match and Replacement Process.

Inplace Optimization for Assignment Blocks: Reduce data copies for
Assignment blocks
Previously, for Assignment blocks, there was an extra temporary variable and associated data copy in
the generated code. In R2018b, when you select the Perform inplace updates for Bus Assignment
blocks (Simulink Coder) parameter, the code generator can remove this data copy. This optimization
increases code execution speed and conserves RAM consumption.

For example, the model assign_model contains an Assignment block.

In R2018a, the code generator produced this code in the assign_model_step function.

void assign_model_step(void)
{
 int32_T s1_iter;
 real_T rtb_VectorConcatenate[6];
 static const int8_T tmp[3] = { 0, 2, 3 };

 Performance

10-25

https://www.mathworks.com/help/releases/R2018b/ecoder/ug/define-code-replacement-mappings-sc.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/array-layout-and-code-replacement.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/lookup-table-function-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/lookup-table-function-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/what-is-code-replacement-customization-sc.html#bujbm2f
https://www.mathworks.com/help/releases/R2018b/rtw/ref/perform-inplace-updates-for-bus-assignment-blocks.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/perform-inplace-updates-for-bus-assignment-blocks.html

 int32_T i;
 for (s1_iter = 0; s1_iter < 6; s1_iter++) {
 for (i = 0; i < 3; i++) {
 rtb_VectorConcatenate[i] = rtU.In1[8 + tmp[i]];
 rtb_VectorConcatenate[3 + i] = rtU.In1[((i << 1) + 1) << 2];
 }

 for (i = 0; i < 6; i++) {
 rtY.Out1[i + 6 * s1_iter] = rtb_VectorConcatenate[i];
 }
 }
}

The code contains an extra variable rtb_VectorConcatenate for holding intermediate values.

In R2018b, the code generator produces this code in the assign_model_step function.

void assign_model_step(void)
{
 int32_T s1_iter;
 static const int8_T tmp[3] = { 0, 2, 3 };

 int32_T s1_iter_0;
 int32_T i;
 for (s1_iter = 0; s1_iter < 6; s1_iter++) {
 s1_iter_0 = s1_iter * 6;
 for (i = 0; i < 3; i++) {
 rtY.Out1[i + s1_iter_0] = rtU.In1[8 + tmp[i]];
 }

 s1_iter_0 = s1_iter * 6 + 3;
 for (i = 0; i < 3; i++) {
 rtY.Out1[i + s1_iter_0] = rtU.In1[((i << 1) + 1) << 2];
 }
 }
}

The rtb_VectorConcatenate variable and the associated data copy is not in the generated code.

Execution Speed: Eliminate redundant subexpressions
Previously, for models that contained redundant subexpressions consisting of left shift (<<) and right
shift (>>) operators, the generated code repeatedly calculated the value of the subexpression. In
R2018b, the generated code contains a temporary variable that holds the value of these
subexpressions. This optimization improves the execution speed of the generated code because it
eliminates redundant calculations. The parameter Eliminate superfluous local variables
(expression folding) enables this optimization.

For example, the model inplace_exp contains two MATLAB functions, which result in the generated
code containing left shift operators in the array index.

R2018b

10-26

In R2018a, the inplace_exp_step function contained this code:

RT_MODEL_inplace_exp_T inplace_exp_M_;
RT_MODEL_inplace_exp_T *const inplace_exp_M = &inplace_exp_M_;
real_T CircBuffer[480];
real_T CircBuffer2[480];
real_T GyroValid[4];
void inplace_exp_step(void)
{
 int32_T i;
 CircBuffer2[0] = GyroValid[0];
 CircBuffer2[1] = GyroValid[1];
 CircBuffer2[2] = GyroValid[2];
 CircBuffer2[3] = GyroValid[3];
 CircBuffer[0] = GyroValid[0];
 CircBuffer[120] = GyroValid[1];
 CircBuffer[240] = GyroValid[2];
 CircBuffer[360] = GyroValid[3];
 for (i = 0; i < 119; i++) {
 CircBuffer2[(i + 1) << 2] = CircBuffer2[i << 2];
 CircBuffer2[1 + ((i + 1) << 2)] = CircBuffer2[(i << 2) + 1];
 CircBuffer2[2 + ((i + 1) << 2)] = CircBuffer2[(i << 2) + 2];
 CircBuffer2[3 + ((i + 1) << 2)] = CircBuffer2[(i << 2) + 3];
 CircBuffer[i + 1] = CircBuffer[i];
 CircBuffer[i + 121] = CircBuffer[120 + i];
 CircBuffer[i + 241] = CircBuffer[240 + i];
 CircBuffer[i + 361] = CircBuffer[360 + i];
 }
}

 Performance

10-27

The same left shift operation occurred repeatedly.

In R2018b, the code generator contains this code:
void inplace_exp_step(void)
{
 int32_T i;
 int32_T CircBuffer2_tmp;
 int32_T CircBuffer2_tmp_0;
 CircBuffer2[0] = GyroValid[0];
 CircBuffer2[1] = GyroValid[1];
 CircBuffer2[2] = GyroValid[2];
 CircBuffer2[3] = GyroValid[3];
 CircBuffer[0] = GyroValid[0];
 CircBuffer[120] = GyroValid[1];
 CircBuffer[240] = GyroValid[2];
 CircBuffer[360] = GyroValid[3];
 for (i = 0; i < 119; i++) {
 CircBuffer2_tmp = i << 2;
 CircBuffer2_tmp_0 = (i + 1) << 2;
 CircBuffer2[CircBuffer2_tmp_0] = CircBuffer2[CircBuffer2_tmp];
 CircBuffer2[1 + CircBuffer2_tmp_0] = CircBuffer2[CircBuffer2_tmp + 1];
 CircBuffer2[2 + CircBuffer2_tmp_0] = CircBuffer2[CircBuffer2_tmp + 2];
 CircBuffer2[3 + CircBuffer2_tmp_0] = CircBuffer2[CircBuffer2_tmp + 3];
 CircBuffer[i + 1] = CircBuffer[i];
 CircBuffer[i + 121] = CircBuffer[120 + i];
 CircBuffer[i + 241] = CircBuffer[240 + i];
 CircBuffer[i + 361] = CircBuffer[360 + i];
 }
}

The generated code contains the temporary variables CircBuffer2_tmp and CircBuffer2_tmp_0
for holding the result of the left shift operation. For more information, see Eliminate superfluous local
variables (Expression folding) (Simulink Coder).

Single Instruction, Multiple Data (SIMD) Intrinsics: Generate code with
optimized load and store operations for multidimensional signals and
square root operations
In R2018a, for Intel processors with SSE support, you generated code with optimized load and store
functions that utilized SIMD instructions. In the Configuration Parameters dialog box, for the Code
replacement library parameter, you generated this code by choosing an Intel SSE or Intel AVX
code replacement library. The optimized load and store functions were for element-wise arithmetic
operations involving single and double data types. For more information, see Single Instruction,
Multiple Data (SIMD) Intrinsics: Generate code with optimized load and store operations for use with
Intel processors with SSE/AVX support.

In R2018b, for models containing multidimensional signals, square root operations, and operations
between scalars and vectors, you can generate code containing optimized load and store functions.

For example, the model mMultiDimAddMultiply performs addition and multiplication operations on
multidimensional signals.

R2018b

10-28

https://www.mathworks.com/help/releases/R2018b/rtw/ref/eliminate-superfluous-local-variables-expression-folding.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/eliminate-superfluous-local-variables-expression-folding.html
https://www.mathworks.com/help/releases/R2018a/ecoder/release-notes-R2018a.html#mw_037e6a97-8689-4c73-af84-fe08dba06ed1
https://www.mathworks.com/help/releases/R2018a/ecoder/release-notes-R2018a.html#mw_037e6a97-8689-4c73-af84-fe08dba06ed1
https://www.mathworks.com/help/releases/R2018a/ecoder/release-notes-R2018a.html#mw_037e6a97-8689-4c73-af84-fe08dba06ed1

In R2017b, when you chose an Intel IPP/SSE code replacement library, the mMultiDimAdd_step
function contained this code:
void mMultiDimAddMultiply_step(void)
{
 __declspec(align(16)) real32_T rtb_Add2[64];
 mw_gcc_sse_mm_add_f32x4(mMultiDimAddMultiply_U.In1, 8, 8,
 mMultiDimAddMultiply_U.In2, rtb_Add2);
 mw_gcc_sse_mm_add_f32x4(rtb_Add2, 8, 8, mMultiDimAddMultiply_U.In3,
 mMultiDimAddMultiply_Y.Out1);
}

The mw_gcc_sse_mm_add_f32x4 function is a wrapper function for the load and store functions.
The code also contains the buffer rtb_Add2. In R2018a, when you chose an Intel SSE or Intel AVX
library, the code generator did not generate the wrapper functions or the optimized load and store
functions for models containing multidimensional signals and square root operations.

In R2018b, when you choose an Intel SSE or Intel AVX code replacement library, the
mMultiDimAdd_step function contains this code:

void mMultiDimAddMultiply_step(void)
{
 int32_T idx;
 __m128 tmp;
 __m128 tmp_0;
 __m128 tmp_1;
 for (idx = 0; idx <= 60; idx += 4) {
 tmp = _mm_loadu_ps(&mMultiDimAddMultiply_U.In1[idx]);
 tmp_0 = _mm_loadu_ps(&mMultiDimAddMultiply_U.In2[idx]);
 tmp_1 = _mm_add_ps(tmp, tmp_0);
 tmp = _mm_loadu_ps(&mMultiDimAddMultiply_U.In3[idx]);
 tmp_0 = _mm_mul_ps(tmp_1, tmp);
 _mm_storeu_ps(&mMultiDimAddMultiply_Y.Out1[idx], tmp_0);
 }
}

In R2018b, there is no function wrapper for the SIMD intrinsics. The mMultiDimAdd_step function
contains the load and store functions. The buffer rtb_Add2 is not in the generated code. For more
information on Code Replacement Libraries, see What Is Code Replacement?.

 Performance

10-29

https://www.mathworks.com/help/releases/R2018b/ecoder/ug/what-is-code-replacement-sc.html

Code Generation Report: Generate static code metrics reports faster
In R2018b, for some models, when you create code generation reports and select the Static code
metrics model configuration parameter, the code generator creates reports faster than in R2018a.
This improvement is particularly noticeable for models that contain approximately 80 or more
referenced models.

Functionality Being Removed or Changed
In R2018b, the configuration parameter Parameter structure is being removed. Parameter
structure or InlinedParameterPlacement controlled how parameter data was generated for
reusable subsystems.

Starting in R2018b, Embedded Coder generates a single, flat parameter data structure. Subsystem
parameters are defined as fields within the structure. This type of nonhierarchical data structure can
reduce compiler padding between word boundaries in memory, producing more efficient compiled
code. For more information, seeParameter Data Types in the Generated Code.

Cache Efficiency: Store global block signal and state data operating at
the same rate in one data structure
In R2018b, for models operating at multiple rates, you can store global block signal data (block I/O)
and global state data (DWork vectors) operating at the same rate in one data structure. Storing this
data in one structure improves cache efficiency when deploying a multirate model to multiple cores.
To enable this feature, select the Generate separate internal data per entry-point function
parameter, which is new in R2018b. Selecting the Combine signal/state structures parameter
enables the Generate separate internal data per entry-point function parameter.

For example, the multirate_demo model operates at two different rates as the colors red and green
in the diagram indicate. The color yellow is hybrid rate. The Treat each discrete rate as a separate
task parameter is set to on.

R2018b

10-30

https://www.mathworks.com/help/releases/R2018b/ecoder/ug/generated-code-for-parameter-data-types.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/generate-separate-internal-data-per-entry-point-function.html
https://www.mathworks.com/help/releases/R2018b/rtw/ref/combine-signalstate-structures.html

With the Generate separate internal data per entry-point function parameter set to off, the
multirate_demo.h file contains this code:

/* Block signals and states (default storage) for system '<Root>' */
typedef struct {
 real_T RTBS2F; /* '<Root>/RTBS2F' */
 real_T UDS; /* '<Root>/UDS' */
 real_T Sum3; /* '<Root>/Sum3' */
 real_T Sum1; /* '<Root>/Sum1' */
 real_T UDF_DSTATE; /* '<Root>/UDF' */
 real_T UDS_DSTATE; /* '<Root>/UDS' */
 real_T RTBS2F_Buffer0; /* '<Root>/RTBS2F' */
 real_T MIXEDDSM; /* '<Root>/DSMM' */
 real_T SLOWDSM; /* '<Root>/DSMS' */
} DW_multirate_demo_T;

The data for each task is in one DWorks (DW_) structure.

With the Generate separate internal data per entry-point function set to on, the
multirate_demo.h file contains this code:

/* Block signals and states (default storage) for system '<Root>' */
typedef struct {
 real_T RTBS2F_Buffer0; /* '<Root>/RTBS2F' */
 real_T MIXEDDSM; /* '<Root>/DSMM' */
} DW_multirate_demo_T;

/* Internal Data Grouped For Same Function, for system '<Root>' */

 Performance

10-31

typedef struct {
 real_T RTBS2F; /* '<Root>/RTBS2F' */
 real_T Sum3; /* '<Root>/Sum3' */
 real_T UDF_DSTATE; /* '<Root>/UDF' */
} FuncInternalData0_multirate_demo_T;

/* Internal Data Grouped For Same Function, for system '<Root>' */
typedef struct {
 real_T UDS; /* '<Root>/UDS' */
 real_T Sum1; /* '<Root>/Sum1' */
 real_T UDS_DSTATE; /* '<Root>/UDS' */
 real_T SLOWDSM; /* '<Root>/DSMS' */
} FuncInternalData1_multirate_demo_T;

For each task, the generated code contains two global structures. The prefixes
FuncInternalData0_ and FuncInternalData1_ indicate the two rates. The hyrbrid data is in the
DWorks (DW_) structure.

R2018b

10-32

Verification

SIL and PIL Simulations: Advanced custom storage classes support
Using the Custom Storage Class Designer, you can create an advanced custom storage class (CSC)
when you set Type to Other. In R2018b, if you create a custom attributes class for the CSC and
associate the custom attributes class with a Boolean property (SupportSILPIL) that is set to true,
you can run software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations to test generated
code that uses the advanced CSC.

For more information, see:

• Imported Data and Function Definitions
• Further Customize Generated Code by Writing TLC Code
• Finely Control Data Representation by Writing TLC Code for a Custom Storage Class

SIL and PIL Simulations: Support for imported grouped custom
storage classes
SIL and PIL simulations support signals, parameters, and data stores with imported grouped custom
storage classes. For information about storage classes, see Choose Storage Class for Controlling Data
Representation in Generated Code.

Model Block SIL and PIL: Accelerator mode SIM target is not built
Previously, a Model block SIL or PIL simulation also built a SIM target, which is required only for an
accelerator mode simulation. In R2018b, a Model block SIL or PIL simulation does not build the SIM
target, which provides these benefits:

• In an empty working folder, the simulation takes less time.
• If you use custom code, cross-target compatibility is not a requirement for the custom code.
• Aliased data types for input and output ports of a Model block are preserved.

For more information, see Model Reference Simulation Targets (Simulink).

 Verification

10-33

https://www.mathworks.com/help/releases/R2018b/ecoder/ug/about-sil-and-pil-simulations.html#brut_0r-1
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/design-custom-storage-classes-and-memory-sections.html#mw_2537d15c-5e5f-45d7-af71-24ea868085dd
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/define-advanced-custom-storage-classes-types.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2018b/ecoder/ug/choose-a-built-in-storage-class-for-controlling-data-representation-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2018b/simulink/ug/model-reference-simulation-targets-1.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2018b

10-34

https://www.mathworks.com/support/bugreports/

R2018a

Version: 7.0

New Features

Bug Fixes

Compatibility Considerations

11

Code Generation from MATLAB Code

Interactive Traceability: Visualize mapping between MATLAB code and
C code
In R2018a, if you generate C/C++ code by using MATLAB Coder with Embedded Coder, you can
interactively trace between MATLAB code and generated C/C++ code. You can trace from the
MATLAB code to the C/C++ code or from the C/C++ code to the MATLAB code. Tracing can help you
understand how the code generator implemented your algorithm, debug issues in the generated code,
and evaluate the quality of the generated code.

To enable tracing, in the code generation report, click Trace Code.

You see the generated code and the original MATLAB code next to each other. As you move your
pointer over MATLAB code or C code, you see highlighted traces to the corresponding generated
code or to the original MATLAB code.

For an example of interactive tracing, see Interactively Trace Between MATLAB Code and Generated
C/C++ Code.

Polyspace Integration: Verify C/C++ code generated with MATLAB
Coder by using simplified workflow
In R2018a, Polyspace verification is integrated into the MATLAB Coder workflow. If you have
Polyspace and Embedded Coder, you can run Polyspace in the MATLAB Coder app without additional
setup. At the command line, after code generation with codegen, you can run Polyspace on the
generated code by providing the code generation output folder to pslinkrun. For more information
about running Polyspace verification on code generated with MATLAB Coder, see Polyspace
Verification of C/C++ Code Generated by MATLAB Coder.

Changes to Setup for MISRA C Compliance: Disable dynamic memory
allocation and set C standard math library to C99 (ISO)
Starting in R2017b, in one step, you were able to set up code generation parameters to increase the
likelihood of generating code that is compliant with MISRA C. In R2018a, the setup has these
changes:

R2018a

11-2

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/interactively-trace-between-matlab-code-and-generated-cc-code.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/interactively-trace-between-matlab-code-and-generated-cc-code.html
https://www.mathworks.com/help/releases/R2018a/bugfinder/ref/pslinkrun.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/polyspace-verification-for-cc-code-generated-by-matlab-coder.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/polyspace-verification-for-cc-code-generated-by-matlab-coder.html

• The standard math library for C code is C99 (ISO) instead of C89/C90 (ANSI). For C++ code, the
math library is still C++03 (ISO).

• Dynamic memory allocation is disabled.

For more information, see Increase Likelihood of Generating MISRA C Compliant Code from MATLAB
Code.

Compatibility Considerations
For compatibility with code that depends on calls to the C89/C90 (ANSI) library, after calling
coder.setupMISRAConfig at the command line or using the MISRA Compliance option in the
app, change the standard math library to C89/C90 (ANSI).

If your code requires dynamic memory allocation, after calling coder.setupMISRAConfig at the
command line or using the MISRA Compliance option in the app, enable dynamic memory
allocation.

 Code Generation from MATLAB Code

11-3

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/increase-misrac-compliance-in-code-generated-from-matlab-code.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/increase-misrac-compliance-in-code-generated-from-matlab-code.html

Model Architecture and Design

Embedded Coder Dictionary: Create custom code generation
definitions for data and functions
In R2018a, you can specify default code generation settings for a category of model elements. With
these default settings, you do not need to explicitly configure each element in a model. For more
information, see “Default Code Configurations for Data and Functions: Apply default code generation
configurations for categories of model data and functions across a model” on page 11-14.

To standardize the code that you and your users generate from multiple models, you can create and
share custom code generation definitions. When you and your users specify default settings for a
model, your custom definitions appear available for selection alongside the built-in definitions. For
example, you can create a storage class that appears alongside built-in storage classes, such as
ExportedGlobal, in the Code Mappings > Data Defaults > Storage Class drop-down list.

Creating custom definitions can also enable you to achieve code generation goals that the built-in
definitions cannot satisfy.

You can create these kinds of custom definition:

• Storage classes, which control the code generated for data—signals, states, and parameters.
• Function customization templates, which control the names of model entry-point functions such as

the execution function model_step.
• Memory sections, which control the placement of data and function code in memory by inserting

pragmas and other decorations in the generated code.

If you need to use your custom definitions in only one model, you can store the definitions in the
model file. Alternatively, to share the definitions between models and projects, store the definitions in
a Simulink data dictionary. With a data dictionary, to modify a shared definition, you make changes in
only one place—the dictionary.

If you defined storage classes and memory sections in a previous release by creating your own
package, you can configure a model or a Simulink data dictionary to refer to the package. Then, the
package storage classes and memory sections appear in the Code Mapping Tool alongside new
definitions that you create in R2018a.

To create new definitions, you use the Embedded Coder Dictionary. For more information, see
Embedded Coder Dictionary.

When you or your users open the new Code Perspective for the first time in a model created in a
previous release, the Perspective can make changes to the model and associated data dictionaries
(.sldd). Before you or your users open the Code Perspective in existing models, consider preparing
the models and dictionaries for the changes. See Migrate Memory Section and Shared Utility Settings
from Configuration Parameters to Code Mapping Editor.

Multi-Instance Code Generation: Apply more control when generating
reusable, reentrant code
R2018a introduces these capabilities for controlling multi-instance code generation, that is code
generated when you set Code interface packaging to Reusable function:

R2018a

11-4

https://www.mathworks.com/help/releases/R2018a/ecoder/ref/embeddedcoderdictionary.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html

• The Embedded Coder Quick Start now provides the option of whether you want to configure a
model for multi-instance code generation. For a multi-instance C language configuration, the tool
sets the model configuration parameter Code interface packaging to Reusable function.

• New example storage classes, SignalStruct and ParamStruct, which facilitate controlling
generated code for signals and parameters . Embedded Coder Quick Start and Embedded Coder
model templates apply these storage classes by default when you specify multi-instance code
generation. You can update properties, such as naming rules for instance-specific data. The code
generator produces a struct type definition that encapsulates signal or parameter data.

• New $G token for including the name of a storage class in code generation naming rules
associated with model data elements. For example, you can use this token in the naming rule that
you specify for the header file defined for a storage class.

• The Embedded Coder Dictionary enables you to define storage classes intended for multi-instance
code generation, for example, you can specify a structured storage type and include the storage
class name in the name of the generated header file.

For more information about generating multi-instance, reentrant code, see Generate Reentrant Code
from Top Models.

Variant Blocks Usability Enhancement: Generate Preprocessor
Conditionals by using MATLAB variables as variant controls
In R2017b, to generate preprocessor conditionals for Variant blocks, you specified variant control
variables as Simulink.Parameter objects. These objects were required to have one of these
storage classes:

• Define or ImportedDefine with header file specified
• CompilerFlag
• SystemConstant (AUTOSAR)
• Your own custom storage class that defined data as a macro

In R2018a, for Variant blocks, you can specify variant control variables as MATLAB variables and
generate preprocessor conditionals. You no longer have to convert MATLAB variables that you use for
simulation to Simulink.Parameters for code generation with preprocessor conditionals. For more
information, see Variant Systems.

MISRA C:2012 Compliance and Deviation Considerations: Guidance for
evaluating your generated code for compliance with MISRA C:2012
directives and rules
When using MISRA C:2012 coding guidelines to evaluate the quality of your generated C code, you
are required per section 5.3 of the MISRA C:2012 Guidelines for the Use of C Language in Critical
Systems document to prepare a compliance statement for the project being evaluated.

To assist you in the development of this compliance statement, MathWorks evaluates C code
generated by using Embedded Coder against the MISRA C:2012 guidelines. Compliance
considerations are documented in:

• Using This Documentation When Developing a MISRA C:2012 Compliance Statement
• Evaluate Your Generated Code for MISRA C:2012 Compliance

 Model Architecture and Design

11-5

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/generate-reentrant-code-from-top-models-1060a79aa9d9.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/generate-reentrant-code-from-top-models-1060a79aa9d9.html
https://www.mathworks.com/help/releases/R2018a/ecoder/variant-systems.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/using-this-documentation-when-developing-a-misra-c2012-compliance-statement.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/evaluating-your-generated-code-for-misra-c2012-compliance.html

• Compliance Information Summary Tables
• Modeling Guidelines for MISRA C:2012 Compliance
• Deviations Rationale

Modeling Checks: Improve compliance of generated code by using
Model Advisor check for MISRA C:2012
Use this new check to verify compliance of your generated code with MISRA C:2012 standards. To
execute this check, open Model Advisor and select By Product > Embedded Coder.

Model Advisor Check Description Addresses
Standards

Check bus object names that are
used as element names

Check updated to identify Simulink.Bus
object names that are used as Simulink.Bus
element names.

• MISRA
C:2012 Rule
5.6

• MISRA AC
AGC Rule 5.3

Modifications to existing compliance checks are outlined in this table.

Model Advisor Check Description of Change
Check for bitwise operations on signed
integers

The check assumes that code is generated for the
whole model. When code is generated by a subsystem
build or export functions, the check can produce
incorrect results.

Check for blocks not recommended for C/C+
+ production code deployment

Check for blocks not recommended for
MISRA C:2012

Check now analyzes content in library linked blocks
and masked subsystems.

AUTOSAR Release 4.3: Import and export AUTOSAR XML schema
version 4.3
The software now supports AUTOSAR Release 4.3 (schema version 4.3.0) for import and export of
arxml files and generation of AUTOSAR-compatible C code.

4.3 is now the default value for the model configuration parameter Generate XML file for schema
version.

For more information, see Select an AUTOSAR Schema.

AUTOSAR Perspective: Map and configure software components by
using Code Mapping Editor and AUTOSAR Dictionary
After you create an AUTOSAR software component model in Simulink, use the Code Mapping Editor
and AUTOSAR Dictionary to further develop the AUTOSAR component. The Code Mapping Editor and
AUTOSAR Dictionary provide mapping and property views of the component model, which can be
used separately and together to configure the AUTOSAR component.

R2018a

11-6

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/compliance-information-summary-tables.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/modeling-guidelines-for-misra-c2012-compliance.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/deviation-rationales.html
https://www.mathworks.com/help/releases/R2018a/simulink/ug/select-and-run-model-advisor-checks.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_ff8c9295-42f5-418b-84f5-3a76fa98050b
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_ff8c9295-42f5-418b-84f5-3a76fa98050b
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/embedded-codersimulink-coder-checks.html#btpdhq5-1
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/embedded-codersimulink-coder-checks.html#btpdhq5-1
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/generating-autosar-code-and-description-files.html#brsz5z2-1

The Code Mapping Editor replaces the Simulink-AUTOSAR Mapping view of the Configure
AUTOSAR Interface dialog box. The new dialog box provides in-canvas access to AUTOSAR mapping
information, with a help panel, Property Inspector dialog box, batch editing, element filtering, easy
navigation to model elements and AUTOSAR properties, and model element traceability. Use this view
to map model elements to AUTOSAR component elements from a Simulink model perspective.

The AUTOSAR Dictionary replaces the AUTOSAR Properties view of the Configure AUTOSAR
Interface dialog box. Using a tree format, the new dialog box displays a mapped AUTOSAR
component and its elements, communication interfaces, computation methods, and XML options. Use
this view to configure AUTOSAR elements from an AUTOSAR component perspective.

 Model Architecture and Design

11-7

AUTOSAR mapping and property functions are unchanged from previous releases. They allow you to
get, set, add, and remove the mapping information and component properties displayed in the Code
Mapping Editor and AUTOSAR Dictionary views of the AUTOSAR component model.

For more information, see AUTOSAR Component Configuration.

AUTOSAR XML Import and Export: Round-trip ComSpecs, import
bitfield CompuMethods, export interface variation points, and
automate more element creation
R2018a extends arxml import and export support for AUTOSAR ComSpecs, BITFIELD_TEXTTABLE
CompuMethods, and variants, and automates creation of more elements during arxml imports and
model updates.

Model ComSpecs for AUTOSAR sender and receiver data

In AUTOSAR software components, a sender or receiver port optionally can specify a communication
specification (ComSpec). ComSpecs describe additional communication requirements for port data.

In R2018a, to model AUTOSAR sender and receiver ComSpecs in Simulink, you can:

• Import sender and receiver ComSpecs
• Create sender and receiver ComSpecs in Simulink

R2018a

11-8

https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/autosar-interface-configuration.html

• For nonqueued sender and receiver ports, modify ComSpec attribute InitValue
• For nonqueued receiver ports, modify ComSpec attributes AliveTimeout and

HandleNeverReceived
• Export ComSpecs to arxml files

For more information, see Configure AUTOSAR Sender-Receiver Port ComSpecs.

Note This support is available to R2017b Embedded Coder customers by installing R2017b
Embedded Coder Support Package for AUTOSAR Standard, Version 17.2.3 or later.

Import BITFIELD_TEXTTABLE CompuMethods

AUTOSAR CompuMethods of category BITFIELD_TEXTTABLE allow you to access bit values within
an application data type of category VALUE. You can group bit values, assign labels to them, and
define masks for accessing values within bytes of data.

In R2018a, you can import BITFIELD_TEXTTABLE CompuMethods from arxml files. After you import
the CompuMethods, you can create Simulink enumerated types to represent bit groups and masks for
accessing the bitfields, and reference them in Simulink bitwise and relational operator and constant
blocks.

To create Simulink enumerated types for a BITFIELD_TEXTTABLE CompuMethod, call the AUTOSAR
property function createEnumeration. The function creates a mask type and other enumerated
types, based on what is defined in the specified CompuMethod. For example:
arProps = autosar.api.getAUTOSARProperties(modelName);
createEnumeration(arProps,'/Company/Module/CompuMethods/MyBitfieldCompuMethod');

Note This support is available to R2016a, R2016b, R2017a, and R2017b Embedded Coder customers
by installing the latest AUTOSAR support package for your release:

• R2016a Embedded Coder Support Package for AUTOSAR Standard, Version 16.1.8 or later
• R2016b Embedded Coder Support Package for AUTOSAR Standard, Version 16.2.5 or later
• R2017a Embedded Coder Support Package for AUTOSAR Standard, Version 17.1.3 or later
• R2017b Embedded Coder Support Package for AUTOSAR Standard, Version 17.2.3 or later

Export variation points for AUTOSAR interface variants

R2018a enhances AUTOSAR code generation support for variants.

• If you model an AUTOSAR port with a variant condition in Simulink, arxml export now generates
variation points on the AUTOSAR port and data accesses.

• If you model an AUTOSAR runnable with a variant condition, arxml export now generates both a
variation point and a corresponding variation point proxy for the runnable. The variation point and
variation point proxy refer to the same AUTOSAR system constant.

 Model Architecture and Design

11-9

https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/configure-autosar-sender-receiver-communication.html#mw_d27acd36-b112-4b8d-89cd-7794e5a31346

Add Signal Invalidation blocks and ErrorStatus ports when required by imported AUTOSAR
components

The AUTOSAR arxml importer now automatically adds Signal Invalidation blocks and ErrorStatus
ports when required by an imported component that uses sender-receiver (S-R) communication.
Importer function createComponentAsModel:

• Adds a Signal Invalidation block connected to an outport if the outport is mapped to an AUTOSAR
sender port and the associated S-R data element uses invalidation policy KEEP or REPLACE.

• Adds an ErrorStatus port to a receiver component if the associated S-R data element meets at
least one of these conditions:

• Uses invalidation policy KEEP or REPLACE.
• Uses an AliveTimeout value greater than 0.
• Has HandleNeverReceived set to true.

Note This support is available to R2017b Embedded Coder customers by installing R2017b
Embedded Coder Support Package for AUTOSAR Standard, Version 17.2.1 or later.

Increased automation for AUTOSAR model updates

The arxml importer function updateModel now automates insertion and mapping of the following
elements:

• Inter-runnable variable (IRV) lines for AUTOSAR IRVs
• Constant blocks for AUTOSAR parameters
• Data store memory (DSM) blocks for AUTOSAR per-instance memory (PIM) blocks

Previously, these elements required manual additions to the model.

Model updates also now resize added Function Caller, Constant, and DSM blocks so that block text is
readable.

Note This support is available to R2016a, R2016b, R2017a, and R2017b Embedded Coder customers
by installing the latest AUTOSAR support package for your release:

• R2016a Embedded Coder Support Package for AUTOSAR Standard, Version 16.1.7 or later
• R2016b Embedded Coder Support Package for AUTOSAR Standard, Version 16.2.4 or later
• R2017a Embedded Coder Support Package for AUTOSAR Standard, Version 17.1.1 or later
• R2017b Embedded Coder Support Package for AUTOSAR Standard, Version 17.2.0 or later

Navigate AUTOSAR Update Report using search bar

The update report generated by importer function updateModel now provides a search bar. You can
quickly navigate to specific elements or other strings of interest.

For more information, see Import AUTOSAR Software Component Updates.

R2018a

11-10

https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/merge-autosar-authoring-tool-changes-into-model.html

Note This support is available to R2016a, R2016b, R2017a, and R2017b Embedded Coder customers
by installing the latest AUTOSAR support package for your release:

• R2016a Embedded Coder Support Package for AUTOSAR Standard, Version 16.1.8 or later
• R2016b Embedded Coder Support Package for AUTOSAR Standard, Version 16.2.5 or later
• R2017a Embedded Coder Support Package for AUTOSAR Standard, Version 17.1.3 or later
• R2017b Embedded Coder Support Package for AUTOSAR Standard, Version 17.2.3 or later

Import reference definitions for AUTOSAR interface elements

The arxml importer function updateModel now imports reference definitions for AUTOSAR
interface elements, such as SenderReceiverInterface. For a list of supported reference elements,
see Import or Update Shared AUTOSAR Reference Element Definitions.

AUTOSAR Signal Invalidation Block: Specify invalidation policy and
initial value directly as block parameters
Embedded Coder provides the Signal Invalidation block for modeling sender-receiver data
invalidation in an AUTOSAR model. R2018a enhances signal invalidation modeling for simulation and
code generation. You can now:

• Specify Signal invalidation policy and Initial value for a data element directly as Signal
Invalidation block parameters.

• Correctly simulate the signal invalidation policy Replace for an invalidated signal. Previously,
simulation would keep the last valid signal value rather than replace the input data value with an
initial value.

• Model the signal invalidation policy DontInvalidate for simulation and code generation.

For more information, see the Signal Invalidation block reference page.

AUTOSAR Basic Software: Use array and bus data types with
NvMServiceCaller operations
When using the Basic Software block NvMServiceCaller to call ReadBlock,
RestoreBlockDefaults, or WriteBlock operations, you now can specify array and bus data types.
Use the block parameter Argument specification.

For more information, see the NvMServiceCaller block reference page.

Note This support is available to R2016b, R2017a, and R2017b Embedded Coder customers by
installing the latest AUTOSAR support package for your release:

• R2016b Embedded Coder Support Package for AUTOSAR Standard, Version 16.2.5 or later
• R2017a Embedded Coder Support Package for AUTOSAR Standard, Version 17.1.3 or later
• R2017b Embedded Coder Support Package for AUTOSAR Standard, Version 17.2.3 or later

 Model Architecture and Design

11-11

https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/import-or-update-shared-autosar-reference-element-definitions.html
https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/signalinvalidation.html
https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/nvmservicecaller.html

Obsolete AUTOSAR functions removed
R2018a ends support for some obsolete AUTOSAR functions.

• You can no longer access the following obsolete arxml.importer functions. The functions have
been removed from MATLAB help.

getApplicationComponentN
ames

Get AUTOSAR application software component names from
arxml files

getCalibrationComponentN
ames

Get AUTOSAR calibration component names from arxml
files

getClientServerInterface
Names

Get AUTOSAR client-server interface names from arxml
files

getDependencies Get AUTOSAR arxml dependency files
getFile Get AUTOSAR arxml software component file
getSensorActuatorCompone
ntNames

Get AUTOSAR sensor/actuator software component names
from arxml files

setDependencies Set AUTOSAR arxml dependency files
setFile Set AUTOSAR arxml software component file

• R2018a removes the XML option Default aliveTimeout from the XML options dialog box. Now
you can set the AliveTimeout value for individual mapped AUTOSAR receiver ports, so the XML
option is unnecessary. If you try to programmatically access the XML option
DefaultAliveTimeout using AUTOSAR property function get or get, the software displays an
error message.

• In R2013b, a new programmatic interface for configuring AUTOSAR properties and mapping
replaced the RTW.AutosarInterface class. R2018a ends support for models that use the
RTW.AutosarInterface based mapping. These models are no longer automatically converted to
use the new AUTOSAR properties and mapping approach. If you attempt an operation using the
old mapping approach, the software displays an error message.

• In R2013b, the autosar_ui_launch function replaced the autosar_gui_launch function,
which was only briefly documented. R2018a removes autosar_gui_launch from the software.

Compatibility Considerations
If an AUTOSAR script or model relies on an obsolete AUTOSAR function, update it to use supported
alternatives. For example:

• AUTOSAR importer scripts can use the functions listed in the arxml.importer reference page in
place of older functions such as getApplicationComponentNames and setFile. For example:

• Use generic function getComponentNames with a component type argument instead of
specialized functions getApplicationComponentNames,
getCalibrationComponentNames, and getSensorActuatorComponentNames.

• When importing arxml descriptions, specify multiple arxml file names instead of a single
component file with dependency files.

• AUTOSAR property scripts can set AliveTimeout values for individual mapped ports and
elements, rather than setting the XML option DefaultAliveTimeout. For example:
>> set(arProps,comSpecPath{1},'AliveTimeout',90)

R2018a

11-12

https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/arxml.importer.html
https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/autosar_ui_launch.html
https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/arxml.importer.html
https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/arxml.importer.getcomponentnames.html

For more information, see Configure AUTOSAR Sender-Receiver Port ComSpecs.

• AUTOSAR models that use pre-R2013b RTW.AutosarInterface based mapping should
permanently migrate to using the AUTOSAR property and map functions listed in AUTOSAR
Software Components and AUTOSAR Programmatic Interfaces. The new functions work with the
component property and mapping information displayed in AUTOSAR Dictionary and the Code
Mapping Editor.

To automatically convert an AUTOSAR model to use the new AUTOSAR properties and mapping
approach, open the model in a MATLAB release before R2018a. The software converts the model
to use the new approach.

• AUTOSAR scripts that call autosar_gui_launch must modify the function name to
autosar_ui_launch. No change to function arguments is needed.

 Model Architecture and Design

11-13

https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/configure-autosar-sender-receiver-communication.html#mw_d27acd36-b112-4b8d-89cd-7794e5a31346
https://www.mathworks.com/help/releases/R2018a/ecoder/autosar-software-components-1.html
https://www.mathworks.com/help/releases/R2018a/ecoder/autosar-software-components-1.html
https://www.mathworks.com/help/releases/R2018a/ecoder/autosar-programmatic-interfaces.html
https://www.mathworks.com/help/releases/R2018a/ecoder/autosar/autosar_ui_launch.html

Data, Function, and File Definition

Function-Prototype Control: Configure step function name with void
void interface
As of R2018a, when using function-prototype control to configure the name of a model step
(execution) function, you have the option of specifying a void void interface.

For more information about using function-prototype control, see Customize Generated C Function
Interfaces.

Default Code Configurations for Data and Functions: Apply default
code generation configurations for categories of model data and
functions across a model
R2018a simplifies configuration of data and entry-point functions for code generation, especially for
larger models and models from which you generate multi-instance code. You now have the option of
specifying default code generation configurations for categories of data elements and functions
across a model. You can specify the default configurations interactively from a graphical user
interface or programmatically with an API.

You can set a default code generation configuration for:

• Categories of model data. When producing code for the data, the code generator uses the storage
class that you specify to determine properties, such as whether the data is structured, naming
rules for definition and header files, and whether the data gets stored in a memory section.

• Categories of functions. When producing code for the functions, the code generator uses a
function customization template that you specify to determine properties, such as a function
naming rule and whether the function code gets stored in a memory section.

After applying default code generation configurations, you can override the default settings for
specific data elements or functions by using the Code view of the Model Data Editor or Configure C/C
++ Function Interface dialog box, respectively.

You can map a category of model data elements to one of the following:

• Unspecified storage class (Default)
• Relevant built-in storage class, such as ExportedGlobal
• Relevant storage class in an available package, such as ImportFromFile
• Storage class defined in an Embedded Coder Dictionary

New example storage classes, SignalStruct and ParamStruct, facilitate controlling generated
code for signals and parameters in models that you configure for multi-instance code generation with
Embedded Coder Quick Start or an Embedded Coder model template. For these storage classes, the
code generator produces a struct type definition that encapsulates the signal or parameter data.
Properties and naming rules defined for the storage classes vary depending on the category of data
being mapped.

For a category of functions, you can choose from:

R2018a

11-14

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/function-prototype-control.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/function-prototype-control.html

• Unspecified function customization template (default)
• Function customization template defined in an Embedded Coder Dictionary.

For information on how to specify code mappings, see Configure Default Code Generation for
Categories of Model Data and Functions and Code Mapping Editor. For information about defining
storage classes and function customization templates for data and function default mapping, see
Define Storage Classes, Memory Sections, and Function Templates for Software Architecture and
Embedded Coder Dictionary.

Compatibility Considerations
Starting in R2018a, to configure memory sections and shared utility function names, use the Code
Mapping Editor or default mapping programming interface instead of model configuration
parameters.

To Configure Instead of Setting Map
Memory sections Model configuration

parameters on the Memory
Sections pane

Data and function categories in the Code
Mapping Editor to storage classes and
function customization templates that
define memory sections (see Configure
Default Code Generation for Data and
Configure Default Code Generation for
Functions)

Shared utility function
names

Shared utilities identifier
format model configuration
parameter

Shared utility category on the Function
Defaults tab of the Code Mapping Editor
to a function customization template that
defines a default function naming rule (see
Configure Default Code Generation for
Functions)

After you open the Code Perspective or use the default mapping programmatic interface to configure
one or more categories of data and functions for a model, setting memory section and Shared
utilities identifier format (formerly Configuration Parameters > Code Generation > Symbols
> Identifier format control > Shared utilities) model configuration parameters has no effect.
Also, when you open the Perspective, Simulink migrates the model configuration parameter settings
to the Code Mapping Editor. If necessary, as part of the migration, Simulink configures the Embedded
Coder Dictionary that the model uses as described in Migrate Memory Section and Shared Utility
Settings from Configuration Parameters to Code Mapping Editor.

GetSet Custom Storage Class Enhancement: Improved readability for
an array of buses
In R2017b, when you used the custom storage class GetSet for an array of busses, the get function
did not accept an argument. In R2018a, the get function accepts an integer index argument. The get
function returns the vector value at that index. This enhancement improves the readability of the
generated code and is consistent with how you apply the custom storage class GetSet to other
signals and parameters that are vectors. For more information, see Access Data Through Functions
with Custom Storage Class GetSet.

 Data, Function, and File Definition

11-15

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/configure-default-code-generation-for-categories-of-model-data-and-functions.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/configure-default-code-generation-for-categories-of-model-data-and-functions.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/codemappingeditor.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/embeddedcoderdictionary.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/configure-default-code-generation-for-categories-of-model-data-and-functions.html#mw_abf23689-bf8b-4b4c-854e-b072022c3b12
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/configure-default-code-generation-for-categories-of-model-data-and-functions.html#mw_abf23689-bf8b-4b4c-854e-b072022c3b12
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/configure-default-code-generation-for-categories-of-model-data-and-functions.html#mw_d8769be6-5dd2-412c-a917-6b836bc7e860
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/configure-default-code-generation-for-categories-of-model-data-and-functions.html#mw_d8769be6-5dd2-412c-a917-6b836bc7e860
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/configure-default-code-generation-for-categories-of-model-data-and-functions.html#mw_d8769be6-5dd2-412c-a917-6b836bc7e860
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/configure-default-code-generation-for-categories-of-model-data-and-functions.html#mw_d8769be6-5dd2-412c-a917-6b836bc7e860
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/getset-custom-storage-classes.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/getset-custom-storage-classes.html

Compatibility Considerations
For existing models that contain array of busses and use the GetSet storage class, you must update
the declaration and definition of the get function to accept an integer index argument.

Local Storage Class: Preserve local variables with Localizable storage
class
In R2017b, if you created a custom storage class with the Data scope parameter set to Auto, the
code generator tried to generate variables with File scope. If the code generator could not give a
variable File scope, then it gave the variable Exported scope.

In R2018a, if you create custom storage classes that have the Data scope parameter set to Auto, for
Simulink.Signals, the code generator first tries to generate variables that are local to a function.
If generating those variables is not possible, the code generator creates variables with File or
Exported scope.

For Simulink.Signals, there is a new Localizable custom storage class. You can use this custom
storage class to instruct the code generator to generate variables that are local to a function.

Generating variables that are local to functions prevents the code generator from implementing
optimizations that remove the variables from the generated code. The presence of local variables
improves observability, readability, and is helpful in debugging the generated code. For more
information, see Generate Local Variables with Localizable Custom Storage Class.

Accurate Header File Extension: Generate correct #include
statements for imported data types
For custom data types (such as a Simulink.AliasType object), with the Data scope and Header
file properties, you can configure the generated code to import the type definition from your external
code. Previously, if you omitted the .h extension when specifying Header file, the code generator
ignored the omission, adding the extension in #include statements. In R2018a, for imported types,
the code generator does not add the .h extension.

Compatibility Considerations
If you previously omitted the .h extension for an imported data type, in R2018a, the generated code
omits the .h extension in #include statements. If the name of the target file has a .h extension, you
cannot compile the generated code. To generate correct code, you must add the extension in the
Header file property.

Macro Access: Get data through a macro that your code defines
You can use the storage class GetSet to generate code that interacts with data by calling your
custom get and set functions. In R2018a, if your external code implements the get mechanism for
scalar or array data as a macro instead of a function, you can generate code that omits parentheses
when reading that data.

Create a custom storage class by using the Custom Storage Class Designer. Set Type to
AccessFunction and, on the Access Function Attributes tab, select Get data through macro

R2018a

11-16

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/generate-local-variables-with-localizable-custom-storage-class.html

(omit parentheses). For more information, see Access Scalar and Array Data Through Macro
Instead of Function Call.

Tokens for Memory Sections: Use $N token instead of identifier
Previously, when you defined a memory section by using the Custom Storage Class Designer, you
used the placeholder %<identifier> to stand for the name of each relevant function or variable. In
R2018a, you use $N instead of %<identifier>.

You do not need to manually modify your existing memory sections so that they use $N. As you create
new memory sections, use $N instead of %<identifier>.

Compatibility Considerations
If you open your existing package in the Custom Storage Class Designer and click Save, the Designer
permanently replaces %<identifier> with $N in your memory sections. To use the modified
memory sections, other users of the package must have R2018a or a later release.

Parameter Initialization: Statically initialize tunable parameters from
system constants and other macros
By default, the generated code statically initializes tunable parameters by using literal numbers.
Tunable parameters include global variables and structure fields that represent block parameters,
such as the Gain parameter of a Gain block. For example, suppose you apply the storage class
ExportedGlobal to a Simulink.Parameter object named myParam whose value is 15. The
generated static initialization code looks like this code:

real_T myParam = 15;

In R2018a, you can generate code that initializes myParam by using an expression that involves
macros. For example, you can generate code that looks like this code:

#define SYSCONST 5
real_T myParam = 3 * SYSCONST;

The layer of abstraction that the expression provides can make the generated code easier to read and
maintain.

To generate such code, you create two parameter objects: myParam and SYSCONST. By setting the
value (Value property) of myParam to an expression, you explicitly model the relationship between
the parameter objects. By applying a macro storage class such as Define to SYSCONST, you generate
code that adheres to C syntax rules, which prohibit static initialization from data that reside in
memory.

For more information about setting the value of a parameter object to an expression that involves
other variables and objects, see Parameter Dependencies: Explicitly model relationships between
dependent and independent variables.

Model-Scoped Parameter Objects: Use FileScope to prevent name
clashes between parameters in different models
Previously, in a hierarchy of referenced models, if you stored two parameter objects (such as
Simulink.Parameter) with the same name in different model workspaces, you could not apply a

 Data, Function, and File Definition

11-17

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/getset-custom-storage-classes.html#mw_0f92dbe1-4541-40bf-a86c-89d6dee93f6b
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/getset-custom-storage-classes.html#mw_0f92dbe1-4541-40bf-a86c-89d6dee93f6b
https://www.mathworks.com/help/releases/R2018a/simulink/release-notes-R2018a.html#mw_21df847d-e192-4f81-a6b1-46b1bbcc129c
https://www.mathworks.com/help/releases/R2018a/simulink/release-notes-R2018a.html#mw_21df847d-e192-4f81-a6b1-46b1bbcc129c

storage class other than Auto to the objects. If both objects used a storage class other than Auto, the
code generator produced an error due to name clashing.

In R2018a, to prevent the names from clashing, you can apply the storage class FileScope to the
objects. In the generated code, each object appears as a static global variable in different code
files.

For more information, see Prevent Name Clashes by Configuring Data Item as static.

File Packaging of Generated Code for Global Simulink Function Blocks:
Code for function body placed in model.c
As of R2018a, the code generator places code for the body of a global Simulink Function block in the
model.c file.

Compatibility Considerations
Prior to R2018a, by default, the code generator placed code for the body of a global Simulink
Function block in a function-specific file, function.c, separate from code for the root model
(model.c). To support models that include Rate Transition blocks and global Simulink Function
blocks, the code generator now includes the algorithm code for a global Simulink Function block as a
rate-grouped function in model.c. You can no longer control the file packaging of rate-grouped
output functions.

This change does not impact the file packaging of the function declaration for global Simulink
Function blocks. The code generator still places the declaration in a function-specific header file,
function.h.

For more information about controlling the file packaging of generated code, see Manage File
Packaging of Generated Code Modules.

Identifiers: Represent name of storage class in identifier naming rules
by using new token $G
Include the name of a storage class associated with a data item (signal, block parameters, or state) in
generated code as a global variable or global type by using the new naming rule token $G. Apply the
token to global variables or global type by including $G in the naming rule that you specify for the
model configuration parameter Global variables or Global types.

In the Embedded Coder Dictionary, use the $G token for including the name of a storage class in code
generation naming rules associated with a category of model data elements. For example, you can
use $G token in the naming rule that you specify for the Header File defined for a storage class that
you create in the Embedded Coder Dictionary. When you define a naming rule for a storage class for
structured code, you can use $G as one of the tokens when naming the structure type and instance.
For more information, see Define Storage Classes, Memory Sections, and Function Templates for
Software Architecture.

R2018a

11-18

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/manage-placement-of-data-definitions-and-declarations.html#mw_1b840433-b447-4234-b4ee-07898dbcf327
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/generate-code-modules.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/generate-code-modules.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/global-variables.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/global-types.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/define-storage-class-memory-section-and-function-template-settings-for-a-software-architecture.html

Functionality Being Removed or Changed
Functionality Result Use Instead Compatibility

Considerations
Memory Sections pane
in configuration
parameters

The pane has been
removed. The
parameters have been
moved to Code
Generation >
Advanced parameters.

Before you open the
new Code Perspective
for the first time in the
model, you can continue
to use these
configuration
parameters.

After you open the Code
Perspective, use the
Code Mapping Editor to
configure memory
sections. See “Default
Code Configurations for
Data and Functions:
Apply default code
generation
configurations for
categories of model
data and functions
across a model” on page
11-14.

After you open the Code
Perspective,
programmatically
accessing these
parameters (for
example, with a script)
generates warnings.
Adjust scripts so they
use the programmatic
interface of the Code
Mapping Editor instead
(see “Default Code
Configurations for Data
and Functions: Apply
default code generation
configurations for
categories of model
data and functions
across a model” on page
11-14).

Configuration
Parameters > Code
Generation > Symbols
> Identifier format
control > Shared
utilities

The parameter has been
moved and renamed to
Configuration
Parameters > Code
Generation > Symbols
> Advanced
parameters > Shared
utilities identifier
format.

Before you open the
new Code Perspective
for the first time in the
model, you can continue
to use this configuration
parameter.

After you open the Code
Perspective, use the
Code Mapping Editor to
configure naming rules
for shared utility
functions. See “Default
Code Configurations for
Data and Functions:
Apply default code
generation
configurations for
categories of model
data and functions
across a model” on page
11-14.

After you open the Code
Perspective,
programmatically
accessing this
parameter (for example,
with a script) generates
a warning. Adjust
scripts so they use the
programmatic interface
of the Code Mapping
Editor instead (see
“Default Code
Configurations for Data
and Functions: Apply
default code generation
configurations for
categories of model
data and functions
across a model” on page
11-14).

 Data, Function, and File Definition

11-19

Code Generation
Code Perspective: Customize Simulink desktop for code generation
workflows
In the Simulink Editor, the Code Perspective provides the tools to prepare your model for code
generation.

You can:

• Apply default code generation settings to categories of model data elements and entry-point
functions.

• Override these default settings for individual elements and functions by using existing tools, such
as the Model Data Editor or function prototype control.

• Create custom definitions, such as storage classes, that you can apply to categories of data and
functions across a model.

• Set model configuration parameters related to code generation. From the help pane, open the
Configuration Parameters dialog box.

• From the ellipsis menu, easily trace from selected model elements to generated code.
• Detect model design elements that do not meet code generation requirements through edit-time

checking (requires Simulink Check).

The integrated help pane provides quick access to tools, video tutorials, and links to more
information.

To open the Code Perspective, select Code > C/C++ >Configure Model in Code Perspective or, in
the Simulink Editor, click the perspective control in the lower-right corner and select Code. For more
information about using the Code Perspective, see Environment for Configuring Model Data and
Functions for Code Generation.

After you open the Code Perspective or use the default mapping programmatic interface to configure
one or more categories of data and functions for a model, setting memory section and Shared
utilities identifier format (formerly Configuration Parameters > Code Generation > Symbols
> Identifier format control > Shared utilities) model configuration parameters has no effect.
Also, when you open the Perspective, Simulink migrates the model configuration parameter settings
to the Code Mapping Editor. If necessary, as part of the migration, Simulink configures the Embedded
Coder Dictionary that the model uses as described in Migrate Memory Section and Shared Utility
Settings from Configuration Parameters to Code Mapping Editor.

Rate Transition Block Code Customization: Separate Rate Transition
block code and data from algorithm code and data
Previously, for Rate Transition blocks, the code was inlined with model code and the variable
declarations were in a global state structure that was applicable to all model blocks.

In R2018a, you can use a new model configuration parameter, Rate Transition block code, to
separate the Rate Transition block code and data from the model code and data. The generated code
contains separate get and set functions that the model_step functions call and a dedicated
structure for state data. The generated code also contains separate start and initialize functions that
the model_initialize function calls.

R2018a

11-20

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/environment-for-configuring-model-data-and-functions-for-code-generation.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/environment-for-configuring-model-data-and-functions-for-code-generation.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/separation-of-code-definitions-and-model-specific-data-and-function-configurations.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/_mw_2b776fcf-2ca4-49fb-947b-9c9a92921ac4.html

Separating Rate Transition block code and data from algorithm code and data enables you to
independently analyze, optimize, and test Rate Transition block and algorithm code.

Generated Files: Customize generated file names with new token $E
You can now customize the names of the generated files. When you use Modular or Compact(with
separate data file) file packaging, you can specify custom names for generated header, source,
and data files. When you use Compact file packaging, you can specify custom names for generated
header and source files.

On the Code Generation > Code Placement pane, enter custom names in Header files, Source
files, and Data files fields.

$E is a new token representing the type of data interface. The custom names are also applicable to
the additional files generated for a data interface. $E represents these instances of data interface file
types:

• capi
• capi_host
• dt
• testinterface
• private
• types

Custom naming is supported only for .c, .h, .cpp, and .hpp files. When you have model hierarchy,
custom naming is applicable to only the root model.

$E is mandatory for Header files and Source files. It is not supported for Data files. Other
supported tokens for Header files and Source files are $R, $U, or any custom user text. One of the
supported tokens is mandatory for the Header files and Source files. For more information, see
Customize Generated File Names.

These TLC functions are added to support customization of generated file names:

• LibGetMdlDataSrcBaseName()
• LibGetMdlTypesHdrBaseName()
• LibGetMdlCapiHdrBaseName()
• LibGetMdlCapiSrcBaseName()
• LibGetMdlCapiHostHdrBaseName()
• LibGetMdlTestIfHdrBaseName()
• LibGetMdlTestIfSrcBaseName()
• LibGetDataTypeTransHdrBaseName()

These TLC functions are updated to support customization of generated file names:

• LibGetMdlSrcBaseName()
• LibGetMdlPubHdrBaseName()
• LibGetMdlPrvHdrBaseName()

 Code Generation

11-21

https://www.mathworks.com/help/releases/R2018a/ecoder/ref/header-files-naming-rule.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/source-files-naming-rule.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/source-files-naming-rule.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/data-files-naming-rule.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/customize-generated-file-names.html
https://www.mathworks.com/help/releases/R2018a/rtw/tlc/code-configuration-functions.html#mw_37dcc7cb-9e78-4940-a4f4-059c7afaab0f
https://www.mathworks.com/help/releases/R2018a/rtw/tlc/code-configuration-functions.html#mw_8c8f09d7-18b9-4570-a2bf-9ca00f89e094
https://www.mathworks.com/help/releases/R2018a/rtw/tlc/code-configuration-functions.html#mw_6dfc4a71-f49c-4f8d-8a6d-e0c4f8139bb4
https://www.mathworks.com/help/releases/R2018a/rtw/tlc/code-configuration-functions.html#mw_501e9e1c-f40a-465e-81d7-74f84591296e
https://www.mathworks.com/help/releases/R2018a/rtw/tlc/code-configuration-functions.html#mw_5097e520-6eac-4389-b96d-24dacb37ba04
https://www.mathworks.com/help/releases/R2018a/rtw/tlc/code-configuration-functions.html#mw_59a5082d-0ab9-48e1-9a35-8439f37dddeb
https://www.mathworks.com/help/releases/R2018a/rtw/tlc/code-configuration-functions.html#mw_43661be4-8c84-480f-aa93-55192447ebeb
https://www.mathworks.com/help/releases/R2018a/rtw/tlc/code-configuration-functions.html#mw_12188cb6-cc46-47d2-9dff-4fff00ede0da
https://www.mathworks.com/help/releases/R2018a/rtw/tlc/code-configuration-functions.html#bp6shl3
https://www.mathworks.com/help/releases/R2018a/rtw/tlc/code-configuration-functions.html#bp6shlz
https://www.mathworks.com/help/releases/R2018a/rtw/tlc/code-configuration-functions.html#bp6shko

Hardware Implementation Settings: Inaccurate values corrected
R2018a provides the correct values for these Hardware Implementation pane settings.

Device vendor Device type Device detail R2018a value Previous value
Texas
Instruments

C5000 Number of bits
per pointer

16 32

Texas
Instruments

C5000 Number of bits
per ptrdiff_t

16 32

Texas
Instruments

TMS570 Cortex-
R4

Byte ordering Big Endian Little Endian

When you open a saved model from a previous release, R2018a updates the incorrect values.

For more information, see Hardware Implementation Pane.

Cross-Release Code Integration: Reuse referenced model code with
instance-specific parameters
Reuse previously generated code from a referenced model multiple times within a current release
model. For each instance of the SIL or PIL block that contains the referenced model code, you can
specify unique values for the model arguments.

For more information, see Use Multiple Instances of Code Generated from Reusable Referenced
Model

Cross-Release Code Integration: Import and simulate AUTOSAR code
Into the current release, import AUTOSAR component code that you generated in a previous release.
Run software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulations with the imported code. You
can observe the interaction of code from a previous release with components implemented in the
current release. For more information, see:

• Workflow
• Import AUTOSAR Code from Previous Releases

Traceability Comments: Specify Simulink identifier in comments for
Simulink blocks, Stateflow objects, and MATLAB Function blocks
You can now specify the Simulink Identifier (SID) in the comments generated for Simulink, Stateflow
objects, and MATLAB Function blocks.

In the Configuration Parameters dialog box, on the Code Generation > Comments pane, the
parameters Simulink block comments or Stateflow object comments enable an additional
setting, Trace to model using, so that you can choose between Simulink identifier or Block
path. Block path is the default option.

When you select Simulink identifier, the generated comment includes the Simulink identifier
without the model name for the corresponding block or object. For example, if a block is named
Inport1 and its SID is model_name:1, the block identifier in the generated comment is Inport:

R2018a

11-22

https://www.mathworks.com/help/releases/R2018a/simulink/gui/hardware-implementation-pane.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/cross-release-code-integration-workflow.html#mw_54592278-36a0-421b-acf8-82c85b656e25
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/cross-release-code-integration-workflow.html#mw_54592278-36a0-421b-acf8-82c85b656e25
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/cross-release-code-integration-workflow.html#bvd438h
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/cross-release-code-integration-workflow.html#mw_0af51a6b-a01b-4c10-bd78-deed8b547194
https://www.mathworks.com/help/releases/R2018a/rtw/ref/block-comment-type.html

'Inport1' (':1'). When you select Block path, the generated comment includes the entire
block path from the root. Including the entire block path results in the previously existing format of
comment generation. For example, the block path for Inport1 is '<Root>/Inport1'.

You can now pass the SID format (model_name:number) as an argument to:

• rtwtrace for tracing to generated code. For example:

rtwtrace('rtwdemo_comments:1')
• hilite_system for tracing elements in the model. For example:

hilite_system('rtwdemo_comments:1')

When you enable traceability through Simulink identifier, you obtain consistent comment
generation despite changes in the model such as subsystem addition or deletion.

Newline Style: Customize linefeed character irrespective of the
operating system
In the generated code, the newline character differs according to the operating system that the code
is generated on. You can now customize the newline character irrespective of the operating system.
On the Code Generation > Code Style > Advanced Parameters pane, use the configuration
parameter Newline style to specify the newline character as Default, LF (Line Feed), or CRLF
(Carriage Return + Line Feed).

The Default option generates the newline character based on the operating system that the code is
generated on. You can select LF (Line Feed) and CRLF (Carriage Return + Line Feed)
options irrespective of the operating system. This customization enables portability of the generated
code to different operating systems for compilation. For more details, see Control Newline Style in
Generated Code.

Export Functions: Generate ScratchModel file containing a Model
block
When you select a subsystem and select Code > C/C++ Code > Export Functions, the operation
creates a new model, subsystem.slx, that contains the content of the original subsystem and
creates a ScratchModel that contains a Model block. This block references the newly created
subsystem.slx model.

If the original model has the Configuration Parameters > Code Generation > Verification >
Advanced parameters > Create block parameter set to SIL or PIL, the software creates a Model
block with Simulation mode set to Software-in-the-loop (SIL) or Processor-in-the-loop
(PIL).

For more information, see Generate Code for Export-Function Subsystems and Create block.

 Code Generation

11-23

https://www.mathworks.com/help/releases/R2018a/rtw/ref/rtwtrace.html
https://www.mathworks.com/help/releases/R2018a/simulink/slref/hilite_system.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/newline-style.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/control-code-style.html#mw_6867c78f-60e6-4dfa-a7c0-b6a70cf169d5
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/control-code-style.html#mw_6867c78f-60e6-4dfa-a7c0-b6a70cf169d5
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/export-generated-cc-source-code.html#bqnrwky-14
https://www.mathworks.com/help/releases/R2018a/ecoder/ref/create-block.html

Deployment

Build Process: Specify toolchain for template makefile
To build code generated from Simulink models, you can specify a process that uses a template
makefile that is associated with a toolchain.

You can still use the template makefile approach that you used with previous releases, that is, you can
use a template makefile build process that is not associated with a toolchain.

For more information, see Choose Build Approach and Configure Build Process.

Build Process Status for Parallel Builds: View and interact with build
process status for parallel builds of referenced model hierarchies
You can now view and interact with build process status for parallel builds through the Build
Process Status window. In the window, you see the status of referenced model builds, the elapsed
time for builds, and a Cancel button that you can use to end the build process without creating
incomplete build artifacts. For more information, see View Build Process Status.

TI C2000 IPC Block: Support for Inter-Processor Communications for
F2837xD in TI C2000 Support Package
Inter-Processor Communications (IPC) Receive and Transmit blocks are supported for F2837xD
processors.

C2000 F28004x: Support for peripherals in Texas Instruments C2000
Support Package
eCAP, eQEP, SPI, I2C, and CLA peripherals are supported for code generation in C2000 F28004x
processors.

STM32F7 Audio: Multiple channel Mic-In, Line-In, and Speaker out for
STM32F769I-Discovery in STM32 Support Package
Multiple channel Mic-In, Line-In, and Speaker out blocks are supported for STM32F769I-Discovery
boards.

STM32F7 External Mode: Support for TCP/IP and Serial Communication
for STM32F769I-Discovery board in STM32 Support Package
External Mode over TCP/IP (static and DHCP) and External Mode over Serial are supported for the
STM32F769I-Discovery board. External mode performance over TCP/IP has been improved through
the use of Universal Measurement and Calibration Protocol (XCP).

R2018a

11-24

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/program-builds.html
https://www.mathworks.com/help/releases/R2018a/rtw/ug/reduce-build-time-for-referenced-models.html#mw_77d535d8-3380-487d-843c-286f9611f4b2

External Mode Simulation: Upload execution-time metrics through
XCP transport layer
For XCP-based external mode simulations, you can:

• Configure execution-time profiling for the target code.
• Stream execution-time metrics to the Simulation Data Inspector.

You can use this feature in external mode simulations that run target applications on:

• Your development computer
• Xilinx® Zynq® ZC7000 development kits:

• ZedBoard
• ZC702 Evaluation Kit
• ZC706 Evaluation Kit

• Intel SoC FPGA evaluation boards:

• Cyclone® V SoC Development Kit
• Arrow® SoCkit
• Arria® 10 SoC Development Kit

• ARM Cortex-A9 processors
• STMicroelectronics Discovery boards:

• STM32F746G
• STM32F769I

For more information, see External Mode Simulation: Use XCP communication protocol (Simulink
Coder).

 Deployment

11-25

https://www.mathworks.com/help/releases/R2018a/rtw/release-notes-R2018a.html#mw_7c26841c-05b5-483f-bb58-a6e913034096

Performance

Single Instruction, Multiple Data (SIMD) Intrinsics: Generate code with
optimized load and store operations for use with Intel processors with
SSE/AVX support
In R2017b, for Intel processors with SSE support, you generated code with functions that utilized
SIMD instructions by choosing an Intel IPP/SSE code replacement library. The generated code
processed multiple data inputs in a single instruction.

In R2018a, for element-wise arithmetic operations involving single and double data types, you can
generate more efficient code containing SIMD intrinsics. There are less data copies and no wrapper
functions for the SIMD intrinsics. To generate this code, in the Configuration Parameters dialog box,
for the Code replacement library parameter, choose the Intel SSE (Windows) or Intel SSE
(Linux) library.

For example, the model, simd_model, contains three simple addition operations.

In R2017b, the simd_model_step function contained this code:

void simd_model_step(void)
{
 __attribute((aligned(16))) real32_T rtb_Add[140];
 __attribute((aligned(16))) real32_T rtb_Add1[140];
 mw_gcc_sse_mm_add_f32x4(simd_model_U.In1, 140, 1, simd_model_U.In2, rtb_Add);
 mw_gcc_sse_mm_add_f32x4(rtb_Add, 140, 1, simd_model_U.In3, rtb_Add1);
 mw_gcc_sse_mm_add_f32x4(rtb_Add1, 140, 1, simd_model_U.In4, simd_model_Y.Out1);
}

The generated code contained two temporary buffers Add and Add1 that held data that was passed to
the mw_gcc_sse_mm_add_f32x4 function. The mw_sse.c file contained the
mw_gcc_sse_mm_add_f32x4 function definition. This function contained the SIMD intrinsics
_mm_load_ps, _mm_add_ps, and _mm_store_ps.
void mw_gcc_sse_mm_add_f32x4(const float * A, int Row, int Col, const float * B, float * C)
{

R2018a

11-26

 __m128 sse_a, sse_b, sse_c;
 int size = Row*Col;
 int i;
 int k=0;

 for (i = 0; i < size ; i+=4)
 {
 sse_a = _mm_load_ps(A+i);
 sse_b = _mm_load_ps(B+i);
 sse_c = _mm_add_ps(sse_a, sse_b);
 _mm_store_ps(C+i, sse_c);
 }

 k=i-4;
 for (i = 0; i < size%4 ; i++)
 {
 C[k+i] = A[k+i]+B[k+i];
 }

}

In R2018a, the simd_model.c file contains this code:

void simd_model_step(void)
{
 int32_T idx;
 __m128 tmp;
 __m128 tmp_0;
 for (idx = 0; idx <= 136; idx += 4) {
 tmp = _mm_load_ps(&simd_model_U.In1[idx]);
 tmp_0 = _mm_load_ps(&simd_model_U.In2[idx]);
 tmp = _mm_add_ps(tmp, tmp_0);
 tmp_0 = _mm_load_ps(&simd_model_U.In3[idx]);
 tmp_0 = _mm_add_ps(tmp, tmp_0);
 tmp = _mm_load_ps(&simd_model_U.In4[idx]);
 tmp = _mm_add_ps(tmp_0, tmp);
 _mm_store_ps(&simd_model_Y.Out1[idx], tmp);
 }
}

In R2018a, the generated code does not contain the buffers Add and Add1. There is no function
wrapper for the SIMD intrinsics. For Intel processors with AVX/AVX2 support, you can choose the
Intel AVX (Windows) or Intel AVX (Linux) libraries. Using these libraries, you can generate
code that processes even more data in a single instruction. For more information on Code
Replacement Libraries, see What Is Code Replacement?.

Preprocessor Conditionals: Obtain better readability of generated
code for variant systems
You can generate code from Simulink models containing one or more variant choices. The generated
code contains preprocessor conditionals that control the activation of each variant choice.

In R2017b, the generated code for variant systems and variant subsystems had nested or consecutive
preprocessor conditionals with the same condition, resulting in redundant #if conditions.

For example, the generated code for a Switch block has nested #if conditions. The variable
rtb_Merge is assigned to rtb_VariantMerge_For_Variant_So in another redundant #if
condition.

real_T rtb_Merge;
real_T rtb_VariantMerge_For_Variant_So;
#if isfoo

 Performance

11-27

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/what-is-code-replacement-sc_buiy0s4.html

 switch (mMergeLocalize_U.In1) {
 case 0:
 #if isfoo
 rtb_Merge = mMergeLocalize_P.Constant_Value;
 #endif
 break;

 case 1:
 #if isfoo
 rtb_Merge = mMergeLocalize_P.Constant1_Value;
 #endif
 break;

 default:
 #if isfoo
 rtb_Merge = mMergeLocalize_P.Constant2_Value;
 #endif
 break;
 }
#endif
#if isfoo
 rtb_VariantMerge_For_Variant_So = rtb_Merge;
#endif

In R2018a, the nested and redundant #if conditions are removed. Because the variable rtb_Merge
is not necessary, it has been removed. The generated code is optimized for better readability and
code efficiency.
real_T rtb_VariantMerge_For_Variant_So;
#if isfoo
 switch (mMergeLocalize_U.In1) {
 case 0:
 rtb_VariantMerge_For_Variant_So = mMergeLocalize_P.Constant_Value;
 break;

 case 1:
 rtb_VariantMerge_For_Variant_So = mMergeLocalize_P.Constant1_Value;
 break;

 default:
 rtb_VariantMerge_For_Variant_So = mMergeLocalize_P.Constant2_Value;
 break;
 }
#endif

Some other instances of code efficiency are:

• Expression folding
• Fusion of consecutive preprocessor conditional regions with identical conditions

Not all instances of redundant preprocessor conditionals can be optimized for better readability and
code efficiency.

Buffer Reuse: Prioritize buffer reuse based on signal labels in model
diagram
In R2017b, you used the same Reusable custom storage class specification on different signal lines
to specify which buffers to reuse. You can now specify which buffers to reuse without the Reusable
custom storage class specification by labeling different signals with the same name and by selecting
the Use signal labels to guide buffer reuse configuration parameter. If possible, the code
generator reuses these buffers in the generated code.

After you study the generated code, the Static Code Metrics Report, and identify areas where you
think buffer reuse is possible, use signal labels to remove additional data copies. Specifying buffer

R2018a

11-28

https://www.mathworks.com/help/releases/R2018a/rtw/ref/_mw_61df4fb3-e1f5-4ed6-b100-c57ff02781c9.html

reuse reduces RAM consumption and improves execution speed. For more details and an example,
see Optimize Generated Code by Using Signal Labels to Guide Buffer Reuse.

Configuration Set: New location and layout for optimization model
configuration parameters
In R2018a, there are these changes to the optimization parameters:

• New parameters that make it easier for you to optimize the generated code to meet your specific
objectives.

Parameter Pane
Level To optimize the generated code, choose from these levels:

• Minimum (debugging)
• Balanced with Readability
• Maximum (default setting)

Priority If you set the Level parameter to Maximum, choose one of
these priorities:

• Balance RAM and speed (default setting)
• Maximum execution speed
• Minimize RAM

Specify custom optimizations Select individual parameter settings. Selecting this
parameter deactivates the Level and Priority
parameters.

On the Optimization pane, in the Details section, you can view the optimization parameter
settings that correspond with the Level and Priority parameters.

Existing models that you load in R2018a have the Specify custom optimizations parameter
selected. Models that you create in R2018a have a Level parameter setting of Maximum and a
Priority parameter setting of Balance RAM and speed.

If you plan on upgrading your software, be aware that:

• Setting the Priority and Level parameters enables the latest optimizations corresponding with
these settings for each subsequent release.

• Selecting Specify custom optimizations means that when you load a model in a future
release, any optimization parameters that were introduced in releases after you adopted to
when you upgrade are set to off. If you want to reduce the amount of changes in the
generated code when you upgrade your software, this option may be a good choice.

• Previously, there were three optimization panes. There is now a single Optimization pane, which
is under Code Generation.

• For the parameters in this table, there are new default settings. In R2018a, these default settings
correspond to a Level parameter setting of Maximum and a Priority parameter setting of
Balance RAM and speed.

 Performance

11-29

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/_mw_45eb1ff4-4cae-44cd-bbab-1610a5148582.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/_mw_f99e6539-8bc9-438c-a182-7cc96d3e8f4f.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/_mw_d3109c73-8b40-4956-ae9f-6a92ea2e88e3.html
https://www.mathworks.com/help/releases/R2018a/rtw/ref/_mw_8e40caae-bcbf-4e9a-bed7-a04b1a18d329.html

Parameter R2017b Default Setting R2018a Default Setting
Optimize global data access None Use global to hold

temporary results
Optimize block operation order
in the generated code

Off Improved Code
Execution Speed

Reuse buffers of different sizes
and dimensions

Off On

• Some parameters that were on the Optimization pane are now on either the Math and Data
Types pane or the Simulation Target pane. This table lists these parameters and their locations.

Parameter R2018a Pane
Default for underspecified data type Math and Data Types
Use division for fixed-point net slope computation Math and Data Types
Use floating-point multiplication to handle net slope
corrections

Math and Data Types

Application lifespan Math and Data Types
Implement logic signals as Boolean data (vs. double) Math and Data Types
Evaluated application lifespan Math and Data Types
Block reduction Simulation Target
Compiler optimization level Simulation Target
Conditional input branch execution Simulation Target
Signal storage reuse Simulation Target
Verbose accelerator builds Simulation Target

For more information, see Performance.

Data Copy Reduction: Generate code with fewer data copies for writes
to structure fields and matrix elements and for control flow patterns
In R2018a, the generated code contains fewer data copies for writes to structure fields or matrix
elements and for complex control flow patterns. These optimizations reduce RAM consumption and
improve execution speed.

Data copy reduction for structure fields

In the model ex_bus_fold, the In1 output and the Out1 input are bus signals containing four
elements. The Enabled Subsystems contain Bus Assignment blocks.

R2018a

11-30

https://www.mathworks.com/help/releases/R2018a/ecoder/performance.html

In R2017b, the ex_bus_fold_step function contained this code:

void ex_bus_fold_step(void)
{
 int32_T rtb_MultiportSwitch_start;
 int32_T rtb_MultiportSwitch_end;
 int32_T rtb_MultiportSwitch_data_bytes;
 comm_buffer_t rtb_MultiportSwitch_a;
 const comm_buffer_t *rtb_MultiportSwitch_a_0;
 if (ex_bus_fold_U.In2 == 1) {
 rtb_MultiportSwitch_start = ex_bus_fold_U.In2;
 rtb_MultiportSwitch_end = ex_bus_fold_U.In1.end;
 rtb_MultiportSwitch_a_0 = &ex_bus_fold_U.In1.a;
 rtb_MultiportSwitch_data_bytes = ex_bus_fold_U.In1.data_bytes;
 } else {
 rtb_MultiportSwitch_start = ex_bus_fold_U.In1.start;
 rtb_MultiportSwitch_end = ex_bus_fold_U.In1.end;
 rtb_MultiportSwitch_a_0 = &ex_bus_fold_U.In1.a;
 rtb_MultiportSwitch_data_bytes = ex_bus_fold_U.In1.data_bytes;
 }

 ex_bus_fold_EnabledSubsystem2(rtb_MultiportSwitch_a_0, ex_bus_fold_U.In2,
 &rtb_MultiportSwitch_a);
 ex_bus_fold_Y.Out1.start = rtb_MultiportSwitch_start;
 ex_bus_fold_Y.Out1.end = rtb_MultiportSwitch_end;
 ex_bus_fold_Y.Out1.a = rtb_MultiportSwitch_a;
 ex_bus_fold_Y.Out1.data_bytes = rtb_MultiportSwitch_data_bytes;
}

The variables rtb_MultiportSwitch_start, rtb_MultiportSwitch_end, and
rtb_MultiportSwitch_data_bytes, and the structure rtb_MultiportSwitch_a hold
temporary copies of bus data. At the end of the step function, the code contains data copies from
these variables back to the fields of the ex_bus_fold_Y.Out1 structure.

In R2018a, the ex_bus_fold_step function contains this code:

void ex_bus_fold_step(void)
{
 const comm_buffer_t *rtb_MultiportSwitch_a;
 if (ex_bus_fold_U.In2 == 1) {
 ex_bus_fold_Y.Out1.start = ex_bus_fold_U.In2;

 Performance

11-31

 ex_bus_fold_Y.Out1.end = ex_bus_fold_U.In1.end;
 rtb_MultiportSwitch_a = &ex_bus_fold_U.In1.a;
 ex_bus_fold_Y.Out1.data_bytes = ex_bus_fold_U.In1.data_bytes;
 } else {
 ex_bus_fold_Y.Out1.start = ex_bus_fold_U.In1.start;
 ex_bus_fold_Y.Out1.end = ex_bus_fold_U.In1.end;
 rtb_MultiportSwitch_a = &ex_bus_fold_U.In1.a;
 ex_bus_fold_Y.Out1.data_bytes = ex_bus_fold_U.In1.data_bytes;
 }

 ex_bus_fold_EnabledSubsystem2(rtb_MultiportSwitch_a, ex_bus_fold_U.In2,
 &ex_bus_fold_Y.Out1.a);
}

In R2018a, these variables and their corresponding data copies are not in the generated code.

Data copy reduction for complex control flow modeling patterns

The model ex_control_flow contains a Stateflow chart with a complex control flow pattern.

In R2017b, the ex_control_flow_step function contained this code:

R2018a

11-32

void ex_control_flow_step(void)
{
 int32_T rtb_sf_is_positive;
 real_T rtb_Gain;
 rtb_Gain = ex_control_flow_subsystem(sin((real_T)ex_control_flow_DW.counter *
 2.0 * 3.1415926535897931 / 10.0) * 100.0);
 rtb_Gain = ex_control_flow_subsystem1(rtb_Gain);
 if (ex_control_flow_DW.is_active_c1_ex_control_flow == 0U) {
 ex_control_flow_DW.is_active_c1_ex_control_flow = 1U;
 ex_control_flow_DW.is_c1_ex_control_flow = ex_control_fl_IN_positive_state;
 rtb_sf_is_positive = 1;
 ex_control_flow_Y.Out1 = rtb_Gain;
 } else if (ex_control_flow_DW.is_c1_ex_control_flow ==
 ex_control_fl_IN_negative_state) {
 rtb_sf_is_positive = 0;
 if (ex_control_flow_sf_is_positive(rtb_Gain) != 0.0) {
 ex_control_flow_DW.is_c1_ex_control_flow = ex_control_fl_IN_positive_state;
 rtb_sf_is_positive = 1;
 ex_control_flow_Y.Out1 = rtb_Gain;
 }
 } else {
 rtb_sf_is_positive = 1;
 if (!(ex_control_flow_sf_is_positive(rtb_Gain) != 0.0)) {
 ex_control_flow_DW.is_c1_ex_control_flow = ex_control_fl_IN_negative_state;
 rtb_sf_is_positive = 0;
 ex_control_flow_Y.Out1 = rtb_Gain;
 }
 }

 ex_control_flow_Y.Out2 = rtb_sf_is_positive;
 ex_control_flow_DW.counter++;
 if (ex_control_flow_DW.counter == 10) {
 ex_control_flow_DW.counter = 0;
 }
}

The generated code contained the local variable rtb_sf_is_positive for holding a temporary
value. In the control flow region, the code contained a write to this variable. At the end of the
function, the code contained a copy from this variable to the ex_control_flow_Y.Out2 variable.

In R2018a, the ex_control_flow_step function contains this code:

void ex_control_flow_step(void)
{
 real_T rtb_Gain;
 rtb_Gain = ex_control_flow_subsystem(sin((real_T)ex_control_flow_DW.counter *
 2.0 * 3.1415926535897931 / 10.0) * 100.0);
 rtb_Gain = ex_control_flow_subsystem1(rtb_Gain);
 if (ex_control_flow_DW.is_active_c1_ex_control_flow == 0U) {
 ex_control_flow_DW.is_active_c1_ex_control_flow = 1U;
 ex_control_flow_DW.is_c1_ex_control_flow = ex_control_fl_IN_positive_state;
 ex_control_flow_Y.Out2 = 1.0;
 ex_control_flow_Y.Out1 = rtb_Gain;
 } else if (ex_control_flow_DW.is_c1_ex_control_flow ==
 ex_control_fl_IN_negative_state) {
 ex_control_flow_Y.Out2 = 0.0;
 if (ex_control_flow_sf_is_positive(rtb_Gain) != 0.0) {
 ex_control_flow_DW.is_c1_ex_control_flow = ex_control_fl_IN_positive_state;

 Performance

11-33

 ex_control_flow_Y.Out2 = 1.0;
 ex_control_flow_Y.Out1 = rtb_Gain;
 }
 } else {
 ex_control_flow_Y.Out2 = 1.0;
 if (!(ex_control_flow_sf_is_positive(rtb_Gain) != 0.0)) {
 ex_control_flow_DW.is_c1_ex_control_flow = ex_control_fl_IN_negative_state;
 ex_control_flow_Y.Out2 = 0.0;
 ex_control_flow_Y.Out1 = rtb_Gain;
 }
 }

 ex_control_flow_DW.counter++;
 if (ex_control_flow_DW.counter == 10) {
 ex_control_flow_DW.counter = 0;
 }
}

In R2018a, the variable rtb_sf_is_positive and its corresponding data copy are not in the
generated code. In the control flow code, the writes occur directly to ex_control_flow_Y.Out2.

Code Size Reduction: Eliminate identical functions in the generated
code
In R2017b, for a model that contained two or more MATLAB Function blocks or Stateflow Charts that
called the same function, the generated code contained identical function definitions.

In R2018a, for these identical functions, the code generator creates one function that the MATLAB
Function block or Stateflow Chart code can call. Creating one function reduces ROM consumption by
eliminating redundant code.

For example, the model ex_function_elim contains two identical MATLAB Function blocks. The
code for these blocks contains two calls to the external function sfn_normVector.

In R2017b, the code generator produced this code:

static real_T sfn_normVector(const real_T v[3]);
static real_T sfn_normVector_g(const real_T v[3]);
static real_T sfn_normVector(const real_T v[3])
{

R2018a

11-34

 return sqrt((v[0] * v[0] + v[1] * v[1]) + v[2] * v[2]);
}

static real_T sfn_normVector_g(const real_T v[3])
{
 return sqrt((v[0] * v[0] + v[1] * v[1]) + v[2] * v[2]);
}

void ex_function_elim_step(void)
{
 real_T tmp[3];
 real_T tmp_0[3];
 tmp[0] = rtU.In1;
 tmp_0[0] = 4.0 * rtU.In1;
 tmp[1] = 2.0 * rtU.In1;
 tmp_0[1] = 5.0 * rtU.In1;
 tmp[2] = 3.0 * rtU.In1;
 tmp_0[2] = 6.0 * rtU.In1;
 rtY.Out1 = sfn_normVector(tmp) + sfn_normVector(tmp_0);
 tmp[0] = 3.0 * rtU.In2;
 tmp_0[0] = 6.0 * rtU.In2;
 tmp[1] = 4.0 * rtU.In2;
 tmp_0[1] = 7.0 * rtU.In2;
 tmp[2] = 5.0 * rtU.In2;
 tmp_0[2] = 8.0 * rtU.In2;
 rtY.Out2 = sfn_normVector_g(tmp) + sfn_normVector_g(tmp_0);
}

The code contained two identical functions: sfn_normVector and sfn_normVector_g.

In R2018a, the code generator produces this code:

static real_T sfn_normVector(const real_T v[3]);
static real_T sfn_normVector(const real_T v[3])
{
 return sqrt((v[0] * v[0] + v[1] * v[1]) + v[2] * v[2]);
}

void ex_function_elim_step(void)
{
 real_T tmp[3];
 real_T tmp_0[3];
 tmp[0] = rtU.In1;
 tmp_0[0] = 4.0 * rtU.In1;
 tmp[1] = 2.0 * rtU.In1;
 tmp_0[1] = 5.0 * rtU.In1;
 tmp[2] = 3.0 * rtU.In1;
 tmp_0[2] = 6.0 * rtU.In1;
 rtY.Out1 = sfn_normVector(tmp) + sfn_normVector(tmp_0);
 tmp[0] = 3.0 * rtU.In2;
 tmp_0[0] = 6.0 * rtU.In2;
 tmp[1] = 4.0 * rtU.In2;
 tmp_0[1] = 7.0 * rtU.In2;
 tmp[2] = 5.0 * rtU.In2;
 tmp_0[2] = 8.0 * rtU.In2;
 rtY.Out2 = sfn_normVector(tmp) + sfn_normVector(tmp_0);
}

 Performance

11-35

The code contains one function sfn_normVector.

Code Replacement: Optimize generated code with SIMD and row-
major order support and improved library header file packaging
R2018a includes these code replacement enhancements:

• New Single Instruction, Multiple Data (SIMD) code replacement libraries that optimize load and
store operations for Intel SSE processors.

• Intel SSE (Windows)
• Intel AVX (Windows)
• Intel SSE (Linux)
• Intel AVX (Linux)

The code generator optimizes the code by producing SIMD instructions. For more information,
under “Performance” on page 11-26, see "Single Instruction, Multiple Data (SIMD) Instructions:
Generate code with optimized load and store operations for use with Intel SSE processor."

• For the MATLAB Coder environment, there is now this support for row-major order:

• Array layout supported by entry menu in the Code Replacement Tool for creating row-major
code replacement table entries. The menu appears when you set Argument type to Matrix.
You can set Array layout supported by entry to Column-major (default), Row-major, or
Column-and-Row.

• Code replacement table entry property ArrayLayout for specifying row-major order
programmatically. You can set the property to COLUMN_MAJOR or ROW_MAJOR.

For more information, see Define Code Replacement Mappings and Array Layout and Code
Replacement.

• For the MATLAB Coder environment, the code generator now places code replacement library
header files that it uses in the generated .c file instead of in the generated .h file.

• The list of available libraries has been updated to reflect more current and commonly used
platforms and hardware.

Execution Speed: Move invariant code containing global variables out
of for loops
In R2017b, if possible, the code generator moved invariant code out of for loops. In R2018a, the
code generator can move invariant code containing global variables out of a for loop. This
optimization improves execution speed because code that does not depend on a for loop executes
only once instead of with every iteration of a for loop.

For example, in the model invariant_global, a Unit Delay block is the control input to the Switch
block. The other two inputs are vectors of length five.

R2018a

11-36

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/define-code-replacement-mappings-sc.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/_mw_40b9a0b1-a2be-4b33-8d15-2389179954d0.html
https://www.mathworks.com/help/releases/R2018a/ecoder/ug/_mw_40b9a0b1-a2be-4b33-8d15-2389179954d0.html

In R2017b, the model step function contained this code:

/* Model step function */
void invariant_global_step(void)
{
 int32_T i;
 uint8_T tmp;
 for (i = 0; i < 5; i++) {
 if (DWork.UnitDelay_DSTATE != 0.0) {
 tmp = 1U;
 } else {
 tmp = 2U;
 }

 Y.Out1[i] = (uint8_T)(tmp << 1);
 }

 DWork.UnitDelay_DSTATE = U.In2 + 1.0;
}

The for loop contained the if-else logic even though the for loop had no effect on this logic. The
if-else logic contains the global variable, DWork.UnitDelay_DSTATE.

In R2018a, the model step function contains this code:

/* Model step function */
void invariant_global_step(void)
{
 int32_T i;
 uint8_T tmp;
 if (DWork.UnitDelay_DSTATE != 0.0) {

 Performance

11-37

 tmp = 1U;
 } else {
 tmp = 2U;
 }

 for (i = 0; i < 5; i++) {
 Y.Out1[i] = (uint8_T)(tmp << 1);
 }

 DWork.UnitDelay_DSTATE = U.In2 + 1.0;
}

The if-else logic executes before the for loop.

R2018a

11-38

Verification

PIL Simulation: Verify initial values of global variables
At the start of a processor-in-the-loop (PIL) simulation, if Remove root level I/O zero initialization
or Remove internal data zero initialization is selected and initial values of global variables in the
target application are not zero, the software generates a warning. For more information, see
Verification of Code Generation Assumptions.

 Verification

11-39

https://www.mathworks.com/help/releases/R2018a/ecoder/ug/checking-of-code-generation-assumptions-during-pil.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2018a

11-40

https://www.mathworks.com/support/bugreports/

R2017b

Version: 6.13

New Features

Bug Fixes

Compatibility Considerations

12

Code Generation from MATLAB Code

Setup for MISRA C Compliance: Configure code generation parameters
to increase compliance with MISRA C:2012 guidelines
When you generate C/C++ code from MATLAB code, if you have Embedded Coder, you can configure
certain code generation parameters to increase the likelihood of generating code that complies with
MISRA C:2012 guidelines. In R2017b, you can set these parameters in one step. If you generate code
by using codegen, set the parameters with coder.setupMISRAConfig. To set the parameters in
the MATLAB Coder app, see Increase Likelihood of Generating MISRA C Compliant Code from
MATLAB Code.

SIL/PIL Execution Performance: Speed up SIL or PIL execution by
disabling constant input checking and global data synchronization
In R2017b, to speed up a SIL or PIL execution, you can disable constant input checking and global
data synchronization. To disable these features, see Speed Up SIL/PIL Execution by Disabling
Constant Input Checking and Global Data Synchronization.

If you disable constant input checking or global data synchronization, the results of a SIL or PIL
execution might be different from the results in MATLAB.

Execution-Time Profiling: Display time units in code execution profiling
report
The execution-time profiling report from a SIL or PIL execution gives the time units for displayed
metrics. For more information, see View Execution Times.

Default Case for Switch Statements: Increase generated code
compliance with coding standards
In previous releases, when you generated C/C++ code from MATLAB code, the code generator could
produce switch statements without a default case. In R2017b, if you have Embedded Coder, you can
specify that you want the code generator to produce a default case for all switch statements in the
generated code. If you generate code with codegen, set the GenerateDefaultInSwitch
configuration object property to true. In the MATLAB Coder app, set Always generate a default
case for switch to Yes.

Some coding standards, such as MISRA, require the default case for switch statements.

R2017b

12-2

https://www.mathworks.com/help/releases/R2017b/ecoder/ref/coder.setupmisraconfig.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/increase-misrac-compliance-in-code-generated-from-matlab-code.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/increase-misrac-compliance-in-code-generated-from-matlab-code.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/speed-up-silpil-execution-by-disabling-constant-input-checking-and-global-data-synchronization.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/speed-up-silpil-execution-by-disabling-constant-input-checking-and-global-data-synchronization.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/view-execution-time-profile-1.html

Model Architecture and Design

Function Interfaces: Generate multi-instance functions from export-
function models and control scope of Simulink functions
Generate reusable C/C++ function interfaces from export-function models

The code generator supports new Simulink component modeling styles so that you can include
multiple instances of a Simulink function in an export function model (top or referenced), each with
its own instance-specific data. The code generator produces multi-instance functions when you
configure a:

• Top model with Reusable function set to Reusable or C++ class (C++ only).
• Referenced model with Total number of instances allowed per top model set to Multiple.

For more information, see Design Models for Generated Embedded Code Deployment, Generate
Component Source Code for Export to External Code Base, and Generate Reentrant Code from
Simulink Function Blocks .

Compatibility Considerations
Before R2017b, for referenced models, the code generator produced entry-point functions that
passed data as individual arguments. As a result, a small algorithmic change could produce a
significant change to an entry-point function interface. Now the code generator captures instance-
specific data in the real-time model (rtM) data structure and passes it as a self-argument in the entry-
point functions.

Control whether accessibility of generated function code is global or scoped

The code generator supports added control over accessibility to Simulink function definitions within a
model hierarchy that Simulink introduces in R2017b. The new Trigger block parameter Function
visibility controls Simulink function accessibility within the context of a model hierarchy:

• Global---Can call the function from anywhere in the hierarchy. You define the function within a
virtual subsystem or model and set the Function visibility parameter to Global. The function
name must be unique.

• Scoped---Can call the function from one level above, at the same level, or from a level below the
level of the function definition. You define the function within a virtual subsystem or model and set
the Function visibility parameter to Scoped. You can scope a function in an atomic or nonvirtual
subsystem, but function call accessibility is limited to the same level or below of the hierarchy. The
function name does not have to be unique.

For more information, see Simulink Function Blocks and Code Generation, Scoped and Global
Simulink Function Blocks (Simulink), Scoping Simulink Functions in Subsystems (Simulink), and
Scope Simulink Functions in Models (Simulink).

 Model Architecture and Design

12-3

https://www.mathworks.com/help/releases/R2017b/ecoder/ug/design-models-for-generated-embedded-code-deployment.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/export-generated-cc-source-code.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/export-generated-cc-source-code.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/generate-reentrant-code-from-simulink-function-blocks-9c537a4fff99.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/generate-reentrant-code-from-simulink-function-blocks-9c537a4fff99.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/generate-code-for-a-model-with-simulink-functions.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/scoped-and-global-simulink-functions.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/scoped-and-global-simulink-functions.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/functions-and-callers-scoping.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/scoping-simulink-functions-in-models.html

AUTOSAR Compositions and Basic Software: Import AUTOSAR
compositions and simulate diagnostic and memory services
Import AUTOSAR compositions as Simulink models

You can now import AUTOSAR compositions from arxml files into Simulink. AUTOSAR compositions
aggregate AUTOSAR software components and potentially other compositions. Use the
arxml.importer function createCompositionAsModel to import a composition. Use the function
updateModel to update an imported composition with changes from arxml files.

For more information, see the createCompositionAsModel reference page and live-script example
Import AUTOSAR Composition to Simulink (Embedded Coder Support Package for AUTOSAR
Standard).

Simulate AUTOSAR diagnostic and memory services

R2016b introduced the AUTOSAR Basic Software (BSW) block library. The library provides
preconfigured Function Caller blocks for modeling component calls to AUTOSAR BSW services. The
BSW caller blocks support AUTOSAR code generation.

Before R2017b, you could not easily simulate a component that used the BSW blocks, because no
model-level implementations existed for the BSW service functions called by the blocks.

In R2017b, the software provides reference implementations of the AUTOSAR Dem and NvM services
supported by the BSW caller blocks. When coupled with the caller blocks, the reference
implementations allow you to run system- or composition-level simulations of AUTOSAR BSW service
calls. The ability to simulate calls into BSW services can help identify modeling problems before the
AUTOSAR generated code reaches the AUTOSAR Runtime Environment (RTE).

For more information, see Model AUTOSAR Basic Software Service Calls, Configure AUTOSAR Basic
Software Service Implementations for Simulation, and live-script example Simulate AUTOSAR Basic
Software Services and Runtime Environment (Embedded Coder Support Package for AUTOSAR
Standard).

AUTOSAR Sender-Receiver Communication: Model AUTOSAR queued
send and receive using Simulink messages
In R2017b, you can use Simulink messages to model AUTOSAR queued sender-receiver
communication between automotive components. Previously, you could model only nonqueued
sender-receiver communication.

In Simulink, you can now model sending and receiving AUTOSAR data using a queue, and handling
errors that occur when the queue is empty or full.

For more information, see Configure AUTOSAR Queued Sender-Receiver Communication.

MISRA C: 2012 Modeling Checks: Improve compliance of generated
code by using new MISRA C: 2012 standards checks
To improve MISRA C:2012 compliance, these new checks are available through the Model Advisor. To
execute these checks, Select and Run Model Advisor Checks (Simulink) and select By Product >
Embedded Coder.

R2017b

12-4

https://www.mathworks.com/help/releases/R2017b/ecoder/autosar/createcompositionasmodel.html
https://www.mathworks.com/help/releases/R2017b/ecoder/autosar/updatemodel.html
https://www.mathworks.com/help/releases/R2017b/ecoder/autosar/createcompositionasmodel.html
https://www.mathworks.com/help/releases/R2017b/supportpkg/autosarstandard/examples/autosar-composition-import.html
https://www.mathworks.com/help/releases/R2017b/ecoder/autosar/model-autosar-basic-software-bsw-service-calls.html
https://www.mathworks.com/help/releases/R2017b/ecoder/autosar/configure-autosar-basic-software-service-implementations-for-simulation-801b65b75f32.html
https://www.mathworks.com/help/releases/R2017b/ecoder/autosar/configure-autosar-basic-software-service-implementations-for-simulation-801b65b75f32.html
https://www.mathworks.com/help/releases/R2017b/supportpkg/autosarstandard/examples/autosar-simulate-bsw.html
https://www.mathworks.com/help/releases/R2017b/supportpkg/autosarstandard/examples/autosar-simulate-bsw.html
https://www.mathworks.com/help/releases/R2017b/ecoder/autosar/_mw_a8b619b0-7e02-449c-abdd-dc964e6f105f.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/select-and-run-model-advisor-checks.html

Check Description Addresses
MISRA C:2012

Check for missing error ports for
AUTOSAR receiver interfaces

Identifies AUTOSAR receiver interface
inports that do not have matching error
ports.

Directive 4.7

Check for missing const qualifiers in
model functions

Identifies input data pointers that do not
have a const qualifier.

Rule 8.13

Check integer word length Identifies integer word lengths that do not
comply with hardware implementation
settings.

Rule 10.1

Modifications to existing MISRA C:2012 compliance checks are outlined in this table.

Check Description of Modification to the Check
Check for blocks not recommended for
MISRA C:2012

Flags the inclusion of From Workspace blocks

Check configuration parameters for MISRA
C:2012

Flags the following parameter settings:

• Configuration parameter Wrap on overflow is set
to none.

• Configuration parameter Inf or NaN block output
is set to none

• Configuration parameter Inf or NaN block output
set to none.

• Configuration parameter Dynamic memory
allocation in MATLAB Function blocks is
selected.

• Parameter ERTFilePackagingFormat is set to
Modular.

• Parameter PreserveStaticInFcnDecls is set to
off.

hisl_0060: Configuration parameters that improve
MISRA C:2012 compliance reflects these parameter
settings.

Check for switch case expressions without a
default case

Check can be executed on library models.

Check can exclude blocks when you have Simulink
Check.

Check for bitwise operations on signed
integers

Check can exclude blocks when you have Simulink
Check.

Check for equality and inequality operations
on floating-point values

Check can exclude blocks when you have Simulink
Check.

For information about MISRA C versions and updates, see MISRA C Guidelines

 Model Architecture and Design

12-5

https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_de730875-cf58-488c-a2f9-4d5dcdfb8014
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_de730875-cf58-488c-a2f9-4d5dcdfb8014
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_ce185f98-4fff-49c3-8815-ff284d772cc7
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_ce185f98-4fff-49c3-8815-ff284d772cc7
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_ba52639e-d660-4cfe-952e-b065664e28bd
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
https://www.mathworks.com/help/releases/R2017b/simulink/mdl_gd/hi/configuration-settings.html#bspjp8z-1
https://www.mathworks.com/help/releases/R2017b/simulink/mdl_gd/hi/configuration-settings.html#bspjp8z-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7dv-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7dv-1
https://www.mathworks.com/help/releases/R2017b/slcheck/ref/misra-c2012-checks.html#bvegf3a.bumt5qx-1
https://www.mathworks.com/help/releases/R2017b/slcheck/ref/misra-c2012-checks.html#bvegf3a.bumt5qx-1
https://www.mathworks.com/help/releases/R2017b/slcheck/ref/misra-c2012-checks.html#bvegf3a.buui66n-1
https://www.mathworks.com/help/releases/R2017b/slcheck/ref/misra-c2012-checks.html#bvegf3a.buui66n-1
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/developing-models-and-code-that-comply-with-misra-c-guidelines.html

Modeling Support for Secure Coding Standards: Check model for
compliance with secure coding requirements in CERT C, CWE, ISO/IEC
TS 17961 standards to improve security of generated code
You can use Model Advisor to check the model or subsystem for compliance with secure coding
requirements in CERT C, CWE, and ISO/IEC TS 17961 standards. To execute these checks, Select and
Run Model Advisor Checks (Simulink) and select By Task > Modeling Guidelines for Secure
Coding (CERT C, CWE, ISO/IEC TS 17961).

This table summarizes the Modeling Standards for Secure Coding checks.

Check Description Addresses Secure
Coding Standards

Check configuration parameters
for secure coding standards

Identifies configuration parameters that
might impact code security.

Check for blocks not
recommended for C/C++
production code deployment

Identifies blocks not supported by code
generation or not recommended for C/C
++ production code deployment.

Check for blocks not
recommended for secure coding
standards

Identifies blocks not supported by
secure coding standards.

Check usage of Assignment
blocks

Identifies Assignment blocks that do not
have block parameter Action if any
output element is not assigned set to
Error or Warning

• ISO/IEC TS 17961:
2013, uninitref

• CERT C, EXP33-C
• CWE, CWE-908

Check for switch case
expressions without a default
case

Identifies switch case expressions that
do not have a default case.

• ISO/IEC TS 17961:
2013, swtchdflt

• CERT C, MSC01-C
• CWE, CWE-478

Check for bitwise operations on
signed integers

Identifies Simulink blocks that contain
bitwise operations on signed integers.
The check does not flag MATLAB
Function or Stateflow blocks that use
signed operands for bitwise operators.

• CERT C, INT13-C
• CWE, CWE-682

Check for equality and inequality
operations on floating-point
values

Identifies equality and inequality
operations on floating-point values.

• CERT C, FLP00-C
• CWE, CWE-697

Check integer word length Identifies integer word lengths that do
not comply with hardware
implementation settings.

• CERT C, INT13-C
• CWE, CWE-682

If you have Simulink Design Verifier™, the following design error detection checks are also available
as part of the Modeling Standards for Secure Coding checks.

R2017b

12-6

https://www.mathworks.com/help/releases/R2017b/simulink/ug/select-and-run-model-advisor-checks.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/select-and-run-model-advisor-checks.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_d21f1cb1-cc30-4fff-95d8-b0d64f6d7dde
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_d21f1cb1-cc30-4fff-95d8-b0d64f6d7dde
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#btpdhq5-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#btpdhq5-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#btpdhq5-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_0970b686-2612-4e8e-ae93-dba6ee9306f8
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_0970b686-2612-4e8e-ae93-dba6ee9306f8
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_0970b686-2612-4e8e-ae93-dba6ee9306f8
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#bu20rna-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#bu20rna-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7dv-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7dv-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7dv-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui66n-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui66n-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui66n-1
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/embedded-codersimulink-coder-checks.html#mw_ba52639e-d660-4cfe-952e-b065664e28bd

Check Description Addresses Secure
Coding Standards

Detect Dead Logic Identifies logic that stays inactive during
simulation.

• CERT C, MSC07-C
• CWE, CWE-561

Detect Integer Overflow Identifies operations that exceed the
data type range for integer or fixed-
point operations.

• ISO/IEC TS 17961:
2013, intoflow

• CERT C, INT30-C and
INT32-C

• CWE, CWE-190
Detect Division by Zero Identifies operations in the model that

cause division-by-zero errors.
• ISO/IEC TS 17961:

2013, diverr
• CERT C, INT33-C and

FLP03-C
• CWE, CWE-369

Detect Out Of Bound Array
Access

Detects operations that access outside
the bounds of an array index

• ISO/IEC TS 17961:
2013, invptr

• CERT C, ARR30-C
• CWE, CWE-118

Detect Violation of Specified
Minimum and Maximum Values

Checks the specified minimum and
maximum values (the design ranges) on
intermediate signals throughout the
model and on the output ports. If the
analysis detects that a signal exceeds
the design range, the results identify
where in the model the errors occurred.

• CERT C, API00-C
• CWE, CWE-628

For information about the secure coding standards organizations, see Secure Coding Standards.

Code Reuse: Generate reusable code for subsystems that contain data
objects with imported custom storage classes
In R2017b, you can generate reusable subsystem code for models containing data objects with the
following custom storage classes:

• ImportedDefine
• ImportFromFile
• user-defined custom storage class with the Data Scope parameter set to Imported

The reusable code is in the shared utilities folder (slprj/target/_sharedutils). Generating
reusable code conserves ROM consumption and improves code execution speed. See Generate
Reusable Code from Library Subsystems Shared Across Models (Simulink Coder).

 Model Architecture and Design

12-7

https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_5b2e3833-1de0-456f-b809-0fc85b70b8fb
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_b04e75b1-a0b5-4ec6-b340-7ba1c2337642
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_e6fde9a7-ef76-4252-a218-679d9f22cdca
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_95d8bb7e-5852-4103-999b-9759d84f4942
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_95d8bb7e-5852-4103-999b-9759d84f4942
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_7813475d-f7f2-4d02-8afe-53ec3b9bd916
https://www.mathworks.com/help/releases/R2017b/sldv/ref/simulink-design-verifier-checks.html#mw_7813475d-f7f2-4d02-8afe-53ec3b9bd916
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/developing-models-and-code-that-comply-with-secure-coding-standards.html
https://www.mathworks.com/help/releases/R2017b/rtw/ug/generate-reusable-code-from-library-subsystems-shared-across-models-4699e100eb8e.html
https://www.mathworks.com/help/releases/R2017b/rtw/ug/generate-reusable-code-from-library-subsystems-shared-across-models-4699e100eb8e.html

Data, Function, and File Definition

Storage Class for Model Workspace Parameters: Apply custom storage
classes to parameter objects in a model workspace
Before R2017b, you could not apply a storage class other than Auto to parameter objects (such as
Simulink.Parameter) that you stored in a model workspace. In R2017b, you can apply a storage
class, built-in custom storage class, or custom storage class that you create by using the Custom
Storage Class Designer. For more information, see “Tunable Parameters: Tune parameters in model
workspace”.

Custom Storage Class Simplification: Default removed from drop-
down lists
In R2017b, as you apply a storage class to a data item interactively (for example, by using a block
dialog box), by default, the built-in custom storage class Default does not appear in the drop-down
list. However, if the data item already uses Default due to application in a previous release or to
programmatic application, the custom storage class appears in the list.

Compatibility Considerations
You cannot use drop-down lists to apply Default to data items. However, your existing scripts that
apply Default continue to work.

Instead of Default, consider using the built-in storage class ExportedGlobal.

R2017b

12-8

Code Generation
Cross-Release Code Integration: Reuse code from models containing
model references, global I/O, data stores, and parameters
The R2017b cross-release code integration workflow supports:

• Root-level I/O through global variables in generated code.
• Data store memory across the boundaries of code generated by different releases. In an

integration model, current and previous release components can communicate through global
data stores associated with Simulink.Signal objects in the MATLAB base workspace or a
Simulink data dictionary.

• Parameter tuning in an integration model where component code from previous releases contains
tunable parameters.

• The GetSet storage class for data store memory and tunable parameters.
• Model blocks inside components exported from previous releases.
• Multiple instances of a referenced model in these cases:

• A cross-release SIL or PIL block contains code from one top model that calls multiple instances
of the referenced model code. The integration model contains only one instance of the SIL or
PIL block.

• A cross-release SIL or PIL block contains code from a Model block that supports multiple
instances. The integration model contains multiple instances of the SIL or PIL block.

For more information, see Cross-Release Code Integration.

Cross-Release Code Integration: Run all workflow tasks from current
release
To export code from a previous release, you can run crossReleaseExport from the current release
provided the previous release is registered with sharedCodeMATLABVersions. You can also specify
the location of the parent folder for the subfolders that contain cross-release artifacts .

Through the sharedCodeUpdate command, you can copy shared code source files from the shared
code location specified by a cross-release artifact to the folder specified by the
ExistingSharedCode parameter of a Simulink configuration set or model.

Through the crossReleaseImport command, you can import generated model code with custom
code or include paths that have been relocated from their original folders.

For more information, see Cross-Release Code Integration.

AUTOSAR Run-Time Calibration: Measure and calibrate signal and
discrete state data using arTypedPerInstanceMemory
AUTOSAR typed per-instance memory (arTypedPerInstanceMemory), introduced in AUTOSAR
schema version 4.0, defines an AUTOSAR typed memory block that is available for each instance of
an AUTOSAR software component. In the AUTOSAR Runtime Environment (RTE), calibration tools
can access arTypedPerInstanceMemory blocks for measurement and calibration.

 Code Generation

12-9

https://www.mathworks.com/help/releases/R2017b/ecoder/ug/cross-release-code-integration-workflow.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/crossreleaseexport.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/sharedcodematlabversions.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/sharedcodeupdate.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/crossreleaseimport.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/cross-release-code-integration-workflow.html

Previously, you could model arTypedPerInstanceMemory in Simulink by creating an
AUTOSAR.Signal data object and referencing it in a Data Store Memory block.

In R2017b, you can also generate arTypedPerInstanceMemory blocks for block signal and discrete
state data in your AUTOSAR model. Configure the signals and states to use SimulinkGlobal
storage class. For more information, see Per-Instance Memory and Configure AUTOSAR Per-Instance
Memory.

Stateflow Element Traceability: Obtain enhanced inline traceability
In the Configuration Parameters dialog box, you check the Code-to-model and the Model-to-code
parameters to get inline traceability in the generated code. In R2017a, only the Stateflow states and
transitions with actions had inline traceability support. R2017b provides complete line-level
traceability coverage for Stateflow elements with or without comments.

From the code generation report, click a hyperlinked line of code to navigate to corresponding blocks
in the model. When you click the hyperlink, it highlights single or multiple Stateflow elements at the
same time. From a block or blocks in your model, right-click the block and select C/C++ Code >
Navigate To C/C++ Code. In the code generation report, highlighted lines of code correspond to
your model blocks.

For more information, see Inline Traceability for Stateflow Elements

Stateflow Objects and MATLAB User Comments: Configure comments
flexibly
You can now separately control comment configuration for Simulink block comments and
Stateflow object comments. To enable control over MATLAB user comments, in the Configuration
Parameters dialog box, you must turn on the MATLAB user comments.

Stateflow object comments and MATLAB user comments are off by default for the ERT target.
When you load an existing model in Simulink, all the comment parameters keep their current values
except for the new parameter Stateflow object comments which takes the same value as Simulink
block comments.

This table lists the default values for these comment parameters.

Parameter Name GRT ERT
R2017a R2017b R2017a R2017b R2017a R2017b

Simulink
block/
Stateflow
object
comments

Simulink
block
comments

On On On On

Simulink
block/
Stateflow
object
comments

Stateflow
object
comments

On Off On Off

R2017b

12-10

https://www.mathworks.com/help/releases/R2017b/ecoder/autosar/model-autosar-component-behavior.html#bsn91k_
https://www.mathworks.com/help/releases/R2017b/ecoder/autosar/use-data-store-memory-blocks-to-specify-per-instance-memory.html
https://www.mathworks.com/help/releases/R2017b/ecoder/autosar/use-data-store-memory-blocks-to-specify-per-instance-memory.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/trace-stateflow-elements-in-generated-code.html#mw_3ea00001-6e23-403b-b0b8-b2b38acc781a

Parameter Name GRT ERT
R2017a R2017b R2017a R2017b R2017a R2017b

MATLAB
source code as
comments

MATLAB
source code as
comments

Off Off On Off

MATLAB
function help
text

MATLAB user
comments

N/A N/A On Off

Enhanced Shared Utilities Naming: Customize the names of shared
utility functions that are inside MATLAB Function blocks
In R2017a, the code generator mangled the names of shared utility functions that were inside a
MATLAB Function block. In R2017b, the code generator uses the value of the Shared utilities
parameter to name these functions. In the Configuration Parameters dialog box, this parameter is on
the Code Generation > Symbols pane. For more information, see Control Naming of Generated
Functions (Simulink Coder).

Checksum Length: Specify the character length of the $C token
In R2017b, in the Configuration Parameters dialog box, you can use the new Shared checksum length
(Simulink Coder) parameter to specify the length of the $C token. This parameter default value is
eight characters. During code generation, if you get an error informing you of a potential naming
clash, you can increase this parameter value to avoid the clash.

Code Style: Generate static keyword for locally scoped functions
When you use Compact/Compact (with separate data file) file packaging, you can now
generate static functions. Enable or disable the generation of static functions by selecting Preserve
static keyword in function declarations parameter. This parameter is on by default for Compact/
Compact (with separate data file) packaging. When you select this parameter, the
generated code is compliant with MISRA C:2012 Rule 8.10.

You can link different executables that refer to locally scoped subsystem and utility functions with the
same name. This parameter also impacts these functions:

• Stateflow graphical function
• Variant subsystem
• MATLAB subfunction
• Privately scoped Simulink function

Configuration Parameters Dialog Box: View your model and code
generation configuration parameters in unified dialog box with search
capability
Previously, the Configuration Parameters dialog box contained two tabs: a tab for commonly used
parameters and a tab that provided a searchable list of all available parameters. In R2017b, the

 Code Generation

12-11

https://www.mathworks.com/help/releases/R2017b/rtw/ug/generate-shared-utility-code-c1a54f83f920.html#mw_6c14319f-cd68-4c0d-8c14-f0c682c7fce0
https://www.mathworks.com/help/releases/R2017b/rtw/ug/generate-shared-utility-code-c1a54f83f920.html#mw_6c14319f-cd68-4c0d-8c14-f0c682c7fce0
https://www.mathworks.com/help/releases/R2017b/rtw/ref/shared-checksum-length.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/preserve-static-keyword-in-function-declarations.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/preserve-static-keyword-in-function-declarations.html

Configuration Parameters dialog box combines these features in a unified dialog box with a search
capability.

• View commonly used parameters on a category pane. Access advanced category parameters on
the same pane.

• To quickly find a specific parameter in the dialog box, use the search tool.
• Right-click a parameter to get the parameter name to use in scripts, view parameter

dependencies, and navigate to parameter documentation.

For more information, see Configuration Parameters Dialog Box Overview (Simulink).

Compatibility Considerations
• In R2017b, advanced parameters that were previously available only on the All Parameters tab

can be found under the Advanced Parameters toggle of the relevant category pane. To access
this toggle, hover over the ellipsis at the bottom of the pane. Alternatively, to find an advanced
parameter, use the search tool at the top of the dialog box.

• If you use an sl_customization.m script to hide or disable parameters in the Configuration
Parameters dialog box, the script requires updates to widget ID's and callback registrations. For
example:

• In R2017a:

function sl_customization(cm)

% Disable for standalone Configuration Parameters dialog box.
cm.addDlgPreOpenFcn('Simulink.ConfigSet',@disableRTWBrowseButton)
% Disable for Configuration Parameters dialog box
cm.addDlgPreOpenFcn('Simulink.RTWCC',@disableRTWBrowseButton)

end

function disableRTWBrowseButton(dialogH)

 % Takes a cell array of widget Factory ID.
 dialogH.disableWidgets({'Tag_ConfigSet_RTW_Browse'})

end

• In R2017b:

function sl_customization(cm)

% Disable for all Configuration Parameters dialog boxes
configset.dialog.Customizer.addCustomization(@disableRTWBrowseButton,cm);

end

function disableRTWBrowseButton(dialogH)

 % Takes a cell array of widget Factory ID.
 dialogH.disableWidgets({'STF_Browser'})

end

• The name of the Threshold parameter is now Maximum number of arguments for subsystem
outputs.

For more information on getting widget ID's and customizing the dialog box, see Disable and Hide
Dialog Box Controls (Simulink).

R2017b

12-12

https://www.mathworks.com/help/releases/R2017b/simulink/gui/configuration-parameters-dialog-box-overview.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/disabling-and-hiding-dialog-box-controls.html
https://www.mathworks.com/help/releases/R2017b/simulink/ug/disabling-and-hiding-dialog-box-controls.html

Improved Readability of the Generated Code: Include parentheses
around compound expressions containing right-shift operators
In R2107b, the code generator inserts parentheses around compound expressions that are on either
side of right-shift operators. The inclusion of parentheses improves the readability of the code and
satisfies MISRA C:2012 Rule 12.1, which states that the precedence of operators within expressions
should be made explicit.

For example, in R2017a, the generated code did not contain parentheses around the multiplicative
operation:

modelex_DW.Delay_DSTATE[0] = modelex_P.Gain_Gain_o *
 modelex_DW.Delay_DSTATE[0] >> 6;

In R2017b, the generated code contains parentheses around the multiplicative operation:

modelex_DW.Delay_DSTATE[0] = (modelex_P.Gain_Gain_o *
 modelex_DW.Delay_DSTATE[0]) >> 6;

In the Configuration Parameters dialog box, for the Parentheses level parameter, this enhancement
occurs for the Nominal (Optimize for readability) setting.

 Code Generation

12-13

Deployment

AUTOSAR Support Package: Run live-script examples for AUTOSAR
compositions and Basic Software
The Embedded Coder Support Package for AUTOSAR Standard now installs AUTOSAR featured
examples, including new live-script examples.

Support Package renamed to Embedded Coder Support Package for
Intel SoC Devices
The Embedded Coder Support Package for Altera® SoC Platform is now called to the Embedded
Coder Support Package for Intel SoC Devices.

Support Package renamed to Embedded Coder Support Package for
Xilinx Zynq Platform
The Embedded Coder Support Package for Xilinx Zynq-7000 Platform is now called the Embedded
Coder Support Package for Xilinx Zynq Platform.

Removed Support for Wind River VxWorks Hardware
The Embedded Coder Support Package for Wind River® VxWorks® RTOS has been removed and is no
longer available. You can still generate ANSI/ISO C/C++ code for the processors that are supported
by the Wind River VxWorks real-time operating system (RTOS). However, you must manually
integrate the generated code with your own scheduler and drivers.

R2017b

12-14

Performance

RAM Reduction: Reduce data copies in For Each subsystems and reuse
buffers of different sizes
In R2017a, the code generator could reuse buffers for matrices that had the same sizes and shapes.
In R2017b, the code generator can reuse buffers for matrices that have different sizes and shapes.

For For Each Subsystem blocks, the code generator can perform these optimizations:

• Combine more for loops.
• Unroll more for loops whose size is under the Loop Unrolling Threshold parameter value.
• Generate fewer data copies for For Each Subsystem block input and output ports.

These optimizations conserve RAM and ROM consumption and improve code execution speed.

Buffer reuse in For Each subsystems

The model foreach_codegen contains a For Each Subsystem block inside of a For Each Subsystem
block. The nested For Each Subsystem block contains a Sum of Elements block.

 Performance

12-15

In R2017a, the code generator produced this code:

void foreach_codegen_step(void)
{
 int32_T ForEach_itr;
 int32_T ForEach_itr_d;
 real_T tmp;
 real_T rtb_Out1_CoreSubsysCanOut[234];
 real_T rtb_ImpSel_InsertedFor_In1_at_c[9];
 int32_T i;
 int32_T i_0;
 for (ForEach_itr = 0; ForEach_itr < 271; ForEach_itr++) {
 i = ForEach_itr * 3;
 for (i_0 = 0; i_0 < 702; i_0++) {
 foreach_codegen_B.ImpSel_InsertedFor_In1_at_o[3 * i_0] =
 foreach_codegen_U.In1[813 * i_0 + i];
 foreach_codegen_B.ImpSel_InsertedFor_In1_at_o[1 + 3 * i_0] =
 foreach_codegen_U.In1[(813 * i_0 + i) + 1];
 foreach_codegen_B.ImpSel_InsertedFor_In1_at_o[2 + 3 * i_0] =
 foreach_codegen_U.In1[(813 * i_0 + i) + 2];
 }

 for (ForEach_itr_d = 0; ForEach_itr_d < 234; ForEach_itr_d++) {
 i = ForEach_itr_d * 3;
 for (i_0 = 0; i_0 < 3; i_0++) {
 rtb_ImpSel_InsertedFor_In1_at_c[3 * i_0] =
 foreach_codegen_B.ImpSel_InsertedFor_In1_at_o[(i_0 + i) * 3];
 rtb_ImpSel_InsertedFor_In1_at_c[1 + 3 * i_0] =
 foreach_codegen_B.ImpSel_InsertedFor_In1_at_o[(i_0 + i) * 3 + 1];
 rtb_ImpSel_InsertedFor_In1_at_c[2 + 3 * i_0] =
 foreach_codegen_B.ImpSel_InsertedFor_In1_at_o[(i_0 + i) * 3 + 2];
 }

 tmp = rtb_ImpSel_InsertedFor_In1_at_c[0];
 for (i = 0; i < 8; i++) {
 tmp += rtb_ImpSel_InsertedFor_In1_at_c[i + 1];
 }

 rtb_Out1_CoreSubsysCanOut[ForEach_itr_d] = tmp;
 }

 for (i = 0; i < 234; i++) {
 foreach_codegen_Y.Out1[ForEach_itr + 271 * i] =
 rtb_Out1_CoreSubsysCanOut[i];

R2017b

12-16

 }
 }
}

For holding copies of input and output data, the generated code contained:

• The temporary local array rtb_Out1_CoreSubsysCanOut
• The temporary local variable rtb_ImpSel_InsertedFor_In1_at_c[9]
• The global temporary array ImpSel_InsertedFor_In1_at_o

For the for loops that contained these data copies, the code contained the iterator i_0 .

In R2017b, the code generator produces this code:

void foreach_codegen_step(void)
{
 real_T tmp;
 int32_T i;
 int32_T ForEach_itr;
 int32_T ForEach_itr_d;
 for (ForEach_itr = 0; ForEach_itr < 271; ForEach_itr++) {
 for (ForEach_itr_d = 0; ForEach_itr_d < 234; ForEach_itr_d++) {
 tmp = -0.0;
 for (i = 0; i < 9; i++) {
 tmp += foreach_codegen_U.In1[((i / 3 + ForEach_itr_d * 3) * 813 + i % 3)
 + ForEach_itr * 3];
 }

 foreach_codegen_Y.Out1[ForEach_itr + 271 * ForEach_itr_d] = tmp;
 }
 }
}

The variables and their data copies are not in the generated code.

Buffer reuse for arrays of different sizes and dimensions

The model diffSizeAutoReuse contains matrices of different sizes and shapes.

In R2017a, the diffSizeAutoReuse.c file contained this code:

void diffSizeAutoReuse_step(void)
{
 real_T rtb_y_k[6];
 real_T rtb_y_l3[9];

 Performance

12-17

 diffSizeAutoReuse_Subsystem(diffSizeAutoReuse_U.In1, rtb_y_k);
 diffSizeAutoReuse_Subsystem1(rtb_y_k, rtb_y_l3);
 diffSizeAutoReuse_Subsystem2(rtb_y_l3, diffSizeAutoReuse_Y.Out1);
}

The arrays rtb_y_k and rtb_y_13 held the data of different sizes.

In R2017b, the diffSizeAutoReuse.c file contains this code:

void diffSizeAutoReuse_step(void)
{
 diffSizeAutoReuse_Subsystem(diffSizeAutoReuse_U.In1,
 &diffSizeAutoReuse_Y.Out1[0]);
 diffSizeAutoReuse_Subsystem1(&diffSizeAutoReuse_Y.Out1[0],
 diffSizeAutoReuse_Y.Out1);
 diffSizeAutoReuse_Subsystem2(diffSizeAutoReuse_Y.Out1,
 diffSizeAutoReuse_Y.Out1);
}

The variable difSizeAutoReuse_Y.Out1 holds the data of different sizes, so there are two fewer
buffers in the generated code. For reusing buffers for matrices of different sizes and shapes, note
these limitations:

• The code generator does not replace a buffer with a lower priority buffer that has a smaller size.
• The code generator does not reuse buffers that have different sizes and symbolic dimensions.

Reusable Storage Class: Specify reusable custom storage classes
anywhere on a path
Previously, you could use reusable custom storage classes to specify buffer reuse on multiple signals
in a path. Now, you can use reusable custom storage classes to specify buffer reuse on discontinuous
signals. For example, you can interleave reusable custom storage classes on a path. Specifying buffer
reuse by applying custom storage classes has these benefits:

• Eliminate data copies.
• Conserve ROM and RAM consumption.
• Improve execution speed.
• Control how signal and state data interface with externally-written code.

You can specify buffer reuse on signals that the code generator cannot honor. For those cases, use
two new diagnostics to specify the message type that the model displays. In the Configuration
Parameters dialog box, these diagnostics are Detect non-reused custom storage classes (Simulink)
and Detect ambiguous custom storage class final values (Simulink). For more information, see Specify
Buffer Reuse by Using Simulink.Signal Objects.

Execution Speed: Eliminate redundant subexpressions
Previously, for some models that contained redundant subexpressions (that is, an expression that is
part of another expression), the generated code repeatedly calculated the value of the subexpression.
In R2017b, the generated code contains a temporary variable that holds the value of these
subexpressions. This optimization improves the execution speed of the generated code because it
eliminates redundant calculations. The parameter Eliminate superfluous local variables
(expression folding) enables this optimization.

R2017b

12-18

https://www.mathworks.com/help/releases/R2017b/simulink/gui/reusable-csc-has-incompatible-usages.html
https://www.mathworks.com/help/releases/R2017b/simulink/gui/reusable-csc-final-value-is-not-well-defined.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

For example, the model M01 contains a series of math operations prior to the Switch block.

In R2017a, the M01_step function contained this code:

void M01_step(void)
{
 if ((real32_T)U2 * 0.0122070313F > 0.0F) {
 Y1 = (real32_T)U2 * 0.0122070313F * U1 / (((real32_T)U2 * 0.0122070313F *
 0.01F - 1.0F) * U1 + 100.0F);
 } else {
 Y1 = 0.0F;
 }
}

The M01_step function contained three instances of the subexpression U2*0.0122070313F.

In R2017b, the M01_step function contains this code:

void M01_step(void)
{
 real32_T tmp;
 tmp = (real32_T)U2 * 0.0122070313F;
 if (tmp > 0.0F) {
 Y1 = tmp * U1 / ((tmp * 0.01F - 1.0F) * U1 + 100.0F);
 } else {
 Y1 = 0.0F;
 }
}

The M01_step function contains the variable tmp to hold the value of the subexpression
U2*0.0122070313F.

Note This optimization does not occur when the simulation mode is Rapid Accelerator.

Execution Speed: Convert data copies to pointer assignments for
more modeling patterns
In R2017b, the code generator can eliminate data copies for more modeling patterns involving vector
signal assignments. The code generator can eliminate data copies for generated code that transfers
data to and from structure fields. This optimization eliminates data copies for modeling patterns
involving data transference between Simulink.Bus objects and Lookup Table blocks or reusable
subsystems.

For example, two inputs to the model structure_pointer_conversion are the Simulink.Bus
object mybus. mybus contains two vectors that each have a dimension of 100.

 Performance

12-19

In R2017a, the structure_pointer_conversion.c file contained this code:

/* Model step function */
void structure_pointer_conversion_step(void)
{
 int16_T rtb_Switch_dataX[100];
 int16_T rtb_Switch_dataY[100];

 /* Switch: '<Root>/Switch' incorporates:
 * Inport: '<Root>/In1'
 */
 if (rtU.In1) {
 /* Switch: '<Root>/Switch' incorporates:
 * Constant: '<Root>/Constant'
 */
 memcpy(&rtb_Switch_dataX[0], &rtConstP.Constant_Value.dataX[0], 100U *
 sizeof(int16_T));
 memcpy(&rtb_Switch_dataY[0], &rtConstP.Constant_Value.dataY[0], 100U *
 sizeof(int16_T));
 } else {
 /* Switch: '<Root>/Switch' incorporates:
 * Constant: '<Root>/Constant1'
 */
 memcpy(&rtb_Switch_dataX[0], &rtConstP.Constant1_Value.dataX[0], 100U *
 sizeof(int16_T));
 memcpy(&rtb_Switch_dataY[0], &rtConstP.Constant1_Value.dataY[0], 100U *
 sizeof(int16_T));
 }

 /* S-Function (sfix_look1_dyn): '<Root>/Lookup Table Dynamic' incorporates:
 * Inport: '<Root>/In2'
 * Outport: '<Root>/Out1'
 */
 /* Dynamic Look-Up Table Block: '<Root>/Lookup Table Dynamic'
 * Input0 Data Type: Integer S16
 * Input1 Data Type: Integer S16
 * Input2 Data Type: Integer S16
 * Output0 Data Type: Integer S16
 * Lookup Method: Linear_Endpoint

R2017b

12-20

 *
 */
 LookUp_S16_S16(&(rtY.Out1), &rtb_Switch_dataY[0], rtU.In2, &rtb_Switch_dataX
 [0], 99U);
}

In R2017b, the structure_pointer_conversion.h file contains the same variable declaration as
the file did in R2017a.

typedef struct {
 int16_T dataX[100];
 int16_T dataY[100];
} mybus;

#endif

/* Constant parameters (auto storage) */
typedef struct {
 /* Expression: d1
 * Referenced by: '<Root>/Constant'
 */
 mybus Constant_Value;

 /* Expression: d2
 * Referenced by: '<Root>/Constant1'
 */
 mybus Constant1_Value;
} ConstParam;

The generated code contained four data copies from the structure fields Constant_Value.dataX,
Constant_Value.dataY, Constant1_Value.dataX, and Constant1_Value.dataY to the local
variables rtb_Switch_dataX and rtb_Switch_dataY.

In R2017b, the structure_pointer_conversion.c file contains this code:

/* Model step function */
void structure_pointer_conversion_step(void)
{
 const int16_T *rtb_Switch_dataX;
 const int16_T *rtb_Switch_dataY;

 /* Switch: '<Root>/Switch' incorporates:
 * Inport: '<Root>/In1'
 */
 if (rtU.In1) {
 /* Switch: '<Root>/Switch' incorporates:
 * Constant: '<Root>/Constant'
 */
 rtb_Switch_dataX = (&rtConstP.Constant_Value.dataX[0]);
 rtb_Switch_dataY = (&rtConstP.Constant_Value.dataY[0]);
 } else {
 /* Switch: '<Root>/Switch' incorporates:
 * Constant: '<Root>/Constant1'
 */
 rtb_Switch_dataX = (&rtConstP.Constant1_Value.dataX[0]);
 rtb_Switch_dataY = (&rtConstP.Constant1_Value.dataY[0]);
 }

 Performance

12-21

 /* S-Function (sfix_look1_dyn): '<Root>/Lookup Table Dynamic' incorporates:
 * Inport: '<Root>/In2'
 * Outport: '<Root>/Out1'
 */
 /* Dynamic Look-Up Table Block: '<Root>/Lookup Table Dynamic'
 * Input0 Data Type: Integer S16
 * Input1 Data Type: Integer S16
 * Input2 Data Type: Integer S16
 * Output0 Data Type: Integer S16
 * Lookup Method: Linear_Endpoint
 *
 */
 LookUp_S16_S16(&(rtY.Out1), &rtb_Switch_dataY[0], rtU.In2, &rtb_Switch_dataX
 [0], 99U);
}

The structure_pointer_conversion.h file contains the same variable declaration as was in
R2017a.

typedef struct {
 int16_T dataX[100];
 int16_T dataY[100];
} mybus;

#endif

/* Constant parameters (auto storage) */
typedef struct {
 /* Expression: d1
 * Referenced by: '<Root>/Constant'
 */
 mybus Constant_Value;

 /* Expression: d2
 * Referenced by: '<Root>/Constant1'
 */
 mybus Constant1_Value;
} ConstParam;

The generated code contains pointer assignments from the structure fields
Constant_Value.dataX, Constant_Value.dataY, Constant1_Value.dataX, and
Constant1_Value.dataY to the local pointers rtb_Switch_dataX and rtb_Switch_dataY. The
data copies are not in the generated code. For more information, see Convert Data Copies to Pointer
Assignments.

Execution Speed: Move invariant code out of for loops
In R2017b, the code generator can move invariant code out of a for loop. This optimization improves
execution speed because code that does not depend on a for loop executes only once instead of with
every iteration of the for loop.

For example, the model for_loop contains three modeling patterns that produce for loops in the
generated code. The subsystems switchEx and stateflowEx contain vectors that the code
generator assigns to the subsystem outputs. The subsystem sysBlockEx contains a MATLAB System
block with switch-case logic.

R2017b

12-22

https://www.mathworks.com/help/releases/R2017b/ecoder/ug/optimize-memory-usage-for-vector-signal-assignments.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/optimize-memory-usage-for-vector-signal-assignments.html

In R2017a, the code generator produced this code:

void for_loop_stateflowEx(real_T rtu_In1, real_T rty_Out1[7], real_T rty_Out2[7])
{
 int32_T i;
 for (i = 0; i < 7; i++) {
 rty_Out1[i] = 0.0;
 rty_Out2[i] = 0.0;
 }

 for (i = 0; i < 7; i++) {
 if (rtu_In1 < 0.0) {
 rty_Out1[2] = 45.0;
 }

 rty_Out2[i] = ((real_T)i + 1.0) + rtu_In1;
 }
}

void for_loop_switchEx(real_T rtu_In1, real_T rty_Out1[10])
{
 int32_T i;
 int32_T rtu_In1_0;
 for (i = 0; i < 10; i++) {
 if (rtu_In1 > 0.0) {
 rtu_In1_0 = 1;
 } else {
 rtu_In1_0 = 0;
 }

 rty_Out1[i] = 13.0 * (real_T)rtu_In1_0;
 }
}
...

void for_loop_sysBlockEx(const real_T rtu_In1[50], B_sysBlockEx_for_loop_T

 Performance

12-23

 *localB)
{
 real_T varargout_1[50];
 real_T scalarTmp;
 real_T readOnlyMatrixTmp[50];
 real_T switchExpr;
 int32_T i;
 scalarTmp = rtu_In1[49] - 1.0;
 for (i = 0; i < 50; i++) {
 varargout_1[i] = rtu_In1[i] - 1.0;
 readOnlyMatrixTmp[i] = rtu_In1[i] - 1.0;
 }

 for (i = 0; i < 47; i++) {
 switchExpr = 2.0 * readOnlyMatrixTmp[0];
 switch ((int32_T)switchExpr) {
 case 0:
 scalarTmp = 13.0;
 break;

 case 2:
 scalarTmp = 23.0;
 break;

 default:
 scalarTmp = 33.0;
 break;
 }

 varargout_1[i]++;
 }

 varargout_1[0] = scalarTmp + switchExpr;
 memcpy(&localB->systemBlockEx[0], &varargout_1[0], 50U * sizeof(real_T));
}

• In the for_loop_stateflowEx function, the if statement is invariant to the for loop.
• In the for_loop_switchEx function, the if-else statement is invariant to the for loop.
• In the for_loop_sysBlockEx function, the switch-case statements are invariant to the for

loop.

void for_loop_stateflowEx(real_T rtu_In1, real_T rty_Out1[7], real_T rty_Out2[7])
{
 int32_T i;
 for (i = 0; i < 7; i++) {
 rty_Out1[i] = 0.0;
 rty_Out2[i] = 0.0;
 }

 if (rtu_In1 < 0.0) {
 rty_Out1[2] = 45.0;
 }

 for (i = 0; i < 7; i++) {
 rty_Out2[i] = ((real_T)i + 1.0) + rtu_In1;
 }
}

R2017b

12-24

void for_loop_switchEx(real_T rtu_In1, real_T rty_Out1[10])
{
 int32_T i;
 int32_T rtu_In1_0;
 if (rtu_In1 > 0.0) {
 rtu_In1_0 = 1;
 } else {
 rtu_In1_0 = 0;
 }

 for (i = 0; i < 10; i++) {
 rty_Out1[i] = 13.0 * (real_T)rtu_In1_0;
 }
}...

void for_loop_sysBlockEx(const real_T rtu_In1[50], B_sysBlockEx_for_loop_T
 *localB)
{
 real_T tmp[50];
 real_T scalarTmp;
 real_T readOnlyMatrixTmp[50];
 real_T switchExpr;
 int32_T i;
 for (i = 0; i < 50; i++) {
 tmp[i] = rtu_In1[i] - 1.0;
 readOnlyMatrixTmp[i] = rtu_In1[i] - 1.0;
 }

 switchExpr = 2.0 * readOnlyMatrixTmp[0];
 switch ((int32_T)switchExpr) {
 case 0:
 scalarTmp = 13.0;
 break;

 case 2:
 scalarTmp = 23.0;
 break;

 default:
 scalarTmp = 33.0;
 break;
 }

 for (i = 0; i < 47; i++) {
 tmp[i]++;
 }

 tmp[0] = scalarTmp + switchExpr;
 memcpy(&localB->systemBlockEx[0], &tmp[0], 50U * sizeof(real_T));
}

• In the for_loop_stateflowEx function, the if statement is not in the for loop.
• In the for_loop_switchEx function, the if-else statement is not in the for loop.
• In the for_loop_sysBlockEx function, the switch-case statements are not in the for loop.

 Performance

12-25

Block Reordering for Improved Execution Efficiency: Change block
execution order to enable buffer reuse and loop fusion
In R2017b, for more modeling patterns, the code generator can optimize the block execution order to
improve execution efficiency. In the Configuration Parameters dialog box, when you set the Optimize
block operation order in the generated code to Improved Execution Speed, the code
generator can reorder block operations to perform these optimizations:

• Reuse the same variable for the input, output, and state of a Unit Delay block by executing the
Unit Delay block before upstream blocks.

• Combine more for loops by executing blocks together that have the same size.
• Eliminate data copies by executing blocks together that meet these conditions:

• Perform inplace operations (that is, use the same input and output variable).
• Contain algorithm code with unnecessary data copies.

These optimizations improve execution speed and conserve RAM and ROM consumption. For more
information, see Improve Execution Efficiency by Reordering Block Operations in the Generated
Code.

MATLAB Function Block Buffer Reuse: Perform inplace assignment
with root I/O
Since R2016a, you can specify the same variable name for the input and output of a MATLAB
Function block. The code generator tries to reuse the input and output variables. When a MATLAB
Function block connects directly to the root-level input and output ports, the code generator can now
reuse the input and output variables. In this case, you must specify the same reusable custom storage
class on the input and output signals. This optimization conserves RAM/ROM consumption by
reducing the number of local variables and data copies in the generated code.

For example, in the model SmallSelect, the MATLAB Function block assigns a value to the signal
coming from the root-level input port In1. The output signal connects directly to the root-level output
port Out2.

The SmallSelect_step function contains this code:

/* Model step function */
void SmallSelect_step(void)
{

R2017b

12-26

https://www.mathworks.com/help/releases/R2017b/ecoder/ug/improve-execution-efficiency-by-reordering-block-operations-in-the-generated-code-280316bed6a8.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/improve-execution-efficiency-by-reordering-block-operations-in-the-generated-code-280316bed6a8.html

 /* MATLAB Function: '<Root>/Select' incorporates:
 * Inport: '<Root>/In2'
 */
 /* MATLAB Function 'Select': '<S1>:1' */
 /* '<S1>:1:1' */
 /* '<S1>:1:9' */
 sCLC.asAx[2].sCurrentLoop = sCurrentLoop;
}

There are no unnecessary data copies in the generated code. For more information on how to specify
buffer reuse with MATLAB Function blocks, see Specify Buffer Reuse for MATLAB Function Blocks in
a Path.

Execution-Time Profiling: Display time units in code execution profiling
report and Simulation Data Inspector
The execution-time profiling report from a SIL or PIL simulation gives the time units for the displayed
execution-time metrics. For more information, see View and Compare Code Execution Times.

memcpy and memset Optimization: Generate more efficient code for
variable-size arrays
In R2017a, the code generator attempted to replace fixed-size for loop controlled array element
assignments with memcpy and memset function calls. A fixed-size array is one in which the number of
array elements to assign is known at compile time. In R2017b, the code generator can replace
variable-size for loop controlled array element assignments with memcpy and memset function calls.
This optimization improves execution efficiency.

Modeling patterns that can produce variable-size for loop controlled array element assignments
include variable-size signals and MATLAB function blocks containing variable-size arrays or data
copies for a variable number of elements. For example, the model varsize_ex contains a MATLAB
Function block.

The MATLAB function block contains this code:

function [out1, out2] = varsizeMemcpyMemset(in1,in2,inUb)
 out1 = zeros(1,100);
 %memcpy
 out1(1:inUb) = in1(1:inUb);

 Performance

12-27

https://www.mathworks.com/help/releases/R2017b/ecoder/ug/specify-buffer-reuse-for-matlab-function-blocks-in-a-path.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/specify-buffer-reuse-for-matlab-function-blocks-in-a-path.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/view-and-compare-code-execution-times.html

 out2 = in2;
 %memset
 out2(1:inUb) = repmat(int8(127),1,inUb);
end

In R2017a, the code generator produced this code:

void varsize_ex_step(void)
{
 real_T rtb_out1[100];
 int8_T rtb_out2[50];
 int32_T i;
 int32_T loop_ub;
 for (i = 0; i < 100; i++) {
 rtb_out1[i] = 0.0;
 }

 if (1.0 > varsize_ex_U.In3) {
 i = 0;
 } else {
 i = (int32_T)varsize_ex_U.In3;
 }

 loop_ub = i - 1;
 for (i = 0; i <= loop_ub; i++) {
 rtb_out1[i] = varsize_ex_U.In1[i];
 }

 memcpy(&rtb_out2[0], &varsize_ex_U.In2[0], 50U * sizeof(int8_T));
 loop_ub = (int32_T)varsize_ex_U.In3;
 for (i = 0; i < loop_ub; i++) {
 rtb_out2[i] = MAX_int8_T;
 }

 memcpy(&varsize_ex_Y.Out1[0], &rtb_out1[0], 100U * sizeof(real_T));
 memcpy(&varsize_ex_Y.Out2[0], &rtb_out2[0], 50U * sizeof(int8_T));
}

The generated code contained variable-size for loop controlled array element assignments to
rtb_out1 and rtb_out2.

In R2017b, the code generator produces this code:
void varsize_ex_step(void)
{
 real_T rtb_out1[100];
 int8_T rtb_out2[50];
 int32_T i;
 for (i = 0; i < 100; i++) {
 rtb_out1[i] = 0.0;
 }

 if (1.0 > varsize_ex_U.In3) {
 i = 0;
 } else {
 i = (int32_T)varsize_ex_U.In3;
 }

 i--;
 if (0 <= i) {
 memcpy(&rtb_out1[0], &varsize_ex_U.In1[0], (i + 1) * sizeof(real_T));

R2017b

12-28

 }

 memcpy(&rtb_out2[0], &varsize_ex_U.In2[0], 50U * sizeof(int8_T));
 i = (int32_T)varsize_ex_U.In3;
 if (0 <= i - 1) {
 memset(&rtb_out2[0], 127, i * sizeof(int8_T));
 }

 memcpy(&varsize_ex_Y.Out1[0], &rtb_out1[0], 100U * sizeof(real_T));
 memcpy(&varsize_ex_Y.Out2[0], &rtb_out2[0], 50U * sizeof(int8_T));
}

For assigning values to rtb_out1 and rtb_out2, the generated code contains memcpy and memset
functions.

Data Copy Reduction: Generate fewer data copies at function call
sites
In R2017b, the generated code contains fewer data copies for blocks that have a dedicated function.
The code generator eliminates these data copies by generating a function that writes directly to the
destination variable rather than to a temporary buffer at the block output.

For example, the model backfolding_ex contains a Constant block feeding into a Discrete FIR
Filter block.

In R2017a, the code generator produced this code:

/* Model step function */
void backfolding_ex_step(void)
{
 real32_T rtb_DiscreteFIRFilter[320];

 /* DiscreteFir: '<Root>/Discrete FIR Filter' incorporates:
 * Constant: '<Root>/Constant'
 */
 arm_fir_f32(&backfolding_ex_DW.S, &backfolding_ex_DW.pState[0],
 &backfolding_ex_P.tInput[0], &backfolding_ex_P.firCoeffs32[0],
 -0.0341458619F, 0.250496089F, 320U, &rtb_DiscreteFIRFilter[0], 32U);

 /* Outport: '<Root>/Out1' */
 memcpy(&backfolding_ex_Y.Out1[0], &rtb_DiscreteFIRFilter[0], 320U * sizeof
 (real32_T));
}

 Performance

12-29

The generated code contained the temporary variable rtb_DiscreteFIRFilter and a memcpy
function for copying data from rtb_DiscreteFIRFilter to the destination variable
backfolding_ex_Y.Out1.

In R2017b, the code generator produces this code:

/* Model step function */
void backfolding_ex_step(void)
{
 /* DiscreteFir: '<Root>/Discrete FIR Filter' incorporates:
 * Constant: '<Root>/Constant'
 * Outport: '<Root>/Out1'
 */
 arm_fir_f32(&backfolding_ex_DW.S, &backfolding_ex_DW.pState[0],
 &backfolding_ex_P.tInput[0], &backfolding_ex_P.firCoeffs32[0],
 -0.0341458619F, 0.250496089F, 320U, &backfolding_ex_Y.Out1[0], 32U);
}

The generated code does not contain the extra temporary variable rtb_DiscreteFIRFilter or the
data copy to this temporary variable. Instead, the function writes directly to destination variable
backfolding_ex_Y.Out1.

Code Replacement: Apply MustHaveZeroNetBias and
SlopesMustBeTheSame properties for fixed-point operator code
replacement
In R2017b, operation of the MustHaveZeroNetBias and SlopesMustBeTheSame properties for
fixed-point operator code replacement is clarified. For information about applying these properties for
code replacement matches of add, subtract, multiply, divide, cast, and shift operators, see Fixed-Point
Operator Code Replacement and setTflCOperationEntryParameters.

Enumerated Data Types Optimization: Improve the efficiency of the
generated code for enumerated data types
In R2017b, the generated code for enumerated data types contains optimizations that in previous
releases, applied only to scalar data. These optimizations include reducing the storage size of
variables, constant folding, redundant assignment elimination, and control flow simplification. The
optimizations reduce ROM and RAM consumption and increase execution speed.

For example, the model Enum_example contains a combination of Enumerated Constant blocks and
control flow subsystems.

R2017b

12-30

https://www.mathworks.com/help/releases/R2017b/ecoder/ug/fixed-point-operator-code-replacement-mc.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/fixed-point-operator-code-replacement-mc.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ref/settflcoperationentryparameters.html

In R2017a, the code generator produced this code:

void Enum_example_step(void)
{
 MyColors tmp;
 if (Enum_example_U.X < 0.0) {
 tmp = Blue;
 } else if (Enum_example_U.X < -1.0) {
 tmp = Green;
 } else {
 tmp = Red;
 }

 if (tmp == Black) {
 Enum_example_Y.Out1 = 5.0;
 } else {
 Enum_example_Y.Out1 = 1.0;
 }
}

void Enum_example_initialize(void)
{
 rtmSetErrorStatus(Enum_example_M, (NULL));
 Enum_example_U.X = 0.0;
 Enum_example_Y.Out1 = 0.0;
}

void Enum_example_terminate(void)
{
}

The generated code contains control flow constructs. Enumerated constants are variables.

In R2017b, the code generator produces this code:

void Enum_example_step(void)
{
 Enum_example_Y.Out1 = 1.0;
}

 Performance

12-31

The code generator evaluates the enumerated constants and determines that temp can never equal
Black. The generated code does not contain the control flow constructs. Enum_example_Y.Out1
equals 1.

R2017b

12-32

Verification
Multiple Processor SIL/PIL Testing: Perform SIL or PIL component tests
on different processors simultaneously
If you have a model with Model block components that are configured to generate code for different
target environments, you can test the generated code components simultaneously by running
simulations with the Model blocks in software-in-the-loop (SIL) or processor-in-the-loop (PIL) mode.

For more information, see:

• “Simplified Build Folder Layout: Generate code for different hardware settings in separate
folders”

• Manage Build Process Folders (Simulink Coder)
• Model Block SIL/PIL Limitations

SIL Simulation: Simplified configuration of hardware implementation
settings
The default Hardware Implementation parameter settings support SIL simulations on a
development computer that uses a 64-bit Windows® operating system. Previously, you had to set the
ProdLongLongMode configuration parameter to on.

On this computer, you can run SIL simulations to test generated code for many 32-bit devices without
enabling the PortableWordSizes configuration parameter.

For more information, see Configure Hardware Implementation Settings.

SIL/PIL Configuration: Parent model code coverage, execution-time
profiling, and SIL debugging settings apply to Model blocks with Top-
model code interface
If a model contains Model blocks with the Simulation mode block parameter set to Software-in-
the-loop (SIL) or Processor-in-the-loop (PIL) and the Code interface block parameter
set to Top model, these parameters of the parent model override the corresponding parameters of
the models referenced by the Model blocks:

• Code coverage for this model
• Code coverage for referenced models
• Measure task execution time. Disabling task profiling for the top model also disables function
profiling for all referenced models.

• Workspace variable
• Save options
• Enable source-level debugging for SIL

Previously, if the referenced model parameter settings did not match the parent model settings, an
error occurred.

For more information, see:

 Verification

12-33

https://www.mathworks.com/help/releases/R2017b/ecoder/ug/configuring-a-sil-or-pil-simulation.html#bsf5v22.bse8tg7
https://www.mathworks.com/help/releases/R2017b/rtw/ug/build-process-folders-.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/sil-and-pil-simulation-limitations.html#bu2eal5
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/configuring-a-sil-or-pil-simulation.html#br86vhn

• Code Coverage
• Code Execution Profiling with SIL and PIL
• Debug Generated Code During SIL Simulation

Hardware Implementation Settings: SIL checks relaxed for data type
sizes and byte ordering
A software-in-the-loop (SIL) simulation checks the Hardware Implementation pane settings with
respect to your development computer. In R2017b, when Code Generation > Verification > Enable
portable word sizes is not selected, SIL simulation is possible when the values of these parameters
on the Hardware Implementation pane are less than or equal to the values for your development
computer:

• Number of bits: native
• Number of bits: pointer
• Number of bits: size_t
• Number of bits: ptrdiff_t

SIL simulation is also possible when Byte ordering is set to Big Endian and Code Generation >
Interface > Support: non-finite numbers is not selected. If you use custom code with a specific
endianess, SIL and PIL simulation results can differ.

Previously, if there were mismatches between the parameter values on the Hardware
Implementation pane and your development computer values, the SIL simulation produced errors.

For more information, see Configure Hardware Implementation Settings.

R2017b

12-34

https://www.mathworks.com/help/releases/R2017b/ecoder/code-coverage.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/configuring-code-execution-profiling.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/debug-code-during-sil-simulations.html
https://www.mathworks.com/help/releases/R2017b/ecoder/ug/configuring-a-sil-or-pil-simulation.html#br86vhn

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

12-35

https://www.mathworks.com/support/bugreports/

R2017a

Version: 6.12

New Features

Bug Fixes

Compatibility Considerations

13

Code Generation from MATLAB Code

SIL and PIL execution improvements for MATLAB Coder
This table lists software-in-the-loop (SIL) and processor-in-the-loop (PIL) execution improvements.

Feature R2017a Previous releases
Interface type: Global data Supported Not supported
Size: Dynamic variable-size
arrays

Supported Not supported

For more information, see SIL/PIL Execution Support and Limitations.

Verification of PIL target connectivity configuration
The piltest function provides additional tests for verifying your custom processor-in-the-loop (PIL)
target connectivity configuration. You can specify tests by using the 'Testpoint' argument.

'Testpoint' Value Description
'verifyPILConfig' For a given set of input values, the function:

• Runs a MATLAB function on your development computer.
• Performs PIL executions of generated MATLAB code on your

target hardware with config.TargetLang settings 'C' and
'C++'.

The function compares results from the MATLAB function run and
the PIL executions. If the function detects differences, it produces
an error.

For more information, see Create PIL Target Connectivity Configuration.

Code Replacement for MATLAB Coder: Create code replacement
library entries for target implementations that require data alignment
As of R2017a, you can take advantage of function implementations that require aligned data to
optimize application performance when using MATLAB Coder.

For more information, see Data Alignment for Code Replacement.

R2017a

13-2

https://www.mathworks.com/help/releases/R2017a/ecoder/ug/sil-execution-support-and-limitations.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ref/piltest_mc.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/create-a-connectivity-configuration-for-a-target.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/data-alignment-for-code-replacement-mc.html

Model Architecture and Design

AUTOSAR arxml File Import: Flexibly model imported periodic,
asynchronous, and initialization runnables
The AUTOSAR arxml importer now supports AUTOSAR modeling styles for which Simulink modeling
support was added in R2016b. For example, you can

• Import periodic and asynchronous runnables in a JMAAB type beta modeling configuration. The
modeling style is described in Add Top-Level Asynchronous Trigger to Periodic Rate-Based
System.

• Import an initialize runnable, which the importer now represents with a Simulink Initialize
Function block.

To import an AUTOSAR software component with multiple runnable entities into a Simulink model,
you use the arxml importer method createComponentAsModel. As part of improved runnable
modeling, the createComponentAsModel method now provides the property
ModelPeriodicRunnablesAs, which replaces the property CreateInternalBehavior. At model
creation time, set ModelPeriodicRunnablesAs to one of these values:

• AtomicSubsystem (default) — Import AUTOSAR periodic runnables found in arxml files. Model
periodic runnables as atomic subsystems with periodic rates in a rate-based model. If conditions
prevent use of atomic subsystems, the importer throws an error.

• FunctionCallSubsystem — Model periodic runnables as function-call subsystems with periodic
rates.

• Auto — Attempt to model periodic runnables as atomic subsystems. If conditions prevent use of
atomic subsystems, model periodic runnables as function-call subsystems.

Set ModelPeriodicRunnablesAs to AtomicSubsystem unless your design requires use of
function-call subsystems. The following call directs the importer to import a multirunnable AUTOSAR
software component and map it into a new rate-based model.

obj = arxml.importer('mySWC.arxml')
createComponentAsModel(obj,'/pkg/swc/ASWC','ModelPeriodicRunnablesAs','AtomicSubsystem')

For more information, see Import AUTOSAR Software Component and Model AUTOSAR Software
Components.

AUTOSAR DESC elements populate Simulink Description fields
Importing AUTOSAR DESC information associated with an AUTOSAR identifiable element now
populates the Description property in the corresponding Simulink element or data object.
Correspondingly, exporting a Simulink element or data object Description property now populates
the DESC information in the corresponding AUTOSAR element. Previously, Embedded Coder
preserved AUTOSAR DESC information across arxml round-trips but did not leverage the
information to add a readable text description to the Simulink model.

For example, suppose that you open the example model rtwdemo_autosar_swc_slfcns and add a
description to the Simulink Function block read_data. Use the block properties dialog.

 Model Architecture and Design

13-3

https://www.mathworks.com/help/releases/R2017a/ecoder/autosar/add-top-level-asynchronous-trigger-to-rate-based-periodic-system.html
https://www.mathworks.com/help/releases/R2017a/ecoder/autosar/add-top-level-asynchronous-trigger-to-rate-based-periodic-system.html
https://www.mathworks.com/help/releases/R2017a/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2017a/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2017a/ecoder/autosar/arxml.importer.createcomponentasmodel.html
https://www.mathworks.com/help/releases/R2017a/ecoder/autosar/importing-an-autosar-software-component.html
https://www.mathworks.com/help/releases/R2017a/ecoder/autosar/autosar-software-components.html
https://www.mathworks.com/help/releases/R2017a/ecoder/autosar/autosar-software-components.html

When you export arxml for the model, the generated runnable description contains the Simulink
description text.
<RUNNABLE-ENTITY UUID="...">
 <SHORT-NAME>Runnable_readData</SHORT-NAME>
 <DESC>
 <L-2 L="FOR-ALL">Read data function for ASWC</L-2>
 </DESC>
...
 <SYMBOL>readData</SYMBOL>
</RUNNABLE-ENTITY>

Note This support is available to R2015b, R2016a, and R2016b Embedded Coder customers by
installing the latest AUTOSAR support package for your release:

• R2015b Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.8 or later
• R2016a Embedded Coder Support Package for AUTOSAR Standard, Version 16.1.5 or later
• R2016b Embedded Coder Support Package for AUTOSAR Standard, Version 16.2.2 or later

External mode code generation for a model containing inline variant
blocks
In R2017a, for a model containing Variant Source or Variant Sink blocks, you can generate code for
the external mode data interface. In the block parameters dialog box, clear the Analyze all choices
during update diagram and generate preprocessor conditionals parameter. For more
information on external mode, see Set Up and Use Host/Target Communication Channel.

Code generation support for Variant Subsystems containing global
signals
In R2017a, you can generate code for a model containing a Variant Subsystem with global signals
inside it. You declare signals as global by assigning them a storage class other than Auto. See Storage
Classes for Signals Used with Model Blocks.

R2017a

13-4

https://www.mathworks.com/help/releases/R2017a/ecoder/ug/set-up-and-use-hosttarget-communication-channel.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/storage-classes-for-signals-used-with-model-blocks.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/storage-classes-for-signals-used-with-model-blocks.html

Preprocessor conditionals guard content inside and outside of
function-call site
In R2016b, for a model that contained a conditional function-call subsystem, preprocessor
conditionals guarded only the content inside the function. In R2017a, preprocessor conditionals
guard the content and the function-call site.

For example, in the model func_call_guards, a Variant Source block connects to the function-call
subsystem Proc_Ini.

In R2016b, the code generator produced this code:

/* Model step function */
void TestModel_Proc_Ini(void)
{
 /* RootInportFunctionCallGenerator: '<Root>
 /RootFcnCall_InsertedFor_TestModel_Proc_Ini_at_outport_1' */
#if W == 1

 /* Outputs for Function Call SubSystem: '<Root>/Proc_Ini' */
 /* SignalConversion: '<S1>/OutportBufferForOut1' */
 Out1 = 1.0F;

 /* SignalConversion: '<S1>/OutportBufferForOut2' */
 Out2 = 1.0F;

 /* End of Outputs for SubSystem: '<Root>/Proc_Ini' */
#endif /* W == 1 */

 /* End of Outputs for RootInportFunctionCallGenerator: '<Root>
 /RootFcnCall_InsertedFor_TestModel_Proc_Ini_at_outport_1' */
}

The preprocessor conditionals guarded the content inside the function Proc_Ini.

In R2017a, the code generator produces this code:

/* Model step function */
#if W == 1

void TestModel_Proc_Ini(void)
{

 Model Architecture and Design

13-5

 /* RootInportFunctionCallGenerator: '<Root>
 /RootFcnCall_InsertedFor_TestModel_Proc_Ini_at_outport_1' */
#if W == 1

 /* Outputs for Function Call SubSystem: '<Root>/Proc_Ini' */
 /* SignalConversion: '<S2>/OutportBufferForOut1' */
 Out1 = 1.0F;

 /* SignalConversion: '<S2>/OutportBufferForOut2' */
 Out2 = 1.0F;

 /* End of Outputs for SubSystem: '<Root>/Proc_Ini' */
#endif /* W == 1 */

 /* End of Outputs for RootInportFunctionCallGenerator: '<Root>
 /RootFcnCall_InsertedFor_TestModel_Proc_Ini_at_outport_1' */
}

#endif /* W == 1 */

The preprocessor conditionals guard the content inside and outside of the function Proc_Ini.

R2017a

13-6

Data, Function, and File Definition

Function Interface: Return nonvoid type for scalar output of reusable
functions
In R2016b, reusable functions had a return type of void. In R2017a, reusable functions can return a
nonvoid type. The code generator can return a nonvoid type if the reusable function has one output
parameter that is a scalar and in the Configuration Parameters dialog box, on the Optimization >
Signals and Parameters pane, the Pass reusable subsystem outputs as parameter is set to
Individual arguments.

Returning a nonvoid type conserves RAM consumption because the generated code does not contain
a global variable to hold the output parameter value. There are also minor improvements in ROM
consumption because the function call site and the function body are smaller.

For example, the model reusable_sub contains four reusable subsystems. Subsystem2 contains
Subsystem3. Subsystem1, Subsystem3, and Subsystem4 contain the blocks shown in this
diagram following the model. The subsystem output is a scalar.

 Data, Function, and File Definition

13-7

In R2016b, the reusable subsystem function contained this code:

void reusable_sub_Subsystem1(uint32_T rtu_In1, uint32_T rtu_In2, uint32_T
 rtu_In3, uint32_T rtu_In4, uint32_T *rty_Out1)
{
 uint32_T rtb_Add;
 rtb_Add = rtu_In1 + rtu_In2;
 if (rtb_Add > rtu_In4) {
 *rty_Out1 = rtu_In4;
 } else if (rtb_Add < rtu_In3) {
 *rty_Out1 = rtu_In3;
 } else {
 *rty_Out1 = rtb_Add;
 }
}

void reusable_sub_step(RT_MODEL_reusable_sub *const reusable_sub_M,
 ExternalInputs_reusable_sub *reusable_sub_U, ExternalOutputs_reusable_sub
 *reusable_sub_Y)
{
 reusable_sub_Subsystem1(reusable_sub_U->first_data1,
 reusable_sub_U->second_data1, reusable_sub_U->range_min1,
 reusable_sub_U->range_max1, &reusable_sub_Y->Out1);
 reusable_sub_Subsystem1(reusable_sub_U->first_data2,
 reusable_sub_U->second_data2, reusable_sub_U->range_min2,
 reusable_sub_U->range_max2, &reusable_sub_Y->Out2);
 reusable_sub_Subsystem1(reusable_sub_U->first_data3,
 reusable_sub_U->second_data3, reusable_sub_U->range_min3,
 reusable_sub_U->range_max3, &reusable_sub_Y->Out3);
 UNUSED_PARAMETER(reusable_sub_M);
}

In R2016b, the generated code contained the global variable rty_Out1 to hold the output. rty_Out1
was passed to reusable_sub_Subsystem1.

In R2017a, the reusable_sub.c file contains this code:

R2017a

13-8

uint32_T reusable_sub_Subsystem1(uint32_T rtu_In1, uint32_T rtu_In2, uint32_T
 rtu_In3, uint32_T rtu_In4)
{
 uint32_T rty_Out1_0;
 rty_Out1_0 = rtu_In1 + rtu_In2;
 if (rty_Out1_0 > rtu_In4) {
 rty_Out1_0 = rtu_In4;
 } else {
 if (rty_Out1_0 < rtu_In3) {
 rty_Out1_0 = rtu_In3;
 }
 }

 return rty_Out1_0;
}

void reusable_sub_step(RT_MODEL_reusable_sub *const reusable_sub_M,
 ExternalInputs_reusable_sub *reusable_sub_U, ExternalOutputs_reusable_sub
 *reusable_sub_Y)
{
 reusable_sub_Y->Out1 = (uint32_T) reusable_sub_Subsystem1
 (reusable_sub_U->first_data1, reusable_sub_U->second_data1,
 reusable_sub_U->range_min1, reusable_sub_U->range_max1);
 reusable_sub_Y->Out2 = (uint32_T) reusable_sub_Subsystem1
 (reusable_sub_U->first_data2, reusable_sub_U->second_data2,
 reusable_sub_U->range_min2, reusable_sub_U->range_max2);
 reusable_sub_Y->Out3 = (uint32_T) reusable_sub_Subsystem1
 (reusable_sub_U->first_data3, reusable_sub_U->second_data3,
 reusable_sub_U->range_min3, reusable_sub_U->range_max3);
 UNUSED_PARAMETER(reusable_sub_M);
}

The generated code does not contain a global variable to hold output. Instead, the function returns
the local variable rty_Out1_0.

Utility to generate Simulink representations of struct and enum types
defined by external C code
Before R2017a, to generate code that used struct and enum types defined by your external code,
you had to manually create the corresponding definitions in Simulink (for example, Simulink.Bus
objects).

In R2017a, you can generate these corresponding Simulink definitions by using a programmatic
utility. The utility parses your external C code for struct and enum type definitions. For more
information, see Utility to generate Simulink representations of custom data types defined by external
C code (Simulink).

 Data, Function, and File Definition

13-9

https://www.mathworks.com/help/releases/R2017a/simulink/release-notes.html#bvlbrkv
https://www.mathworks.com/help/releases/R2017a/simulink/release-notes.html#bvlbrkv

Code Generation

Cross-Release Code Integration: Reuse model reference code
generated from previous releases
In R2017a, you can integrate exported component code that uses the model reference code interface.
Previously, the cross-release integration workflow supported only component code that used the
standalone code interface. For more information, see Cross-Release Code Integration.

Compatibility Considerations
For the crossReleaseImport function, the value for the CodeLocation argument specifies the
path to an anchor folder that contains the relocated model code folder. Previously, the
CodeLocation value specified the path to the relocated model code folder.

For R2017a, if you relocate generated model code, use an anchor folder and maintain the original
code folder names and structure.

Model
Componen
t

Code
Interface

Original Code Location New Code Location

Top model Standalone codeGenFolder/modelName_ert_rtw anchorFolder/
modelName_ert_rtw

Referenced
model

Model
reference

codeGenFolder/slprj/ert/refModelName anchorFolder/slprj/ert/
refModelName

Subsystem Standalone codeGenFolder/subSysName_ert_rtw anchorFolder/
subSysName_ert_rtw

Code Replacement for Cast and Multiply Operations: Detect overflow
and rounding mode equivalence for increased matches and code
efficiency
As of R2017a, the code replacement software support for detecting overflow and rounding mode
equivalence is enhanced for cast operations and multiply operations:

• Cast operations — When an operation does not overflow, based on input and output data types, a
match occurs for code replacement table entries with the saturation mode set to Wrap on
Overflow (RTW_WRAP_ON_OVERFLOW). Similarly, if the code replacement software detects
equivalent rounding modes, a match occurs.

• Multiplication operations — The detection of overflow and rounding modes equivalence is
enhanced to support a mixture of fixed-point and floating-point types.

For more information, see Develop a Code Replacement Library.

More information in code generation report summary
Additional fields in the code generation report Summary page provide information on your model
and the generated code, including:

R2017a

13-10

https://www.mathworks.com/help/releases/R2017a/ecoder/ug/cross-release-code-integration-workflow.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ref/crossreleaseimport.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/develop-a-code-replacement-library-sc.html

• Author
• Last Modified By
• Tasking Mode (except for exported models)
• System Target File
• Hardware Device Type
• Type of Build
• Memory Information (if you select parameter Code Generation > Report > Static code

metrics)
• Code Generation Advisor (if you run Code Generation Advisor as part of the build process, it

provides link to Code Generation Advisor Report)
• Code Reuse Exception (if exceptions exist, it links to Subsystem Report)

For more information on code generation reports, see Reports for Code Generation.

Code Interface Report: Includes entry-point function for code
generated from Reset Function block
Starting in R2017a, the Code Interface Report section of the Code Generation Report includes entry-
point function information for code generated from Reset Function blocks. For more information, see
Generate Code That Responds to Initialize, Reset, and Terminate Events and Analyze the Generated
Code Interface.

Shared utility memory section associated with subfunctions
Previously, you could not predict which memory section was associated with subfunctions in the
generated code. Simulink Coder generates these subfunctions for intrinsic math utilities, Stateflow
graphical functions, and MATLAB subfunctions. The possible associations included:

• The Shared utility memory section that you specify at the model level.
• The Execution memory section that you specify at the model level.
• The Execution memory section that you specify for one of the subsystems.

In R2017a, the memory section associated with these subfunctions is always the Shared utility
memory section that you specify at the model level.

Inline traceability for generated code
Model-to-code and code-to-model navigation are enhanced for Embedded Coder in R2017a. Inline
traceability is now fully supported:

• For MATLAB functions
• For Simulink blocks, with the exception of From Workspace and From File blocks

For more information on bidirectional traceability, see What Is Code Tracing?.

 Code Generation

13-11

https://www.mathworks.com/help/releases/R2017a/ecoder/ug/reports-for-code-generation.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/generate-code-that-handles-initialize-reset-and-terminate-events.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/analyze-the-generated-code-interface.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/analyze-the-generated-code-interface.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/what-is-code-tracing.html

Clear file section content from TLC file
The ability to reset a file section buffer in TLC was removed in R2015a. In R2017a, you can use the
TLC function LibClearFileSectionContents to clear a file section buffer so that you can reset it. This
function can be applied to the following sections:

• Banner
• Includes
• ModelTypesTypedefs
• Defines
• ModelTypesDefines
• IntrinsicTypes
• PrimitiveTypedefs
• UserTop
• Typedefs
• Enums
• Definitions
• ExternData
• ExternFcns
• FcnPrototypes
• Declarations
• Functions
• CompilerErrors
• CompilerWarnings
• Documentation
• UserBottom

Identifier case control with token decorators and custom text token
$U
$U Token for Specifying Text in Generated Identifiers

On the Code Generation > Symbols pane, you can use the $U token to specify text to include in the
generated identifiers. All the identifiers on the Symbols pane accept this new token.

You set the value of $U by specifying a character vector for the Custom token text parameter. The
Custom token text parameter is on the All Parameters tab in the Configuration Parameters dialog
box.

For more information, see Identifier Format Control and Custom token text.

Case Control with Token Decorators

On the Code Generation > Symbols pane, you can use new token decorators to control the case of
generated identifiers. For example, use this technique to apply camel case style.

R2017a

13-12

https://www.mathworks.com/help/releases/R2017a/ecoder/ug/specify-identifier-formats.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ref/custom-token-string.html

Place a decorator immediately after a token and enclose the decorator in square brackets []. For
example, you can set Global variables to $R[uL]$N$M, which capitalizes the first letter of the model
name and forces the remaining characters in the model name to lowercase.

For more information, see Control Case with Token Decorators.

Name change for AUTOSAR local temporary variables
Previously, for an AUTOSAR model, the name for local temporary variables in the generated code was
tmp. In R2017a, the name is tmp plus an identifier associated with the data access mode of the
variable, such as IRead or IWrite. For example, in R2017a, the name of a local temporary variable
with an ImplicitReceive data access mode is tmpIRead.

Additional checks against MISRA C:2012 guidelines in Code
Generation Advisor
In R2017a, when the Code Generation Advisor checks your model against the MISRA C:2012
guidelines objective, it executes these additional checks:

• Check for blocks not recommended for C/C++ production code deployment
• Check for unsupported block names
• Check usage of Assignment blocks
• Check for bitwise operations on signed integers
• Check for recursive function calls
• Check for equality and inequality operations on floating-point values
• Check for switch case expressions without a default case

Also for the MISRA C:2012 guidelines objective, the Code Generation Advisor considers these
additional parameters:

• Shared code placement (Simulink Coder) (UtilityFuncGeneration)
• System-generated identifiers (Simulink Coder) (InternalIdentifier)
• Use dynamic memory allocation for model initialization (Simulink Coder) (GenerateAllocFcn)

 Code Generation

13-13

https://www.mathworks.com/help/releases/R2017a/ecoder/ug/specify-identifier-formats.html#bvl7x9a-2
https://www.mathworks.com/help/releases/R2017a/ecoder/ref/embedded-codersimulink-coder-checks.html#btpdhq5-1
https://www.mathworks.com/help/releases/R2017a/ecoder/ref/embedded-codersimulink-coder-checks.html#bu20qj1-1
https://www.mathworks.com/help/releases/R2017a/ecoder/ref/embedded-codersimulink-coder-checks.html#bu20rna-1
https://www.mathworks.com/help/releases/R2017a/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2017a/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7lc-1
https://www.mathworks.com/help/releases/R2017a/ecoder/ref/embedded-codersimulink-coder-checks.html#buui66n-1
https://www.mathworks.com/help/releases/R2017a/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7dv-1
https://www.mathworks.com/help/releases/R2017a/rtw/ref/shared-code-placement.html
https://www.mathworks.com/help/releases/R2017a/rtw/ref/system-generated-identifiers.html
https://www.mathworks.com/help/releases/R2017a/rtw/ref/use-dynamic-memory-allocation-for-model-initialization.html

Deployment

TI Code Composer Studio (CCS): Generate projects for CCS versions 5
and 6 with Embedded Coder Target for TI C2000
When you build Simulink models for TI C2000 targets with CCS v5 or v6 toolchains, the Code
Composer Studio project is also generated. You can use this project for debugging the generated
code.

Customize generated makefiles for S-Functions
To customize generated makefiles for S-functions, create makecfg.m and
yourSFunction_makecfg.m files that use RTW.BuildInfo functions to specify:

• Additional source files and libraries
• Preprocessor macro definitions
• Compiler flags

For more information, see:

• Use makecfg to Customize Generated Makefiles for S-Functions
• Import Calls to External Code into Generated Code with Legacy Code Tool

Release notes and workflow overview documentation added to
AUTOSAR support package
R2017a adds release notes and workflow overview documentation to the Embedded Coder Support
Package for AUTOSAR Standard. The release notes describe AUTOSAR support changes from the
current release back through R2014b. Other help topics provide an overview of AUTOSAR workflows,
with links to the main AUTOSAR help.

After you install the support package, restart MATLAB, open help (for example, with the MATLAB doc
command), and go to the Hardware Support section. To access support package help and release
notes, click the support package name.

SPI and I2C blocks added to TI C2000 support package
This table lists the support for the new blocks.

Block Usage
SPI Receive Receive data via serial peripheral interface (SPI)

on target.
SPI Transmit Transmit data via serial peripheral interface (SPI)

to host.
I2C Receive Configure inter-integrated circuit (I2C) module to

receive data from I2C bus.

R2017a

13-14

https://www.mathworks.com/help/releases/R2017a/ecoder/ug/use-makecfg-to-customize-generated-makefiles-for-s-functions.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/legacy-code-tool-code-insertion.html
https://www.mathworks.com/help/releases/R2017a/ecoder/autosar-software-components.html

Block Usage
I2C Transmit Configure inter-integrated circuit (I2C) module to

transmit data to I2C bus.

CCS v3.3 IDE automation support for TI C2000 has been removed
The support for TI C2000 with idelink_ert.tlc as system target file has been removed. You can still use
the TI C2000 support by using the ert.tlc as the system target file.

Real-time multitasking profiling for TI C2000
You can use real-time execution profiling to verify whether generated code meets the real-time
performance requirements.

TCP and UDP blocks added to STMicroelectronics STM32F746G-
Discovery board
This table lists the support for these new blocks.

Block Usage
TCP Receive Receive TCP packets from another TCP host on

TCP/IP network
TCP Send Send TCP packets to another TCP host on TCP/IP

network
UDP Receive Receive UDP packets from another UDP host
UDP Send Send UDP packets to another UDP host

MATLAB Coder PIL with STMicroelectronics STM32F4-Discovery Board
In R2017a, you can use processor-in-the-loop (PIL) executions to verify generated code that you
deploy to target hardware using a MATLAB Coder workflow with an Embedded Coder license. By
using PIL with hardware, you can generate customized code for your hardware more effectively by
profiling speed and algorithm performance. You have the option of using the command-line workflow
or the MATLAB Coder app to configure your target hardware for PIL executions.

To use this feature, you must have MATLAB Coder and the support package installed.

This example shows how to use a PIL execution to verify generated code.

1 In the command window, select the hardware for PIL execution.

hw = coder.hardware('STM32F4-Discovery');
2 Add the hardware to the MATLAB Coder configuration object.

cfg = coder.config('lib', 'ecoder', true);
cfg.VerificationMode = 'PIL';
cfg.Hardware = hw;

3 As the stack space in the target hardware is limited, set the maximum stack space that the
generated code uses.

 Deployment

13-15

cfg.StackUsageMax = 512;
4 Generate PIL code for a function, computeFFT.

codegen -config cfg computeFFT -args {inp}

Here, computeFFT is a user-defined function. The inp parameter declares the data type and size
for input arguments to MATLAB function computeFFT. The codegen command generates code
into following folders:

• codegen\lib\computeFFT: Standalone code for computeFFT.
• codegen\lib\computeFFT\pil: PIL interface code for computeFFT.

Also, this step creates computeFFT_pil PIL MEX function in the current folder. This function
allows you to test the MATLAB code and the PIL MEX function and compare the results between
both.

5 Run the PIL MEX function to compare its behavior to that of the original MATLAB function and to
check for defects.

u1 = uint16(zeros(1,16));
y = computeFFT_pil(u1);

Terminate PIL execution with the following command.

clear computeFFT_pil;

Using the MATLAB Coder app workflow:

1 Configure the build type and hardware board. On the Generate Code page, in the Generate
dialog box:

• Set the Build Type to Static Library.
• Clear the Generate code only check box.
• Set the Hardware Board to STM32F4-Discovery.

2 You can modify the settings for your board. To modify the settings, click Settings > All
Settings.

Specify the maximum stack space required by the generated code in the Memory > Stack
usage max parameter. The stack space in the target hardware is limited, and a default value of
20000 is beyond the stack size available in the target hardware. A value of 512 is recommended.
You can specify the stack size based on the requirement of your application.

3 Click Hardware.
4 To generate the library, click Generate.
5 Set up for PIL execution. Click Verify Code to open the Verify Code dialog box.

Because the hardware board is not MATLAB Host Computer, the Verify Code dialog box is
configured for PIL execution.

In the Verify Code dialog box:

• Enter the name of the test file to use for PIL execution.
• Select Generated code.

R2017a

13-16

6 To start the PIL execution, click Run Generated Code.
7 To stop the PIL execution, click Stop.

For more information, on how to compile your code using the MATLAB Coder app, see Opening the
MATLAB Coder™ App (MATLAB Coder).

For more information, on how to use the Embedded Coder Support Package for STMicroelectronics
Discovery Boards for Processor-in-the-Loop (PIL) verification of MATLAB functions, see Processor in
the Loop Verification of MATLAB Functions (Embedded Coder Support Package for
STMicroelectronics Discovery Boards).

External Mode and PIL supported over TCP/IP by STMicroelectronics
STM32F746G-Discovery board
The STMicroelectronics STM32F746G-Discovery™ board supports PIL and external mode over
TCP/IP.

Install the Embedded Coder Support Package for STMicroelectronics Discovery Boards to use this
support.

To install or update this support package, perform the steps described in Install Support for
STMicroelectronics Discovery Boards (Embedded Coder Support Package for STMicroelectronics
Discovery Boards).

For more information, see Embedded Coder Support Package for STMicroelectronics Discovery
Boards.

Linux Support: Connect to ARM Cortex-M processor on Linux platform
You can use the Embedded Coder Support Package for ARM Cortex-M Processors on the Linux host
platform to generate and build ARM Cortex-M optimized code from models.

Note You cannot load and run code generated from a model on the Linux host platform using ARM
Cortex-M QEMU emulator.

ARM Cortex-R optimized code
Use the Embedded Coder Support Package for ARM Cortex-R Processors to build optimized
executables with automatic code replacement from the Hercules™ Safety MCU Cortex™-R4 CMSIS
DSP Library.

Develop a Target for ARM Cortex-R processors
The Embedded Coder Support Package for ARM Cortex-R Processors supports the development of
user specified Targets. Targets include deployment, scheduling, processor-in-the-loop, external mode,
code replacement, and profiler features.

 Deployment

13-17

https://www.mathworks.com/help/releases/R2017a/coder/gs/generating-c-code-from-matlab-code-using-the-matlab-coder-project-interface.html#bup5oqk
https://www.mathworks.com/help/releases/R2017a/coder/gs/generating-c-code-from-matlab-code-using-the-matlab-coder-project-interface.html#bup5oqk
https://www.mathworks.com/help/releases/R2017a/supportpkg/stmicroelectronicsstm32f4discovery/examples/processor-in-the-loop-verification-of-matlab-functions.html
https://www.mathworks.com/help/releases/R2017a/supportpkg/stmicroelectronicsstm32f4discovery/examples/processor-in-the-loop-verification-of-matlab-functions.html
https://www.mathworks.com/help/releases/R2017a/supportpkg/stmicroelectronicsstm32f4discovery/ug/install-support-for-discovery-board-processors.html
https://www.mathworks.com/help/releases/R2017a/supportpkg/stmicroelectronicsstm32f4discovery/ug/install-support-for-discovery-board-processors.html
https://www.mathworks.com/help/releases/R2017a/supportpkg/stmicroelectronicsstm32f4discovery/index.html
https://www.mathworks.com/help/releases/R2017a/supportpkg/stmicroelectronicsstm32f4discovery/index.html
https://www.ti.com/tool/hercules-dsplib
https://www.ti.com/tool/hercules-dsplib

Support for Wind River VxWorks RTOS will be removed
Embedded Coder support for Wind River VxWorks RTOS will be removed in a future release. You will
still be able to use Embedded Coder for VxWorks RTOS, but will need to manually integrate the
generated code with hand written scheduler and drivers.

R2017a

13-18

Performance

Data Copy Reduction: Generate fewer data copies and use less RAM
for buses, data stores, and model blocks
In R2017a, the generated code contains less temporary variables and associated data copies for
modeling patterns involving Bus Assignment, Data Store Read, Data Store Write, and Model blocks.
These optimizations conserve RAM usage and improve code execution speed. The following examples
highlight these improvements:

• “Data copy reduction for Bus Assignment block” on page 13-19
• “Data copy reduction for Data Store Read and Data Store Write blocks” on page 13-21
• “More efficient code for Model blocks” on page 13-23

Data copy reduction for Bus Assignment block

Previously, for a model that contained a Bus Assignment block, there was an extra temporary variable
and associated data copy in the generated code. In R2017a, the code generator can remove this data
copy. This optimization increases code execution speed and conserves RAM consumption.

For example, in bus_assignoptim, a bus signal containing six elements feeds into a Bus Assignment
block and a Bus Selector block. The Bus Assignment block assigns new values to the bus element
a1_real_array. This bus signal feeds into Out1.

In R2016b, the code generator produced this code in the bus_assignoptim_step function:

/* Model step function */
void bus_assignoptim_step(void)
{
 real_T rtb_Assignment[36];
 int32_T i;

 /* Assignment: '<Root>/Assignment' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 * Product: '<Root>/Product'
 * Selector: '<Root>/Selector'
 * Sum: '<Root>/Sum1'
 */
 for (i = 0; i < 36; i++) {
 rtb_Assignment[i] = bus_assignoptim_U.In1.a1_real_array[i];
 }

 for (i = 0; i < 2; i++) {

 Performance

13-19

 rtb_Assignment[(int32_T)(i + 22)] = (bus_assignoptim_U.In1.a1_real_array
 [(int32_T)(i + 22)] + bus_assignoptim_U.In1.a1_num) *
 bus_assignoptim_U.In2;
 }

 /* End of Assignment: '<Root>/Assignment' */

 /* BusAssignment: '<Root>/Bus Assignment' incorporates:
 * Inport: '<Root>/In1'
 */
 bus_assignoptim_Y.Out = bus_assignoptim_U.In1;
 for (i = 0; i < 36; i++) {
 bus_assignoptim_Y.Out.a1_real_array[i] = rtb_Assignment[i];
 }

 /* End of BusAssignment: '<Root>/Bus Assignment' */
}

The generated code contains the temporary array rtb_Assignment1 for holding data before this
data is assigned to bus_assignoptim_Y.Out2.dbl_real_array.

In R2017a, the bus_assignoptim_step function contains this code:

/* Model step function */
void bus_assignoptim_step(void)
{
 int32_T i;

 /* SignalConversion: '<Root>/TmpBusAssignmentBufferAtBus...
 * Inport: '<Root>/In1'
 */
 bus_assignoptim_Y.Out = bus_assignoptim_U.In1;

 /* Assignment: '<Root>/Assignment' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 * Product: '<Root>/Product'
 * Selector: '<Root>/Selector'
 * Sum: '<Root>/Sum1'
 */
 for (i = 0; i < 36; i++) {
 bus_assignoptim_Y.Out.a1_real_array[i] =
 bus_assignoptim_U.In1.a1_real_array[i];
 }

 for (i = 0; i < 2; i++) {
 bus_assignoptim_Y.Out.a1_real_array[(int32_T)(i + 22)] =
 (bus_assignoptim_U.In1.a1_real_array[(int32_T)(i + 22)] +
 bus_assignoptim_U.In1.a1_num) * bus_assignoptim_U.In2;
 }

 /* End of Assignment: '<Root>/Assignment' */
}

The generated code does not contain the temporary array rtb_Assignment1 for holding data. The
generated code directly assigns the data to bus_assignoptim_Y.Out2.dbl_real_array.

R2017a

13-20

Note You can disable this optimization by clearing the Perform inplace updates for Bus
Assignment blocks parameter. In the Configuration Parameters dialog box, this parameter is on the
All Parameters tab.

Data copy reduction for Data Store Read and Data Store Write blocks

In R2016b, the generated code contained an extra buffer when reading from a Data Store Read block
or when writing to a Data Store Write block. In R2017a, the code generator can eliminate this extra
data copy. This optimization conserves RAM consumption and improves code execution speed.

For example, in the model rtwdemo_optimizedatastorebuffers, the Function caller
UpdateFunc calls the Simulink Function DefineUpdateFunc. The Data Store Read block DSR reads
from mem. The Data Store Write block DSW writes to mem.

In R2016b, the code generator produced this code:

/* Model step function */
void rtwdemo_optimizedatastorebuffers_step(void)
{
 real_T rtb_DSR_last;
 real_T rtb_Optimize1_o1;
 real_T rtb_Optimize1_o2;

 /* DataStoreRead: '<Root>/DSR' */
 rtb_DSR_last = mem.last;

 /* Switch: '<Root>/Switch' incorporates:
 * Constant: '<Root>/Constant'
 * DataStoreRead: '<Root>/DSR'
 * Inport: '<Root>/Clear'
 */
 if (rtU.Clear) {
 rtb_Optimize1_o1 = 0.0;

 Performance

13-21

 } else {
 rtb_Optimize1_o1 = mem.max;
 }

 /* End of Switch: '<Root>/Switch' */

 /* FunctionCaller: '<Root>/Optimize1' incorporates:
 * Inport: '<Root>/DataNew'
 */
 UpdateFunc(rtb_Optimize1_o1, rtU.DataNew, &rtb_Optimize1_o1, &rtb_Optimize1_o2);

 /* DataStoreWrite: '<Root>/DSW' */
 mem.last = rtb_Optimize1_o1;
 mem.max = rtb_Optimize1_o2;

 /* Outport: '<Root>/Delta' incorporates:
 * Inport: '<Root>/DataNew'
 * Sum: '<Root>/Sum'
 */
 rtY.Delta = rtU.DataNew - rtb_DSR_last;
}

The generated code contained data copies for the Data Store Read and Data Store Write blocks,
respectively.

In R2017a, the code generator produces this code:

/* Model step function */
void rtwdemo_optimizedatastorebuffers_step(void)
{
 real_T rtb_DSR_last;
 real_T tmp;

 /* DataStoreRead: '<Root>/DSR' */
 rtb_DSR_last = mem.last;

 /* Switch: '<Root>/Switch' incorporates:
 * Constant: '<Root>/Constant'
 * DataStoreRead: '<Root>/DSR'
 * Inport: '<Root>/Clear'
 */
 if (rtU.Clear) {
 tmp = 0.0;
 } else {
 tmp = mem.max;
 }

 /* End of Switch: '<Root>/Switch' */

 /* FunctionCaller: '<Root>/Optimize1' incorporates:
 * Inport: '<Root>/DataNew'
 */
 UpdateFunc(tmp, rtU.DataNew, mem.last, mem.max);

 /* Outport: '<Root>/Delta' incorporates:
 * Inport: '<Root>/DataNew'
 * Sum: '<Root>/Sum'
 */

R2017a

13-22

 rtY.Delta = rtU.DataNew - rtb_DSR_last;
}

The data copy for the Data Store Write block is not in the generated code. The code contains the data
copy for the Data Store Read block because the Sum block executes after the Data Store Write block.
The generated code contains the variable rtb_DSR_last to hold the output of the Sum block.
Therefore, the Sum block gets the values that Optimize1 calculates at the start of the time step
rather than those values at the next time step. If the priority of the Sum block is lower than
Optimize1, the code generator can remove the data copy for the Data Store Read block.

Some other cases in which the code generator might not eliminate data copies are:

• A Simulink Function internally writes to the Data Store Memory block.
• The Data Store Read or Data Store Write blocks select elements of an array from the Data Store

Memory block.
• The Data Store Memory block has a custom storage class.
• The Data Store Read and Data Store Write blocks occur on the same block unless that block is a

Bus Assignment block or an Assignment block.

Note You can disable this optimization by setting the Reuse buffers for Data Store Read and
Data Store Write blocks parameter to off. In the Configuration Parameters dialog box, this
parameter is on the All Parameters tab.

More efficient code for Model blocks

In R2017a, the generated code contains additional optimizations for modeling patterns involving
Model blocks. These optimizations include turning global variables into local variables, buffer
elimination, data copy reduction, and expression folding. The optimizations improve ROM and RAM
consumption and increase code execution speed.

For example, the model model_ref contains the Model block SimSubE.

 Performance

13-23

In R2016b, the code generator produced this code:

/* Model step function */
void model_ref_step(void)
{
 /* local block i/o variables */
 uint16_T u16_Model;
 uint16_T u16_Out_m;
 uint16_T u16_Out;
 if (model_ref_U.In3 > 30U) {
 u16_Out_m = model_ref_U.In2 + /*MW:OvSatOk*/ 5U;
 if (u16_Out_m < model_ref_U.In2) {
 u16_Out_m = MAX_uint16_T;
 }
 } else {
 u16_Out_m = model_ref_U.In2 + /*MW:OvSatOk*/ 12U;
 if (u16_Out_m < model_ref_U.In2) {
 u16_Out_m = MAX_uint16_T;
 }
 }

 if (model_ref_U.In2 > 20U) {
 u16_Out = model_ref_U.In2 + model_ref_U.In3;
 } else {
 u16_Out = model_ref_U.In2 + /*MW:OvSatOk*/ 2U;
 if (u16_Out < model_ref_U.In2) {
 u16_Out = MAX_uint16_T;
 }
 }

R2017a

13-24

 SimSubE(&model_ref_U.In2, &model_ref_U.In3, &u16_Model);
 switch (model_ref_U.In1) {
 case 0:
 model_ref_Y.Out1 = (model_ref_U.In2 + model_ref_U.In3) * 5U;
 break;

 case 1:
 model_ref_Y.Out1 = u16_Out_m;
 break;

 case 2:
 model_ref_Y.Out1 = u16_Out;
 break;

 default:
 model_ref_Y.Out1 = u16_Model;
 break;
 }
}

In the model_ref_step function, there are three local variables. The if-else statements are above
the switch-case statements, so they are unconditionally executed.

In R2017a, the code generator produces this code:

/* Model step function */
void model_ref_step(void)
{
 /* local block i/o variables */
 uint16_T u16_Model;
 uint16_T u16_qY;
 SimSubE(&model_ref_U.In2, &model_ref_U.In3, &u16_Model);
 switch (model_ref_U.In1) {
 case 0:
 model_ref_Y.Out1 = (model_ref_U.In2 + model_ref_U.In3) * 5U;
 break;

 case 1:
 if (model_ref_U.In3 > 30U) {
 u16_qY = model_ref_U.In2 + /*MW:OvSatOk*/ 5U;
 if (u16_qY < model_ref_U.In2) {
 u16_qY = MAX_uint16_T;
 }

 model_ref_Y.Out1 = u16_qY;
 } else {
 u16_qY = model_ref_U.In2 + /*MW:OvSatOk*/ 12U;
 if (u16_qY < model_ref_U.In2) {
 u16_qY = MAX_uint16_T;
 }

 model_ref_Y.Out1 = u16_qY;
 }
 break;

 case 2:
 if (model_ref_U.In2 > 20U) {

 Performance

13-25

 model_ref_Y.Out1 = model_ref_U.In2 + model_ref_U.In3;
 } else {
 u16_qY = model_ref_U.In2 + /*MW:OvSatOk*/ 2U;
 if (u16_qY < model_ref_U.In2) {
 u16_qY = MAX_uint16_T;
 }

 model_ref_Y.Out1 = u16_qY;
 }
 break;

 default:
 model_ref_Y.Out1 = u16_Model;
 break;
 }
}

In the model_ref_step function, there are two local variables instead of three local variables which
conserves stack space. Each switch-case statement includes the corresponding if-else
statement. Including the if-else statements in the switch-case statements increases code
execution speed because each if-else statement is only executed if the corresponding case
statement is true.

Code Efficiency: Improve loop fusion for Sum of Elements blocks and
generate less code for temporal logic in Stateflow
Loop fusion for Sum of Elements blocks

In R2017a, the code generator can fuse more for loops involving Sum of Elements blocks. This
optimization conserves ROM consumption and improves code execution speed.

For example, the model loop_fuse contains a Sum of Elements block inside two nested For Each
subsystems. The diagram shows the model loop_fuse, the For Each Subsystems and signal
dimensions.

R2017a

13-26

In R2016b, the code generator produced this code:

 void loop_fuse_step(void)
{
 int32_T ForEach_itr;
 int32_T ForEach_itr_d;
 real_T tmp;
 real_T rtb_Abs[64];
 int32_T i;
 for (ForEach_itr = 0; ForEach_itr < 500; ForEach_itr++) {
 for (ForEach_itr_d = 0; ForEach_itr_d < 600; ForEach_itr_d++) {
 for (i = 0; i < 64; i++) {
 rtb_Abs[i] = fabs(loop_fuse_U.In1[500 * i + ForEach_itr] -
 loop_fuse_U.In2[600 * i + ForEach_itr_d]);
 }

 tmp = rtb_Abs[0];
 for (i = 0; i < 63; i++) {
 tmp += rtb_Abs[i + 1];
 }

 loop_fuse_B.Out1_CoreSubsysCanOut[ForEach_itr_d] = tmp;
 }

 for (i = 0; i < 600; i++) {
 loop_fuse_Y.Out1[i + 600 * ForEach_itr] =
 loop_fuse_B.Out1_CoreSubsysCanOut[i];
 }

 Performance

13-27

 }
}

The generated code contained separate for loops for the Add and Abs blocks and the Sum of
Elements block.

In R2017a, the code generator produces this code:

void loop_fuse_step(void)
{
 int32_T ForEach_itr;
 int32_T ForEach_itr_d;
 real_T tmp;
 int32_T i;
 for (ForEach_itr = 0; ForEach_itr < 500; ForEach_itr++) {
 for (ForEach_itr_d = 0; ForEach_itr_d < 600; ForEach_itr_d++) {
 tmp = 0.0;
 for (i = 0; i < 64; i++) {
 tmp += fabs(loop_fuse_U.In1[500 * i + ForEach_itr] - loop_fuse_U.In2[600
 * i + ForEach_itr_d]);
 }

 loop_fuse_B.Out1_CoreSubsysCanOut[ForEach_itr_d] = tmp;
 }

 for (i = 0; i < 600; i++) {
 loop_fuse_Y.Out1[i + 600 * ForEach_itr] =
 loop_fuse_B.Out1_CoreSubsysCanOut[i];
 }
 }
}

The generated code contains one for loop for the Add and Abs blocks and the Sum of Elements
block.

More efficient code for temporal logic in Stateflow

For some absolute-time constructs using fixed-point parameters, Stateflow generates more efficient
code that does not contain floating-point operations.

For example, consider after(DELAY, sec) in a chart with a sample time of the chart < 1 second.
DELAY is a fixed-point parameter. Previously the code generator created the following code:

counter >= (uint32_T)ceil((real_T)DELAY * 0.05 / 0.1 - 1e-9)

.

Now, it generates:

(counter >> 1) >= DELAY

This code contains fewer operations and does not include floating-point operations.

Data copy reduction for Merge blocks
In R2017a, the code generator is improved to better reuse buffers around Merge blocks. This
optimization conserves RAM and ROM consumption and increases code execution speed.

R2017a

13-28

For example, the model cond_reuse contains the virtual subsystem Subsystem1. Subsystem1
contains an if-else conditional structure that connects to a Merge block.

In R2016b, the code generator produced this code:

B_cond_reuse_T cond_reuse_B;
DW_cond_reuse_T cond_reuse_DW;
ExtU_cond_reuse_T cond_reuse_U;
ExtY_cond_reuse_T cond_reuse_Y;
RT_MODEL_cond_reuse_T cond_reuse_M_;
RT_MODEL_cond_reuse_T *const cond_reuse_M = &cond_reuse_M_;
void cond_reuse_Subsystem(void)
{
 int32_T i;
 for (i = 0; i < 64; i++) {
 cond_reuse_Y.y[i] = -3.0 * cond_reuse_B.Merge1[i];
 }
}
void cond_reuse_step(void)
{
 int32_T rtb_PulseGenerator;
 real_T rtb_Add[64];
 int32_T i;
 rtb_PulseGenerator = ((cond_reuse_DW.clockTickCounter < 1) &&
 (cond_reuse_DW.clockTickCounter >= 0));
 if (cond_reuse_DW.clockTickCounter >= 19) {
 cond_reuse_DW.clockTickCounter = 0;
 } else {
 cond_reuse_DW.clockTickCounter++;
 }

 Performance

13-29

 for (i = 0; i < 64; i++) {
 rtb_Add[i] = (real_T)rtb_PulseGenerator + cond_reuse_U.u1[i];
 }

 if (cond_reuse_U.u1[1] > 0.0) {
 memcpy(&cond_reuse_B.Merge1[0], &rtb_Add[0], sizeof(real_T) << 6U);
 } else {
 for (i = 0; i < 64; i++) {
 cond_reuse_B.Merge1[i] = 22.0 * rtb_Add[i] * -3.0;
 }
 }

 cond_reuse_Subsystem();
}

The generated code contained full data copies to the temporary arrays rtb_Add and
cond_reuse_B.Merge1.

In R2017a, the code generator produces this code:

DW_cond_reuse_T cond_reuse_DW;
ExtU_cond_reuse_T cond_reuse_U;
ExtY_cond_reuse_T cond_reuse_Y;
RT_MODEL_cond_reuse_T cond_reuse_M_;
RT_MODEL_cond_reuse_T *const cond_reuse_M = &cond_reuse_M_;
void cond_reuse_Subsystem(void)
{
 int32_T i;
 for (i = 0; i < 64; i++) {
 cond_reuse_Y.y[i] *= -3.0;
 }
}
void cond_reuse_step(void)
{
 int32_T rtb_PulseGenerator;
 int32_T i;
 rtb_PulseGenerator = ((cond_reuse_DW.clockTickCounter < 1) &&
 (cond_reuse_DW.clockTickCounter >= 0));
 if (cond_reuse_DW.clockTickCounter >= 19) {
 cond_reuse_DW.clockTickCounter = 0;
 } else {
 cond_reuse_DW.clockTickCounter++;
 }

 if (cond_reuse_U.u1[1] > 0.0) {
 for (i = 0; i < 64; i++) {
 cond_reuse_Y.y[i] = (real_T)rtb_PulseGenerator + cond_reuse_U.u1[i];
 }
 } else {
 for (i = 0; i < 64; i++) {
 cond_reuse_Y.y[i] = ((real_T)rtb_PulseGenerator + cond_reuse_U.u1[i]) *
 22.0 * -3.0;
 }
 }

 cond_reuse_Subsystem();
}

R2017a

13-30

The temporary arrays rtb_Add and cond_reuse_B.Merge1 and their associated data copies are not
in the generated code. For the preceding model, you can also specify buffer reuse using
Simulink.Signal objects. See Specify Buffer Reuse for Multiple Signals in a Path.

More instances of buffer reuse for blocks and subsystems in a chain
In R2017a, the code generator can automatically reuse buffers for more modeling patterns involving
blocks and subsystems in a chain. Specifically, the code generator can reuse buffers for these
modeling patterns:

• A chain of blocks that includes reusable and nonreusable subsystems
• A chain of reusable subsystems
• A chain of blocks that includes a root-level Outport block
• A chain of blocks that includes a mixture of signals with auto and reusable custom storage class
specifications. However, the reusable custom storage class specification must be on a signal that
leaves a root-level Inport block or enters a root-level Outport block.

Note For buffer reuse to occur for these modeling patterns, in the Configuration Parameters dialog
box, on the All Parameters tab, set the Optimize global data access parameter to Use global
to hold temporary results. For models containing reusable subsystems, on the Optimization
> Signals and Parameters tab, set the Pass reusable subsystem outputs as parameter to
Individual arguments.

These optimizations reduce data copies in the generated code thereby conserving RAM and ROM
consumption and improving code execution speed.

Buffer reuse for a chain of reusable and nonreusable subsystems

The code generator can now reuse buffers for a chain of reusable and nonreusable subsystems. This
chain can include a root-level Outport block. It can also contain a mixture of signals with auto and
reusable custom storage class specifications. However, the reusable custom storage class
specification must be on a signal that leaves a root-level Inport block or enters a root-level Outport
block.

For example, the model Chainbuffer contains the reusable subsystems Subsystem, Subsystem1,
and Subsystem2. For a reusable subsystem, the generated code is a function with arguments.

The model also contains the nonreusable subsystem Subsystem3. For Subsystem3, the Function
interface parameter has a value of void-void. The signal leaving u and entering Out1 resolves to
the Simulink.signal X. X has a reusable custom storage class.

 Performance

13-31

https://www.mathworks.com/help/releases/R2017a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

In R2016b, the code generator produced this code.

real_T X[64];
B_Chainbuffer_T Chainbuffer_B;
...
void Chainbuffer_Subsystem3(void)
{
 int32_T i;
 for (i = 0; i < 64; i++) {
 X[i] = 22.0 * Chainbuffer_B.Gain[i] * 22.0;
 }
}
void Chainbuffer_step(void)
{
 int32_T rtb_PulseGenerator;
 real_T rtb_Gain1_o[64];
 real_T rtb_Gain1_a[64];
 rtb_PulseGenerator = ((Chainbuffer_DW.clockTickCounter < 1) &&
 (Chainbuffer_DW.clockTickCounter >= 0));
 if (Chainbuffer_DW.clockTickCounter >= 19) {
 Chainbuffer_DW.clockTickCounter = 0;
 } else {
 Chainbuffer_DW.clockTickCounter++;
 }

 Chainbuffer_Subsystem((&(X[0])), (real_T)rtb_PulseGenerator, rtb_Gain1_o);
 Chainbuffer_Subsystem1(rtb_Gain1_o, rtb_Gain1_a);
 Chainbuffer_Subsystem1(rtb_Gain1_a, Chainbuffer_B.Gain);
 for (rtb_PulseGenerator = 0; rtb_PulseGenerator < 64; rtb_PulseGenerator++) {
 Chainbuffer_B.Gain[rtb_PulseGenerator] *= 22.0;
 }

 Chainbuffer_Subsystem3();
}

The generated code contained the global buffer Chainbuffer_B.Gain and the local buffers
rtb_Gain1_o and rtb_Gain1_a for holding the inputs and outputs of Subsystem, Subsystem1,
Subsystem2, and Subsystem3.

In R2017a, the code generator produces this code.

real_T X[64];
...
void Chainbuffer_Subsystem3(void)
{
 int32_T i;
 for (i = 0; i < 64; i++) {
 X[i] = 22.0 * X[i] * 22.0;
 }
}
void Chainbuffer_step(void)
{
 int32_T rtb_PulseGenerator;
 rtb_PulseGenerator = ((Chainbuffer_DW.clockTickCounter < 1) &&
 (Chainbuffer_DW.clockTickCounter >= 0));
 if (Chainbuffer_DW.clockTickCounter >= 19) {
 Chainbuffer_DW.clockTickCounter = 0;
 } else {

R2017a

13-32

 Chainbuffer_DW.clockTickCounter++;
 }

 Chainbuffer_Subsystem((&(X[0])), (real_T)rtb_PulseGenerator, (&(X[0])));
 Chainbuffer_Subsystem1((&(X[0])), (&(X[0])));
 Chainbuffer_Subsystem1((&(X[0])), (&(X[0])));
 for (rtb_PulseGenerator = 0; rtb_PulseGenerator < 64; rtb_PulseGenerator++) {
 X[rtb_PulseGenerator] = 22.0 * X[rtb_PulseGenerator];
 }

 Chainbuffer_Subsystem3();
}

The generated code contains the global buffer X for holding the inputs and outputs of Subsystem,
Subsystem1, Subsystem2, and Subsystem3.

Buffer reuse for a chain of reusable subsystems

The code generator can now reuse the arguments of reusable subsystems in a chain.

For example, the model subsreuse contains four subsystems. For the four subsystems, in the
Subsystem Block Parameters dialog box, on the Code Generation tab, the Function packaging
parameter is set to Reusable function. The input and output signals resolve to the
Simulink.Signal X. This signal has a Storage class of Reusable (Custom).

In R2016b, the code generator produced this code:

void subsreuse_step(void)
{
 real_T rtb_Gain1[64];
 real_T rtb_Gain2[64];
 subsreuse_Subsystem1((&(X[0])), rtb_Gain1, (P_Subsystem1_subsreuse_T *)
 &subsreuse_P.Subsystem1);
 subsreuse_Subsystem2(rtb_Gain1, rtb_Gain2, (P_Subsystem2_subsreuse_T *)
 &subsreuse_P.Subsystem2);
 subsreuse_Subsystem3(rtb_Gain2, rtb_Gain1, (P_Subsystem3_subsreuse_T *)
 &subsreuse_P.Subsystem3);
 subsreuse_Subsystem4(rtb_Gain1, (&(X[0])), (P_Subsystem4_subsreuse_T *)
 &subsreuse_P.Subsystem4);
}}

The code contained two temporary variables, rtb_Gain1 and rtb_Gain2, for holding the input and
output of each function.

In R2017a, the code generator produces this code:

void subsreuse_step(void)
{

 Performance

13-33

 subsreuse_Subsystem1((&(X[0])), (&(X[0])), &subsreuse_P.Subsystem1);
 subsreuse_Subsystem2((&(X[0])), (&(X[0])), &subsreuse_P.Subsystem2);
 subsreuse_Subsystem3((&(X[0])), (&(X[0])), &subsreuse_P.Subsystem3);
 subsreuse_Subsystem4((&(X[0])), (&(X[0])), &subsreuse_P.Subsystem4);
}

The generated code uses one global variable X for the input and output of each function.

Improved buffer reuse due to changes in block execution order
In R2016b, if you specified a signal for reuse, the code generator changed the block operation order
so that buffer reuse occurred.

In R2017a, even if you do not specify a signal for reuse, the code generator can change the block
operation order so that buffer reuse can occur. If the generated code contains extra buffers, you can
try to eliminate them by setting the Optimize block operation order in the generated code
parameter to Improve Execution Speed. In the Configuration Parameters dialog box, this
parameter is on the All Parameters tab. Reusing buffers conserves RAM and ROM consumption and
improves code execution speed.

For example, for the model rtwdemo_optimizeblockorder, the red numbers that follow the zeroes
and colons represent the block execution order in R2016b. The Matrix Concatenate block executes
after the Subtract block. The Sum of Elements block executes after the Product block. This block
execution order prevents the same variables from being reused as the input and output to the
Subtract and Product blocks in the generated code. As a result, there are two extra temporary arrays,
two extra variables, and associated data copies for holding the inputs to these blocks.

In R2017a, the code generator can reorder the block execution order so that the Matrix Concatenate
block executes before the Subtract block and the Sum of Elements block executes before the Product
block. Reordering block operations eliminates the two temporary arrays, the two variables, and their
associated data copies from the generated code. The blocks can use the same variable for the input
and output.

R2017a

13-34

Note To implement buffer reuse, the code generator does not violate user-specified block priorities.

For more information, seeRemove Data Copies by Reordering Block Operations in the Generated
Code.

More efficient code for Bus Creator blocks
In R2017a, the generated code contains additional optimizations for modeling patterns involving Bus
Creator blocks. These optimizations include turning global variables into local variables, buffer
elimination, data copy reduction, and expression folding. The optimizations improve ROM and RAM
consumption and increase code execution speed.

For example, the model bus_creator_ex contains two Bus Creator blocks.

In R2016b, the bus_creator.c file contained this code:

void bus_creator_ex_step(void)
{
 Ifx_DPResultU16_Type dpResult;
 Ifx_DPResultU16_Type dpResult_0;
 Ifx_DPSearch_u8(&dpResult,
 bus_creator_ex_ConstP.Vector_Value[bus_creator_ex_DW.Output_DSTATE],
 2U, (*Rte_CData_BP1_SlopeBiasScaling_0_8_0p5_0()));
 bus_creator_ex_B.Ifx_DPResultU16_Type_h.Index = dpResult.Index;
 bus_creator_ex_B.Ifx_DPResultU16_Type_h.Ratio = dpResult.Ratio;
 dpResult_0.Index = bus_creator_ex_B.Ifx_DPResultU16_Type_h.Index;
 dpResult_0.Ratio = bus_creator_ex_B.Ifx_DPResultU16_Type_h.Ratio;

 Performance

13-35

https://www.mathworks.com/help/releases/R2017a/ecoder/ug/remove-data-copies-by-reordering-block-operations-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/remove-data-copies-by-reordering-block-operations-in-the-generated-code.html

 bus_creator_ex_Y.Out6 = Ifx_IpoCur_u8(&dpResult_0,
 (*Rte_CData_TB1_SlopeBiasScaling_0_8_0p5_0()));
 bus_creator_ex_DW.Output_DSTATE++;
}

The code contained two local variables dpResult and dpResult_0 for holding values prior to and
from the Bus Creator blocks.

In R2017a, the bus_creator.c file contains this code:

void bus_creator_ex_step(void)
{
 Ifx_DPResultU16_Type dpResult;
 Ifx_DPSearch_u8(&dpResult,
 bus_creator_ex_ConstP.Vector_Value[bus_creator_ex_DW.Output_DSTATE],
 2U, (*Rte_CData_BP1_SlopeBiasScaling_0_8_0p5_0()));
 bus_creator_ex_B.Ifx_DPResultU16_Type_h.Index = dpResult.Index;
 bus_creator_ex_B.Ifx_DPResultU16_Type_h.Ratio = dpResult.Ratio;
 dpResult.Index = bus_creator_ex_B.Ifx_DPResultU16_Type_h.Index;
 dpResult.Ratio = bus_creator_ex_B.Ifx_DPResultU16_Type_h.Ratio;
 bus_creator_ex_Y.Out6 = Ifx_IpoCur_u8(&dpResult,
 (*Rte_CData_TB1_SlopeBiasScaling_0_8_0p5_0()));
 bus_creator_ex_DW.Output_DSTATE++;
}

The generated code contains one less local variable.

Buffer reuse for Variant Source blocks
In R2017a, the code generator can reuse the buffer for Variant Source blocks.

For example, the model VariantMergeReuse contains two Variant Source blocks.

In R2016b, the code generator produced this code in the VariantMergeReuse step function:

#if V == 1 || V == 2

 real_T rtb_VariantMerge_For_Variant_So;

R2017a

13-36

#endif /* V == 1 || V == 2 */

#if (V == 1 && W == 1) || (V == 2 && W == 1) || W == 2

 real_T rtb_VariantMerge_For_Variant__k;

#endif

The code contained two buffers for holding intermediate values.

In R2017a, the code generator produces this code in the VariantMergeReuse step function:

#if V == 1 || V == 2 || W == 2

 real_T rtb_VariantMerge_For_Variant_So;

#endif /* V == 1 || V == 2 || W == 2 */

The code contains one buffer for holding intermediate values.

 Performance

13-37

Verification

SIL and PIL Testing: Log signals inside exported functions and stream
signals to Simulation Data Inspector during simulation
To examine internal signals of a model component, you can enable internal signal logging for a top-
model or Model block software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation. In R2017a,
you can:

• Log signals inside export-function models.
• Stream the logged signals to the Simulation Data Inspector, where you can observe the signals

during the SIL or PIL simulation.

For more information, see:

• https://www.mathworks.com/help/releases/R2017a/ecoder/ug/configuring-a-sil-or-pil-
simulation.html#br74o58-1

• Export-Function Models (Simulink)
• General SIL and PIL Limitations

Verification of PIL target connectivity configuration
The piltest function provides additional tests for verifying your custom processor-in-the-loop (PIL)
target connectivity configuration.

'Testpoint' Argument Value Description
'verifyTopModelSILPILSwitching' New in R2017a.

For a Simulink top model, the function:

• Verifies that production code is not regenerated when the
simulation mode switches between software-in-the-loop (SIL)
and PIL. The function compares timestamps of the production
code used in each mode.

• Compares results from SIL and PIL mode simulations to
results from a normal mode simulation.

R2017a

13-38

https://www.mathworks.com/help/releases/R2017a/ecoder/ug/configuring-a-sil-or-pil-simulation.html#br74o58-1
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/configuring-a-sil-or-pil-simulation.html#br74o58-1
https://www.mathworks.com/help/releases/R2017a/simulink/ug/export-function-models.html
https://www.mathworks.com/help/releases/R2017a/ecoder/ug/sil-and-pil-simulation-limitations.html#bu2eakl
https://www.mathworks.com/help/releases/R2017a/ecoder/ref/piltest.html

'Testpoint' Argument Value Description
'verifyModelBlockSILPILSwitching' New in R2017a.

For a Simulink Model block, the function:

• Verifies that production code is not regenerated when the
Model block simulation mode switches between SIL and PIL.
The function compares timestamps of the production code
used in each mode.

• Runs simulation loops with the Model block in SIL and PIL
modes. The function varies the Code interface Model block
parameter, setting this parameter to Top model or Model
reference.

The function compares results from SIL and PIL mode
simulations to results from a normal mode simulation.

'verifyModelBlock' Updated in R2017a.

The function runs simulation loops with a Simulink Model block
in PIL mode. The function varies the Configuration Parameters
> Code Generation > Language parameter, setting this
parameter to C or C++. For C++, the function sets Code
Generation > Interface > Code interface packaging to C++
class.

Previously, Language was set to C .

For more information, see Create PIL Target Connectivity Configuration.

 Verification

13-39

https://www.mathworks.com/help/releases/R2017a/ecoder/ug/create-pil-target-connectivity-configuration.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2017a

13-40

https://www.mathworks.com/support/bugreports/

R2016b

Version: 6.11

New Features

Bug Fixes

Compatibility Considerations

14

Code Generation from MATLAB Code

Static code metrics report for C++ code
In R2016b, when you generate standalone C++ code, the HTML code generation report includes a
static code metrics report. See Generate a Static Code Metrics Report for MATLAB Code and Static
Code Metrics.

Verification of size_t and ptrdiff_t hardware settings
In the project build settings, on the Hardware tab, R2016b provides values for the ANSI® C data
types size_t and ptrdiff_t. At the start of a processor-in-the-loop (PIL) execution, the software
verifies the values with reference to the target hardware.

Verification of PIL target connectivity configuration
Through the piltest function, you can use a test suite to verify your custom processor-in-the-loop
(PIL) target connectivity configuration. Verify the target connectivity configuration early and
independently of your algorithm development and code generation.

For more information, see:

• Create PIL Target Connectivity Configuration
• PIL Execution of Code Generated for a Kalman Estimator

Optimization for array indexing in loops
In R2016b, if you use Embedded Coder to generate C/C++ code from MATLAB code, you can enable
an optimization that simplifies array indexing in loops in the generated code. When possible, for array
indices in loops, this optimization replaces multiply operations with add operations. Multiply
operations can be expensive. This optimization, referred to as strength reduction, is useful when the
C/C++ compiler on the target platform does not optimize the array indexing.

Here is code generated without the optimization:

for (i = 0; i < 10; i++) {
 z[5 * (1 + i) - 1] = x[5 * (1 + i)];
 }

Here is code generated with the optimization:

for (b_i = 0; b_i < 10; b_i++) {
 z[i + 4] = x[i + 5];
 i += 5;
 }

By default, the strength reduction optimization is disabled. To enable it:

• At the command line, set the configuration object parameter EnableStrengthReduction to
true.

• In the MATLAB Coder app, project build settings, on the All Settings tab, set Simplify array
indexing to Yes.

R2016b

14-2

https://www.mathworks.com/help/releases/R2016b/ecoder/ug/generate-a-static-code-metrics-report-for-matlab-code.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ref/piltest_mc.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/create-a-connectivity-configuration-for-a-target.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/processor-in-the-loop-execution-from-the-command-line.html#bufn6wq

Even when the optimization replaces the multiply operations in the generated code, it is possible that
the C/C++ compiler can generate multiply instructions.

Reduction of the Intel Performance Primitives (IPP) code replacement
libraries (CRL)
The code replacement libraries (CRL) related to features, such as matrix multiple and dot product,
that are no longer supported by the Intel Performance Primitives (IPP) library will be removed in a
future release.

 Code Generation from MATLAB Code

14-3

Model Architecture and Design
AUTOSAR Basic Software (BSW) Services: Simulate BSW including
Diagnostic Event Manager (DEM) and NVRAM Manager (NvM)
The AUTOSAR standard defines important services as part of Basic Software (BSW) that runs in the
AUTOSAR runtime environment (RTE). Examples include the NVRAM Manager (NvM) and the
Diagnostic Event Manager (Dem). In the AUTOSAR RTE, AUTOSAR software components typically
access BSW services using client-server or sender-receiver communication.

To support system-level modeling of AUTOSAR components and services, R2016b adds an AUTOSAR
Basic Software block library. The library contains preconfigured Function Caller blocks for modeling
component calls to AUTOSAR BSW services.

• Diagnostic Event Manager (Dem) blocks — Calls to Dem service interfaces, including
CallbackEventStatusChangeCaller, DiagnosticInfoCaller, and DiagnosticMonitorCaller.

• NVRAM Manager (NvM) blocks — Calls to NvM service interfaces, including NvMAdminCaller
and NvMServiceCaller.

To implement client calls to AUTOSAR BSW service interfaces in your AUTOSAR software
component, you drag and drop Basic Software blocks into an AUTOSAR model and click a
Synchronize icon. The software automatically configures the client calls in the AUTOSAR
configuration. For more information, see Model AUTOSAR Basic Software (BSW) Service Calls,
Configure Calls to AUTOSAR Diagnostic Event Manager (Dem) Service, and Configure Calls to
AUTOSAR NVRAM Manager (NvM) Service.

AUTOSAR Parameters: Model STD_AXIS and COM_AXIS lookup table
parameters, export SwRecordLayouts, and apply SwAddrMethods
R2016b enhances AUTOSAR calibration parameter and data modeling with additional support for:

• “AUTOSAR STD_AXIS and COM_AXIS lookup tables” on page 14-4
• “AUTOSAR port-based and internal calibration parameters” on page 14-5
• “AUTOSAR SwRecordLayouts for lookup tables” on page 14-5
• “AUTOSAR SwAddrMethods for measurement and calibration tools” on page 14-5

AUTOSAR STD_AXIS and COM_AXIS lookup tables

AUTOSAR applications can use lookup tables in either or both of two ways:

• Implement high-performance search operations.
• Support tuning of the application with measurement and calibration tools.

To model lookup tables for automotive application tuning, use the new classes
Simulink.LookupTable and Simulink.Breakpoint to store tunable table and breakpoint data.
Simulink lookup table blocks have additional parameters to support the use of
Simulink.LookupTable and Simulink.Breakpoint objects. AUTOSAR models can leverage the
new classes to model STD_AXIS and COM_AXIS lookup tables. In Simulink, you can:

• Import arxml files that contain AUTOSAR lookup tables in STD_AXIS and COM_AXIS
configurations.

R2016b

14-4

https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/callbackeventstatuschangecaller.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/diagnosticinfocaller.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/diagnosticmonitorcaller.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/nvmadmincaller.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/nvmservicecaller.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/model-autosar-basic-software-bsw-service-calls.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-calls-to-autosar-diagnostic-event-manager-dem-service.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-calls-to-autosar-nvram-manager-nvm-service.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-calls-to-autosar-nvram-manager-nvm-service.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.lookuptable-class.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/simulink.breakpoint-class.html

• Create STD_AXIS and COM_AXIS lookup tables and map them to AUTOSAR parameters. In
R2016b, you can create AUTOSAR parameters for lookup tables graphically, using the AUTOSAR
Properties Explorer, or programmatically, using AUTOSAR property functions. For more
information, see “AUTOSAR port-based and internal calibration parameters” on page 14-5.

• Generate arxml and C code with STD_AXIS and COM_AXIS lookup table content.

For more information, see Configure STD_AXIS and COM_AXIS Lookup Tables for AUTOSAR
Measurement and Calibration.

AUTOSAR port-based and internal calibration parameters

To support mapping a Simulink lookup table to an AUTOSAR parameter, you can now create
AUTOSAR calibration parameters (ParameterDataPrototypes) using the AUTOSAR Properties
Explorer or AUTOSAR property functions. You can create either internal AUTOSAR parameters,
defined and accessed only within your software component, or port-based AUTOSAR parameters,
associated with a port-based parameter interface.

The AUTOSAR parameters that you create subsequently are available for Simulink lookup table
mapping, using the Simulink-AUTOSAR Mapping Explorer or AUTOSAR map functions.

For more information, see Configure AUTOSAR Port-Based Calibration Parameters.

AUTOSAR SwRecordLayouts for lookup tables

AUTOSAR software components use software record layouts (SwRecordLayouts) to specify how to
serialize data in the memory of an AUTOSAR ECU. The arxml importer imports and preserves the
SwRecordLayout property for AUTOSAR data.

R2016b allows you to import SwRecordLayouts from arxml files in either of two ways:

• If you create your AUTOSAR model from arxml files using importer method
createComponentAsModel, include an arxml file that contains SwRecordLayout definitions in
the import. The imported SwRecordLayouts are preserved and subsequently exported in arxml
code.

• If you create your AUTOSAR model in Simulink, you can import reference definitions of
SwRecordLayouts from arxml files. When you generate model code, the exported arxml code
contains references to the imported read-only SwRecordLayout elements, but not their
definitions.

For more information, see Configure AUTOSAR Data for Measurement and Calibration.

AUTOSAR SwAddrMethods for measurement and calibration tools

AUTOSAR software components use software address methods (SwAddrMethods) to group data in
memory for access by measurement and calibration tools. In an AUTOSAR software component
configuration, you assign common memory sections to data. When the runtime environment
instantiates calibration parameters, calibration parameters that reference the same SwAddrMethod
are placed within the same calibration parameter group.

The arxml importer imports and preserves the SwAddrMethod property for AUTOSAR data. In
previous releases, in Simulink, you could assign memory sections to global constant and static
memory, using AUTOSAR data objects. But you could not assign SwAddrMethods or memory sections
to data accessed by RTE function calls, such as sender-receiver (S-R) interface data elements or inter-
runnable variables (IRVs).

 Model Architecture and Design

14-5

https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-com-axis-lookup-table-for-measurement-and-calibration.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-com-axis-lookup-table-for-measurement-and-calibration.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-port-based-calibration-parameters.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-data-for-measurement-and-calibration.html

R2016b allows you to graphically or programmatically select imported SwAddrMethod values for
AUTOSAR data accessed by RTE function calls.

When you build the model, the exported arxml code reflects the SwAddrMethod values you selected.

For more information, see Configure AUTOSAR Data for Measurement and Calibration.

AUTOSAR startup, reset, and shutdown modeling
AUTOSAR applications sometimes require complex logic to execute during system initialization,
reset, and termination sequences. R2016b introduces the Simulink blocks Initialize Function and
Terminate Function. You can use these blocks to control execution of a component in response to
initialize, reset, or terminate events at any level of a model hierarchy. Each nonvirtual subsystem can
have its own set of initialize, reset, and terminate functions. In a lower-level model, Simulink
aggregates the content of the functions with corresponding instances in the parent model.

AUTOSAR models can leverage the new blocks to model potentially complex AUTOSAR startup, reset,
and shutdown sequences. The subsystems work with any AUTOSAR component modeling style.

For more information, see Startup, Reset, and Shutdown and Configure AUTOSAR Initialize, Reset, or
Terminate Runnables.

AUTOSAR external trigger event communication
AUTOSAR Release 4.0 introduced external trigger event communication, in which an AUTOSAR
component or service signals an external trigger occurred event

R2016b

14-6

https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-data-for-measurement-and-calibration.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/initializefunction.html
https://www.mathworks.com/help/releases/R2016b/simulink/slref/terminatefunction.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/autosar-software-components.html#bvg3rfo-1
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-initialization-reset-or-terminate-runnables.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-initialization-reset-or-terminate-runnables.html

(ExternalTriggerOccurredEvent) to another component. The receiving component activates a
runnable in response to the event.

Embedded Coder now supports modeling the receiver portion of AUTOSAR external trigger event
communication. In a component that you want to react to an external trigger, you create a trigger
interface, a trigger receiver port to receive an ExternalTriggerOccurredEvent, and a runnable
that is activated by the event.

For more information, see Configure Receiver for AUTOSAR External Trigger Event Communication.

AUTOSAR support for JMAAB model architecture
Embedded Coder supports AUTOSAR code generation for the model architectures described in the
Japan MBD Automotive Advisory Board (JMAAB) document Control Algorithm Modeling Guidelines
Using MATLAB, Simulink, and Stateflow - Version 4.01. The document is available from the MAAB
Web page at https://www.mathworks.com/solutions/automotive/standards/maab.html.

The document describes three layouts for the top layer of a controller model:

• Simple control model — Represents a functions layer and a scheduling layer in one layer.
• Complex control model type alpha (α) — Places a scheduling layer above function layers.
• Complex control model type beta (β) — Places function layers above scheduling layers.

R2016b adds support for JMAAB type beta modeling in AUTOSAR models. For example, here is an
AUTOSAR example model, rtwdemo_autosar_swc_fcncalls, in which an asynchronous function-
call runnable at the top level of the model interacts with a periodic rate-based runnable. This type of
component leverages periodic and asynchronous rates (sample times).

For more information about this component modeling style, see .Add Top-Level Asynchronous Trigger
to Periodic Rate-Based System.

 Model Architecture and Design

14-7

https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-trigger-commnication.html
https://www.mathworks.com/solutions/mab-guidelines.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/add-top-level-asynchronous-trigger-to-rate-based-periodic-system.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/add-top-level-asynchronous-trigger-to-rate-based-periodic-system.html

AUTOSAR ExplicitReceiveByVal data access mode for receiver ports
R2016b adds support for modeling scalar explicit read by value access for AUTOSAR receiver ports,
and generating the corresponding AUTOSAR API Rte_DRead in C code. Reading data by value can
produce more efficient and readable C code and reduce RAM requirements.

In Simulink, you can model the data access in the following ways:

• Import an arxml file that uses DATA-RECEIVE-POINT-BY-VALUES variable access for a port. The
importer creates a root inport with ExplicitReceiveByVal data access and maps it to an
AUTOSAR receiver port.

• Create a root inport, select ExplicitReceiveByVal data access, and map it to an AUTOSAR
receiver port.

When you build the model, the exported arxml code defines DATA-RECEIVE-POINT-BY-VALUES
variable access for the AUTOSAR receiver port.
<RUNNABLE-ENTITY UUID="...">
...
 <SHORT-NAME>Runnable_Step</SHORT-NAME>
...
 <DATA-RECEIVE-POINT-BY-VALUES>
 <VARIABLE-ACCESS UUID="...">
 <SHORT-NAME>IN_Input_Input</SHORT-NAME>
 <ACCESSED-VARIABLE>
 <AUTOSAR-VARIABLE-IREF>
 <PORT-PROTOTYPE-REF DEST="R-PORT-PROTOTYPE">
 /pkg/swc/rtwdemo_autosar_counter/Input</PORT-PROTOTYPE-REF>
 <TARGET-DATA-PROTOTYPE-REF DEST="VARIABLE-DATA-PROTOTYPE">
 /pkg/if/Input/Input</TARGET-DATA-PROTOTYPE-REF>
 </AUTOSAR-VARIABLE-IREF>
 </ACCESSED-VARIABLE>
 </VARIABLE-ACCESS>
 </DATA-RECEIVE-POINT-BY-VALUES>
...
</RUNNABLE-ENTITY>

The generated C code uses Rte_DRead API calls to receive the port data by value.
void Runnable_Step(void)
{
 ...
 /* Gain: '<S1>/Gain' incorporates:
 * Inport: '<Root>/Input'
 *
 * Block description for '<S1>/Gain':
 * This block references an AUTOSAR calibration parameter, which is
 * accessed using the AUTOSAR Rte_Calprm function signature.
 */
 rtwdemo_autosar_counter_B.Gain = Rte_Prm_rCounter_K() *
 Rte_DRead_Input_Input();
 ...
}

AUTOSAR ModeSenderPorts and ModeSwitchPoints for application
mode management
AUTOSAR mode-switch (M-S) communication relies on a mode manager and connected mode users.
The mode manager is an authoritative source for software components to query the current mode and
to receive notification when the mode changes. A mode manager can be provided by AUTOSAR Basic
Software (BSW) or implemented as an AUTOSAR software component. A mode manager implemented

R2016b

14-8

as a software component is called an application mode manager. A software component that queries
the mode manager and receives notifications of mode changes is a mode user.

R2016b enhances Simulink modeling of AUTOSAR M-S communication by adding the ability to model
application mode manager components, including AUTOSAR mode sender ports (as defined in
AUTOSAR Release 4). Mode sender ports output a mode switch to connected mode user components.
For example, here is an application mode manager, modeled in Simulink, that uses a mode sender
port to output the current value of EngineMode.

For more information, see Mode-Switch Interface and Configure AUTOSAR Mode-Switch
Communication.

AUTOSAR reference element definitions for sharing among
components and services
R2016b supports a new workflow for importing external AUTOSAR element definitions, defined in
arxml files, for sharing among multiple AUTOSAR components and services. Benefits of sharing and
reusing AUTOSAR element definitions include lower risk of definition conflicts and easier code
integration. You can manage shared definitions in a centralized way.

Suppose that you have a large number of AUTOSAR software components that use similar
packageable AUTOSAR elements in similar ways. You can define sets of reference elements in arxml
files, and your software components can share them on a read-only basis. Each software component
can import the element definitions it requires and reference them. When you build the model,
exported arxml code contains references to the shared elements, but not their definitions. Their
definitions remain in the reference element arxml source files.

If definitions of reference elements change, you modify them in the arxml files, and then import the
updated definitions into the affected software components.

AUTOSAR elements that are supported for reference use in Simulink include:

• CompuMethod, Unit, and PhysicalDimension
• ImplementationDataType and SwBaseType
• SwSystemConst, SwSystemConstValueSet, and PredefinedVariant
• SwRecordLayout
• SwAddrMethod

For more information, see Import or Update Shared AUTOSAR Reference Element Definitions.

ERT Target Code Generation: Remove unreachable reset and disable
functions to reduce dead code
In some model referencing contexts for ERT targets, generating code models can contain reset and
disable functions that are dead code. You can use two new configuration parameters to remove the

 Model Architecture and Design

14-9

https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/autosar-communication.html#bt5cdpc
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-mode-receiver-ports-and-events.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/configure-autosar-mode-receiver-ports-and-events.html
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/import-or-update-shared-autosar-reference-element-definitions.html

generated disable and reset functions that cannot be reached from anywhere in the generated
code. Avoiding dead code is essential in safety-critical applications.

The new configuration parameters are:

• Remove reset function (RemoveResetFunc)
• Remove disable function (RemoveDisableFunc)

See Remove Reset and Disable Functions from the Generated Code.

Compatibility Considerations
The Remove reset function configuration parameter replaces the Optimize initialization code
for model reference parameter.

• In R2016b, if you load a legacy model from an earlier release that has the Optimize
initialization code for model reference parameter set, the new Remove reset function
parameter is set to produce the same behavior as the Optimize initialization code for model
reference parameter produced.

• If you save a model created in R2016b to an earlier release, the Optimize initialization code for
model reference parameter is updated appropriately. The model saved to a previous version
reflects the behavior that was specified with the Remove reset function parameter.

Conditional compile time check for imported macros with
ImportedDefine custom storage class
In R2016a, for a model that contained variant blocks and a Simulink.Parameter with an
ImportedDefine custom storage class, the compile-time check for the Simulink.Parameter was
unconditional. If the Simulink.Parameter was undefined, there was an error even if the
Simulink.Parameter was in the inactive variant.

In R2016b, the compile-time check is conditional, so the error occurs only if the
Simulink.Parameter is undefined and in the active variant.

Suppose that a model contains two Variant Subsystem blocks, Variant A and Variant B. Variant
B contains a Constant block in which the Constant value parameter is the Simulink.Parameter
myvar. myvar has an ImportedDefine custom storage class.

In R2016a, the model.h file contained this code:

#ifndef myvar
#error The variable for the parameter "myvar" is not defined
#endif

The code for myvar was not conditionally compiled. If you did not define myvar in a user-provided
header file, there was an error.

In R2016b, the model.h file contains this code:

#if Variant B
#ifndef myvar
#error The variable for the parameter "myvar" is not defined
#endif

R2016b

14-10

https://www.mathworks.com/help/releases/R2016b/ecoder/ref/remove-reset-method.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ref/remove-disable-method.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/remove-reset-and-disable-functions-from-the-generated-code.html

There is an error only if myvar is undefined and Variant B is the active variant because the code
for myvar is conditionally compiled. See Variant Systems.

Additional guarding of global data for variant systems
In R2016a, for models that contained Variant Source or Variant Sink blocks, preprocessor
conditionals surrounded global variable declarations for root inports and root outports.

In R2016b, preprocessor conditionals also surround most global variable declarations for Dwork
vectors, signals, and states. The inclusion of preprocessor conditionals around these global variable
declarations conserves RAM because the code is not compiled unless these global variables are part
of the active variant.

For example, the model inline_variants_example contains three Variant Source blocks.
Variant Source is in the top model and in Subsystem. Variant Source1 is in the top model.
Subsystem contains a Unit Delay block and a signal with a Signal Name of sig1.

For Variant Source, if the Simulink.Parameter V equals 1, the top port is active. If V equals 2,
the bottom port is active. For Variant Source1, if the Simulink.Parameter W equals 1, the top
port is active. If W equals 2, the bottom port is active.

 Model Architecture and Design

14-11

https://www.mathworks.com/help/releases/R2016b/ecoder/variant-systems.html

In R2016a, in the inline_variants_example.h file, for block signals and states, the code
generator produced this code.

/* Block signals (auto storage) */
typedef struct {
 real_T VariantMerge_For_Variant_Source;
 real_T Sine3; /* '<Root>/Sine3' */
 real_T sig1; /* '<S1>/Unit Delay' */
} B_inline_variants_example_T;

/* Block states (auto storage) for system '<Root>' */
typedef struct {
 real_T delay1; /* '<S1>/Unit Delay' */
 int32_T counter; /* '<Root>/Sine1' */
 int32_T counter_f; /* '<Root>/Sine4' */
 int32_T counter_e; /* '<Root>/Sine5' */
 int32_T counter_fl; /* '<Root>/Sine3' */

R2016b

14-12

} DW_inline_variants_example_T;

Preprocessor conditionals do not surround the global variable declarations.

In R2016b, in the inline_variants_example.h file, the code generator produces this code.

/* Block signals (auto storage) */
typedef struct {
 real_T VariantMerge_For_Variant_Source;
 real_T Sine3; /* '<Root>/Sine3' */

#if V == 2

 real_T sig1; /* '<S1>/Unit Delay' */

#define B_INLINE_VARIANTS_EXAMPLE_T_VARIANT_EXISTS
#endif /* V == 2 */

} B_inline_variants_example_T;

/* Block states (auto storage) for system '<Root>' */
typedef struct {

#if V == 2

 real_T delay1; /* '<S1>/Unit Delay' */

#define DW_INLINE_VARIANTS_EXAMPLE_T_VARIANT_EXISTS
#endif /* V == 2 */

 int32_T counter; /* '<Root>/Sine1' */
 int32_T counter_f; /* '<Root>/Sine4' */
 int32_T counter_e; /* '<Root>/Sine5' */
 int32_T counter_fl; /* '<Root>/Sine3' */
} DW_inline_variants_example_T;

For block signals and states, preprocessor conditionals do surround the global variable declarations.
See Represent Variant Source and Sink Blocks in Generated Code.

 Model Architecture and Design

14-13

https://www.mathworks.com/help/releases/R2016b/ecoder/ug/represent-inline-variants-in-generated-code.html

Data, Function, and File Definition
Simulink Function Code Interface: Configure generated C/C++ function
interfaces for Simulink Function and Function Caller blocks
With Embedded Coder, you can customize generated C/C++ function interfaces. Function code
interface configuration supports easier integration of generated code with functions or function calls
in external code and customizations for coding standards or design requirements.

R2016b extends function code interface configuration to Simulink Function and Function Caller
blocks. By opening a dialog box from a selected Simulink Function or Function Caller block, you can
customize the C/C++ function prototype generated for that block. Your changes for the selected
block also update other corresponding Simulink Function and Function Caller blocks in the model.
You can change the generated C/C++ function name, and the names, type qualifiers, and order of
function arguments. Your changes do not graphically alter the model and do not affect the Simulink
function prototype defined in the block.

For example, you can configure a Simulink function prototype y = f3(u) to generate a C/C++
function prototype such as void function3(* y, const * u).

For more information, see Configure Simulink Function Code Interface.

ERT default value for configuration parameter
ParameterTunabilityLossMsg
In R2016b, the default value for the configuration parameter Diagnostics > Data Validity > Detect
loss of tunability (programmatic name ParameterTunabilityLossMsg) for ERT-based targets is
error. When you use the configuration parameter Code Generation > System target file to switch
to an ERT-based code generation target from a target that is not ERT-based, Detect loss of
tunability is set to error. If necessary, you can then change the value of Detect loss of tunability.

R2016b

14-14

https://www.mathworks.com/help/releases/R2016b/ecoder/ug/configure-simulink-function-code-interface.html

Compatibility Considerations
Your scripts that change code generation targets can unintentionally change the setting for Detect
loss of tunability, causing unexpected errors during code generation.

 Data, Function, and File Definition

14-15

Code Generation

Cross-Release Code Integration: Reuse code generated from earlier
releases
Integrate R2016b generated code with existing:

• Shared code that is custom code or code that you generated from previous releases.
• Model code that you generated from previous releases (R2010a and later).

You avoid the cost of reverification because you reuse the existing code without modification.

You can use the sharedCodeUpdate function to collocate shared code from multiple source folders
in an existing shared code folder. R2016b also provides the following configuration parameters on the
Configuration Parameters > All Parameters tab:

• Existing shared code (ExistingSharedCode) — Specifies the folder that contains the shared
code.

• Use only existing shared code (UseOnlyExistingSharedCode) — A diagnostic setting that
determines whether the build process is permitted to generate new shared code that is not
available from the specified folder.

You can use the crossReleaseExport and crossReleaseImport functions to integrate model
code from previous releases when:

• The source models are single-rate, and set to generate nonreusable code with function prototype
control (root-level Inport and Outport blocks are mapped to step function arguments).

• The model code has been produced by top-model and subsystem build processes.

Follow this workflow:

1 From a previous release, use the crossReleaseExport function to export model components.
Add the function to the search path for that release with the following command:

addpath(fullfile(matlabRootForR2016b, 'toolbox','coder','xrelexport'));

2 With the crossReleaseImport function, import components from previous releases via
software-in-the-loop (SIL) or processor-in-the-loop (PIL) blocks.

3 Insert the SIL or PIL blocks into your R2016b model.

When you run a model simulation, the simulation runs the previous release code through the SIL or
PIL blocks.

When you build your model, new code is not generated for the components represented by the SIL or
PIL blocks. The model code calls code generated by a previous release.

For more information, see:

• Cross-Release Shared Code Reuse
• Cross-Release Code Integration

R2016b

14-16

https://www.mathworks.com/help/releases/R2016b/rtw/sharing-utility-code.html
https://www.mathworks.com/help/releases/R2016b/rtw/code-generation-basics.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ref/sharedcodeupdate.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ref/crossreleaseexport.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ref/crossreleaseimport.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ref/crossreleaseexport.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ref/crossreleaseimport.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/cross-release-shared-code-reuse.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/cross-release-code-integration-workflow.html

Compound Operation Code Replacement: Replace "Multiply Shift Right
Arithmetic" and "Multiply Divide" in generated code with a single
custom operation
R2016b supports replacement of code for these compound operations with a single custom operation:

• Integer replacement of real, scalar multiplication followed by a shift right arithmetic operation
(RTW_OP_MUL_SRA)

• Integer replacement of real, scalar multiplication followed by a division operation
(RTW_OP_MULDIV)

ARXML import/export and C code generation for latest AUTOSAR 4.2
and 3.2 standard revisions
R2016b extends support of AUTOSAR schema versions 4.2 and 3.2 to include schema revisions 4.2.2
and 3.2.2. Embedded Coder supports the new schema revisions for import and export of arxml files
and generation of AUTOSAR-compatible C code.

If you import schema 4.2.2 or 3.2.2 arxml code into Simulink, the arxml importer detects and uses
the schema version and revision, and sets the schema version parameter in the model. For more
information on schema import and export, see Select an AUTOSAR Schema.

If you are developing an AUTOSAR software component based on AUTOSAR schema version 3.2,
schema revision 3.2.2 allows you to include sender-receiver port end-to-end (E2E) protection,
receiver port IsUpdated service, and port-based nonvolatile (NV) data communication in your
component design.

Note This support is available to R2015b and R2016a Embedded Coder customers by installing the
latest AUTOSAR support package for your release:

• R2015b Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.4 or later
• R2016a Embedded Coder Support Package for AUTOSAR Standard, Version 16.1.1 or later

AUTOSAR code replacement library enhancements
R2016b improves the AUTOSAR code replacement library (CRL) by adding support for:

• Functions that perform multiplication followed by a shift right arithmetic operation.
• Arguments of type struct for the lookup table functions that perform prelookup and

interpolation operations.

For more information, see AUTOSAR Code Replacement Library.

Static code metrics report for C++ code
In R2016b, for a Simulink model with the target language set to C++, you can generate a Static
Code Metrics Report. For more information, see Generate Static Code Metrics Report for Simulink
Model and Static Code Metrics.

 Code Generation

14-17

https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/generating-autosar-code-and-description-files.html#brsz5z2-1
https://www.mathworks.com/help/releases/R2016b/ecoder/autosar/code-replacement-for-autosar.html#bugdcpl
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/generate-a-static-code-metrics-report.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/generate-a-static-code-metrics-report.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html

Static code metrics data produced by Polyspace
In R2016b, for a Simulink model, Polyspace produces the data in the Static Code Metrics Report. The
report contains the same information types in R2016b as it contained in R2016a. For a model, in the
Function Information section of the Static Code Metrics Report, there can be differences between
the Stack Size and Complexity in R2016b and R2016a.

Streamlined report pane for easier model configuration
In the Configuration Parameters dialog box, a streamlined Code Generation > Report pane displays
only configuration parameters that you are most likely to use when configuring your model for code
generation.

Compatibility Considerations
Following are the configuration parameters on the Code Generation > Report pane that are now
only available on the All Parameters tab.

• Code-to-model
• Model-to-code
• Eliminated / virtual blocks
• Traceable Simulink blocks
• Traceable Stateflow blocks
• Traceable MATLAB blocks
• Summarize which blocks triggered code replacements

Improved traceability between model and code
In R2016b, these features enhance traceability between the model and generated code:

• Line-level traceability
• Highlighted code for multiple blocks or Stateflow objects

Previously, traceability between model and code depended on block comments in the generated code.
If these comments were disabled, traceability was not available. In R2016b, Embedded Coder
provides more precise model-to-code and code-to-model navigation with traceability to lines of code.
Line-level traceability is enabled by default and is not dependent on block comments in the code.

From the code generation report, click a linked line of code to navigate to corresponding blocks in
the model. From a block or blocks in your model, right-click the block and select C/C++ Code >
Navigate To C/C++ Code. Highlighted lines of code in the code generation report correspond to
your selected model blocks. Line-level traceability supports Simulink blocks, MATLAB function
blocks, and Stateflow objects. The HTML traceability report and Microsoft® Excel® traceability
matrix include line-level traceability information.

Note Line-level traceability is not available for some TLC-generated code and for code in header
files.

R2016b

14-18

In R2016b, you can select multiple blocks or Stateflow objects for model-to-code navigation. To
highlight code for multiple objects:

1 To select contiguous blocks to trace, click and drag the cursor over the contiguous blocks.
Alternatively, Shift + click to select the individual blocks.

2 From the selected blocks, right-click the blocks and select C/C++ Code > Navigate To C/C++
Code. The code generation report highlights lines of code that correspond to the selected blocks.

Code replacement enhancements
R2016b supports these code replacement enhancements:

• Integer replacement of real, scalar multiplication followed by a shift right arithmetic or division
operation.

• When generating code for models that contain fixed-point calculations, improved integer code
replacements for these saturating, real, scalar operations:

• Addition, RTW_OP_ADD
• Subtraction, RTW_OP_MINUS
• Multiplication, RTW_OP_MUL
• Division, RTW_OP_DIV
• Data type conversion (cast), RTW_OP_CAST

• Improved detection of identity operations to avoid unnecessary replacements.

For more information, see Code Replacement and Code Replacement Customization.

$I macro changed for argument names used as input and output
Previously, when you specified custom function argument names for a Simulink function by using the
Subsystem method arguments parameter, for arguments that were input and output, the generated
code inserted a y for the $I macro. In R2016b, the generated code inserts a uy.

Improved compliance with MISRA C:2012 Rules 10.1, 10.5, and 10.8
In R2016b, in the Configuration Parameters dialog box, on the Code Generation > Code Style tab,
when you set the Casting Modes parameter to Standards Compliant, for more modeling
patterns, the code generator produces code that is compliant with the Essential Type Model: Rules
10.1–10.8. See MISRA C:2012 Directives and Rules.

MISRA C:2012 Rule 10.1

In R2016b, for operations involving Prelookup blocks, the code generator can produce code that is
compliant with MISRA C:2012 Rule 10.1. For example, in the model misra1, in the Prelookup block
parameters dialog box, the Value parameter is a vector with 256 elements.

 Code Generation

14-19

https://www.mathworks.com/help/releases/R2016b/ecoder/code-replacement-scec.html
https://www.mathworks.com/help/releases/R2016b/ecoder/code-replacement-customization-scec.html
https://www.mathworks.com/help/releases/R2016b/rtw/ref/subsystem-method-arguments.html
https://www.mathworks.com/help/releases/R2016b/codeprover/misra-c2012-directives-and-rules-1.html

In R2016a, in the misra1.c file, for the Prelookup block, the code generator produced this code:

if (u < (((int32_T)bp[0U]) << 16)) {
 bpIndex = 0U;
 *fraction = 0U;
 }

This code is not compliant with MISRA C:2012 Rule 10.1 because the left operand of the << operator
is a signed integer, which is an inappropriate essential type.

In R2016b, in the misra1.c file, for the Prelookup block, the code generator produces this code:

if (u < ((int32_T)((uint32_T)(((uint32_T)bp[0U]) << 16)))) {
 bpIndex = 0U;
 *fraction = 0U;
 }

This code is compliant with MISRA C:2012 Rule 10.1 because the left operand is cast to an unsigned
type.

MISRA C:2012 Rules 10.5 and 10.8

In R2016b, for more modeling patterns containing type conversions between different essential type
categories, the code generator produces code that is compliant with MISRA C:2012 Rules 10.5 and
10.8. For example, in the model misra2, signals with data types Boolean and unsigned integer feed
into a Sum block. The Sum block outputs a signal with a data type of unsigned integer.

R2016b

14-20

In R2016a, in the misra2.c file, the code generator produced this code:

misra2_Y.out1 = ((uint32_T)(misra2_U.in1 != 0U)) + ((uint32_T)misra2_U.in2);

This code is not compliant with MISRA C:2012 Rules 10.5 and 10.8 because a Boolean, which is the
output of the relational operator, is cast to an unsigned integer.

In R2016b, in the misra2.c file, the code generator produces this code:

misra2_Y.out1 = ((uint32_T)((misra2_U.in1 != 0U) ? 1 : 0)) + ((uint32_T)
 misra2_U.in2);

This code is compliant with MISRA C:2012 Rules 10.5 and 10.8 because the ternary operator
prevents a cast from a Boolean to an unsigned integer.

Improved compliance with MISRA AC AGC Rule 12.6
In R2016a, for Variant Subsystem, Variant Source, and Variant Sink blocks, the preprocessor
conditional that checked for only one active variant was not compliant with MISRA AC AGC Rule
12.6. In R2016b, this preprocessor conditional check is compliant with this rule. MISRA AC AGC Rule
12.6 states

Operands of logical operators (&&, || and !) should be effectively Boolean. Expressions that are
effectively Boolean should not be used as operands to operators other than (&&, ||, or !).

For example, the model misra_check contains two Variant Subsystems, Variant1 and Variant2.
For Variant Subsystem, if the Simulink.Parameter VC equals 1, Variant1 is active. If VC
equals 2, Variant2 is active. For Variant Subsystem1, if the Simulink.Variant V1 evaluates to
true, Variant1 is active. If the Simulink.Variant V2 evaluates to true, Variant2 is active.

 Code Generation

14-21

In R2016a, in the preprocessor_check_types.h file, the preprocessor conditionals that checked
for just one active variant per subsystem were

/* Exactly one variant for '<Root>/Variant Subsystem' should be active */
#if (VC == 1) + (VC == 2) != 1
#error Exactly one variant for '<Root>/Variant Subsystem' should be active
#endif

/* Exactly one variant for '<Root>/Variant Subsystem1' should be active */
#if (V1) + (V2) != 1
#error Exactly one variant for '<Root>/Variant Subsystem1' should be active
#endif
#endif

According to the second sentence of Rule 12.6, VC==1 and VC==2 and V1 and V2 should not be added
together because they are effectively Boolean expressions.

In R2016b, in the preprocessor_check_types.h file, the preprocessor conditionals that check for
one active variant per subsystem are

/* Exactly one variant for '<Root>/Variant Subsystem' should be active */
#if ((VC == 1) ? 1 : 0) + ((VC == 2) ? 1 : 0) != 1
#error Exactly one variant for '<Root>/Variant Subsystem' should be active
#endif

/* Exactly one variant for '<Root>/Variant Subsystem1' should be active */
#if ((V1) ? 1 : 0) + ((V2) ? 1 : 0) != 1
#error Exactly one variant for '<Root>/Variant Subsystem1' should be active
#endif
#endif

The conditional checks contain ternary Boolean operators that do not violate MISRA Rule 12.6. See
MISRA C:2004 and MISRA AC AGC Coding Rules.

Use default installation folder on Windows system with ReFS file
system
In previous releases, on Windows systems, the code generator relied on 8.3 name or short file name
generation to operate from the default installation folder (for example, C:\Program Files\MATLAB
\R2015b).

R2016b

14-22

https://www.mathworks.com/help/releases/R2016b/codeprover/ug/misra-c-coding-rules.html

The Windows ReFS (Resilient File System) does not permit 8.3 name or short file name generation.
ReFS differs from Windows NTFS (New Technology File System), which–by default–provides short file
name support.

To support the default MATLAB installation folder on Windows systems with the ReFS file system or
when NTFS short file name support is disabled, the code generation software maps a drive
corresponding to the MATLAB installation folder.

For more information, see Enable Build Process for Folder Names with Spaces.

 Code Generation

14-23

https://en.wikipedia.org/wiki/ReFS
https://en.wikipedia.org/wiki/NTFS
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/enable-build-when-path-names-contain-spaces.html

Deployment

Cortex-M7 Target Support Package: Generate code for STM32F746G-
Discovery Board
You can use the Embedded Coder Support Package for STMicroelectronics Discovery Boards to
generate code on the Cortex-M7 based STM32F746G-Discovery board.

To build your model for the STM32F746G-Discovery board, you can use the following blocks from the
support package library:

• Audio Input
• Audio Output
• Analog Input
• Digital Read
• Digital Write
• I2C Master Read
• I2C Master Write
• PWM Output
• SPI Master Transfer
• SPI Register Read
• SPI Register Write

For more information, see Embedded Coder Support Package for STMicroelectronics Discovery
Boards.

Added Embedded Coder Support Package for ARM Cortex-R
Processors
You can use the Embedded Coder Support Package for ARM Cortex-R Processors to:

• Run executables with FreeRTOS on a Texas Instruments Hercules RM57Lx Launchpad, which uses
a lockstep cached 330Mhz ARM Cortex-R5F based RM series MCU.

• Tune parameters on, and monitor data from, an executable running on the Texas Instruments
Hercules RM57Lx Launchpad (External mode).

• Verify numeric accuracy and profile execution times using processor-in-the-loop (PIL) on the Texas
Instruments Hercules RM57Lx Launchpad.

• Profile task and function execution times of executables running in real time on the Texas
Instruments Hercules RM57Lx Launchpad.

To download and install this feature, perform the steps described in https://www.mathworks.com/
help/releases/R2016b/supportpkg/armcortexr/ug/install-support-for-arm-cortex-a-processors.html.

For more information, see https://www.mathworks.com/help/releases/R2016b/supportpkg/armcortexr/
index.html.

R2016b

14-24

https://www.mathworks.com/help/releases/R2016b/supportpkg/stmicroelectronicsstm32f4discovery/index.html
https://www.mathworks.com/help/releases/R2016b/supportpkg/stmicroelectronicsstm32f4discovery/index.html
https://www.ti.com/tool/LAUNCHXL2-RM57L
https://www.mathworks.com/help/releases/R2016b/supportpkg/armcortexr/ug/install-support-for-arm-cortex-a-processors.html
https://www.mathworks.com/help/releases/R2016b/supportpkg/armcortexr/ug/install-support-for-arm-cortex-a-processors.html
https://www.mathworks.com/help/releases/R2016b/supportpkg/armcortexr/index.html
https://www.mathworks.com/help/releases/R2016b/supportpkg/armcortexr/index.html

Improved External mode over serial communication
The external mode in Embedded Coder Support Package for Texas Instruments C2000 Processors
feature is now improved with a faster serial communication protocol. The new protocol reduces data
drop during data logging. With this change, increasing the baud rate also increases the data logging
performance.

New blocks added to TI’s C2000 support package
You can use eCAP, eQEP, CLA, and DAC blocks on TI’s C2000™ F2837xS, F2837xD, and F2807x
processors.

Use the eCAP block to capture input pin transitions or configure auxiliary pulse width modulator.

Use the eQEP block to interface with a linear or rotary incremental encoder.

Use CLA Trigger block to run code on Control Law Accelerator (CLA) co-processor available on
F2803x, F2806x, F2837xS, F2837xD, and F2807x processors.

Use the DAC block to convert digital data to analog signal.

Change in name and the base product for the FRDM-K64F and the
FRDM-KL25Z support packages
The base product for FRDM-K64F and FRDM-KL25Z support packages is changed from Embedded
Coder to Simulink Coder. The two support package are now named as Simulink Coder Support
Package for NXP™ FRDM-K64F Board and Simulink Coder Support Package for NXP FRDM-KL25Z
Board respectively. For more information, see Simulink Coder Target Support Packages: Generate
code for NXP Freedom boards and STMicroelectronics Nucleo boards.

Support for TI's C5000 DSPs has been removed
Embedded Coder support for TI's C5000 has been removed in R2016b. However, you can still
generate code using Embedded Coder® by selecting TI's C5000 as the device vendor on the
Hardware Implementation pane for ANSI-C. You can also create your own target optimizations using
code replacement libraries. For more information, see Optimize Generated Code By Developing and
Using Code Replacement Libraries - Simulink®.

Support for TI’s C6000 has been removed
Embedded Coder support for TI C6000® has been removed in R2016b. However, you can still
generate code using Embedded Coder by selecting TI’s C6000™ as the device vendor on the
Hardware Implementation pane for ANSI-C. You can also create your own target optimizations using
code replacement libraries. For more information, see Optimize Generated Code By Developing and
Using Code Replacement Libraries - Simulink®.

Support for Wind River VxWorks RTOS will be removed
Embedded Coder support for Wind River VxWorks RTOS will be removed in a future release. You will
still be able to use Embedded Coder for Wind River VxWorks RTOS, but will need to manually
integrate the generated code with hand written scheduler and drivers.

 Deployment

14-25

https://www.mathworks.com/help/releases/R2016b/rtw/release-notes.html#bvc7hgs
https://www.mathworks.com/help/releases/R2016b/rtw/release-notes.html#bvc7hgs
https://www.mathworks.com/help/releases/R2016b/ecoder/examples/optimize-generated-code-by-developing-and-using-code-replacement-libraries-sc.html
https://www.mathworks.com/help/releases/R2016b/ecoder/examples/optimize-generated-code-by-developing-and-using-code-replacement-libraries-sc.html
https://www.mathworks.com/help/releases/R2016b/ecoder/examples/optimize-generated-code-by-developing-and-using-code-replacement-libraries-sc.html
https://www.mathworks.com/help/releases/R2016b/ecoder/examples/optimize-generated-code-by-developing-and-using-code-replacement-libraries-sc.html

Support for idelink_ert.tlc will be removed
Support for idelink_ert.tlc will be removed in R2017a. C2000 processors will be supported only on
ert.tlc workflow.

R2016b

14-26

Performance

Data Reuse and Memory Reduction: Reuse global data for
nonreusable subsystems and reduce data copies with user-specified
buffers
Buffer reuse across nonreusable subsystems

In R2016b, for a model containing multiple nonreusable subsystems, the code generator can reuse a
single global buffer. In the subsystem block parameters dialog box, on the Code Generation tab, a
nonreusable subsystem has the Function packaging parameter set to Nonreusable function.
The Function interface parameter is set to void_void. This optimization decreases data copies and
memory consumption and increases code execution speed.

For example, the model rtwdemo_automatic_global_reuse contains four nonreusable
subsystems. The inputs to each subsystem are arrays of size 256.

In R2016a, the rtwdemo_automatic_global_reuse.h file contained this code:

/* Block signals and states (auto storage) for system '<Root>' */
typedef struct {
 DW_LowpassFilter LowpassFilter_pn; /* '<S4>/Lowpass Filter' */
 DW_LowpassFilter LowpassFilter_p; /* '<S3>/Lowpass Filter' */
 DW_HighpassFilter HighpassFilter_pn; /* '<S2>/Highpass Filter' */
 DW_HighpassFilter HighpassFilter_p; /* '<S1>/Highpass Filter' */
 real_T Switch[256]; /* '<S4>/Switch' */
 real_T Switch_i[256]; /* '<S3>/Switch' */

 Performance

14-27

 real_T Switch_k[256]; /* '<S2>/Switch' */
 real_T Switch_f[256]; /* '<S1>/Switch' */
} DW;

For each nonreusable subsystem, the global structure DW contained an array. The array names were
Switch, Switch_i, Switch_k, and Switch_f.

In R2016b, the rtwdemo_automatic_global_reuse.h file contains this code:

/* Block signals and states (auto storage) for system '<Root>' */
typedef struct {
 DW_LowpassFilter LowpassFilter_pn; /* '<S4>/Lowpass Filter' */
 DW_LowpassFilter LowpassFilter_p; /* '<S3>/Lowpass Filter' */
 DW_HighpassFilter HighpassFilter_pn; /* '<S2>/Highpass Filter' */
 DW_HighpassFilter HighpassFilter_p; /* '<S1>/Highpass Filter' */
 real_T Switch[256]; /* '<S1>/Switch' */
} DW;

The global structure DW contains one array Switch for buffer reuse. Each nonreusable subsystem
uses this array.

Buffer reuse for multiple signals in a path

For blocks and subsystems that form a path, if the input and output signals to these blocks and
subsystems have the same reusable storage class specification, the code generator tries to reuse the
signals in the generated code. This optimization decreases data copies and memory consumption and
increases code execution speed.

For user-specified buffer reuse, blocks that modify a signal specified for reuse must execute before
blocks that use the original signal value. In R2016a, sometimes the code generator changed the block
operation order so that buffer reuse occurred.

In R2016b, the code generator performs better reordering of block operations, so that more instances
of user-specified buffer reuse can occur. For example, in the model
rtwdemo_reusable_csc_scheduling, the Simulink.Signal reuse is for buffer reuse. The four
subsystems have nonreusable function packaging.

R2016b

14-28

In R2016a, the rtwdemo_reusable_csc_scheduling.c file contained this code.

real_T reuse_1[256];
real_T reuse_0[256];
real_T reuse[256];
…
void rtwdemo_reusable_csc_scheduling_step(void)
{
 real_T rtb_MinMax_d[256];
 f(rtU.SigIn, reuse_1);
 LPSub();
 HPSub();
 MaxSub1(reuse_1, 0.0, rtb_MinMax_d);
 MaxSub2(reuse_0, rtb_MinMax_d, rtY.SigOut1);
}

For the Simulink.Signal reuse, there were three global variables: reuse, reuse_0, and
reuse_1. The generated code could not use the same global variable in the four functions. LPSub
and HPSub modified the signal value before MaxSub1 and MaxSub2 used it, and MaxSub1 and
MaxSub2 had to use the original signal value.

In R2016b, the rtwdemo_reusable_csc_scheduling.c file contains this code:

real_T reuse[256];
…
void rtwdemo_reusable_csc_scheduling_step(void)
{
 f(rtU.SigIn, (&(reuse[0])));
 MaxSub1();
 LPSub();
 MaxSub2();
 HPSub();
}

For the Simulink.Signal reuse, there is one global variable reuse. The code generator can reuse
this variable because calls to functions MaxSub1 and MaxSub2 happen before calls to functions
LPSub and HPSub, respectively.

For more information, see Specify Buffer Reuse for Multiple Signals in a Path.

Code Optimizations: Generate more efficient code with select-assign-
iterator pattern and matrix padding operations
In R2016b, for iterative select assignment modeling patterns and matrix padding operations, there
are buffer reductions in the generated code. This optimization reduces memory usage and increases
code execution speed. Iterative select-assignment modeling patterns and matrix padding operations
are useful in image processing.

Data copy reduction for select-assign-iterator modeling pattern

In R2016a, for a model that iteratively selects values from an input signal and assigns them to an
output signal, there was an extra buffer in the generated code. In R2016b, the code generator
eliminates this buffer.

For example, the rtwdemo_optimize_nestedloops model contains two select-assignment
modeling patterns. One pattern is in the subsystem MyFilter. The other pattern is in the subsystem

 Performance

14-29

https://www.mathworks.com/help/releases/R2016b/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

ALGORITHM, which is nested in MyFilter. Both subsystems contain a for Iterator block, a Selector
block, and an Assignment block.

In R2016a, the code generator produced this code.

void rtwdemo_optimize_nestedloops_step(void)
{
 int32_T s1_iter;
 real_T rtb_Selector[500];

R2016b

14-30

 int32_T s2_iter;
 for (s1_iter = 0; s1_iter < 250; s1_iter++) {
 for (s2_iter = 0; s2_iter < 250; s2_iter++) {
 rtb_Selector[s2_iter << 1] = rtwdemo_optimize_nestedloops_U.In1[250 *
 s2_iter + s1_iter];
 rtb_Selector[1 + (s2_iter << 1)] = rtwdemo_optimize_nestedloops_U.In1[250 *
 s2_iter + s1_iter];
 rtwdemo_optimize_nestedloops_Y.Out1[s1_iter + 250 * s2_iter] =
 rtb_Selector[(s2_iter << 1) + 1] * 5.0 + rtb_Selector[s2_iter << 1] *
 5.0;
 }
 }
}

The generated code contains the buffer rtb_Selector[500].

In R2016b, the code generator produces this code.

void rtwdemo_optimize_nestedloops_step(void)
{
 int32_T s1_iter;
 int32_T s2_iter;
 for (s1_iter = 0; s1_iter < 250; s1_iter++) {
 for (s2_iter = 0; s2_iter < 250; s2_iter++) {
 rtwdemo_optimize_nestedloops_Y.Out1[s1_iter + 250 * s2_iter] =
 rtwdemo_optimize_nestedloops_U.In1[250 * s2_iter + s1_iter] * 5.0 +
 rtwdemo_optimize_nestedloops_U.In1[250 * s2_iter + s1_iter] * 5.0;
 }
 }
}

The generated code does not contain the rtb_Selector[500] buffer or the associated data copies.

Data copy reduction for matrix padding operations

In R2016a, for a model that uses Matrix Concatenate blocks to add rows and columns to a
multidimensional input signal, there was an extra buffer in the generated code. In R2016b, the code
generator eliminates this buffer.

For example, in the model pattern_grow_matrix, the Vertical Matrix Concatenate block
adds a row of 250 zeros and the Horizontal Matrix Concatenate blocks adds a column of 250
zeros to a multidimensional input signal.

 Performance

14-31

In R2016a, the code generator produced this code.

/* Model step function */
void pattern_grow_matrix_step(void)
{
 int32_T i;

 /* SignalConversion: '<Root>/ConcatBufferAtHorizontal Matrix ConcatenateIn1' */
 memset(&Y.Out1[0], 0, 251U * sizeof(real32_T));

 /* Concatenate: '<Root>/Vertical Matrix Concatenate' incorporates:
 * Constant: '<Root>/Constant'
 * Inport: '<Root>/In1'
 */
 for (i = 0; i < 250; i++) {
 B.fv0[251 * i] = 0.0F;
 }

 for (i = 0; i < 250; i++) {
 memcpy(&B.fv0[i * 251 + 1], &U.In1[i * 250], 250U * sizeof(real32_T));
 }

 memcpy(&Y.Out1[251], &B.fv0[0], 62750U * sizeof(real32_T));

 /* End of Concatenate: '<Root>/Vertical Matrix Concatenate' */
}

The code contained the buffer B.fv0.

In R2016b, the code generator produces this code.

/* Model step function */
void pattern_grow_matrix_step(void)
{
 int32_T i;

 /* SignalConversion: '<Root>/ConcatBufferAtHorizontal Matrix ConcatenateIn1' */
 memset(&Y.Out1[0], 0, 251U * sizeof(real32_T));

 /* Concatenate: '<Root>/Vertical Matrix Concatenate' incorporates:
 * Constant: '<Root>/Constant'
 * Inport: '<Roo>/In1'
 */
 for (i = 0; i < 250; i++) {
 Y.Out1[i * 251 + 251] = 0.0F;
 }

 for (i = 0; i < 250; i++) {
 memcpy(&Y.Out1[i * 251 + 252], &U.In1[i * 250], 250U * sizeof(real32_T));
 }

 /* End of Concatenate: '<Root>/Vertical Matrix Concatenate' */
}

The buffer, B.fv0, and the extra memcpy to B.fv0 are not in the generated code.

R2016b

14-32

Display of code execution times for model component
R2016b provides improved viewing and analysis of code execution-time measurements that software-
in-the-loop (SIL) or processor-in-the-loop (PIL) simulations produce. For example, at the end of a top-
model SIL or PIL simulation, you can view execution-time metrics in a display window:

• For execution-time metrics from the top-level tasks, click the blue Simulink Editor background.
• For execution-time metrics from a profiled block, click the blue block.

The display window also provides access to:

• The complete profiling report, which provides execution-time metrics for profiled code sections.
• The profiled code section in the code generation report.
• The Simulation Data Inspector, which enables you to plot and compare execution-time

measurements for the profiled code section.

For more information, see View and Compare Code Execution Times.

More efficient code for array element assignments
In R2016a, for a model that contained a Product block that performed matrix multiplication, the code
generator assigned values to the product matrix one column at a time. In the generated code, the
array element assignments occurred out of order.

In R2016b, the code generator performs a loop exchange, so that these assignments occur one row at
time. During a loop exchange, the code generator switches the order of iteration variables. In the
generated code, the array element assignments occur in contiguous order.

 Performance

14-33

https://www.mathworks.com/help/releases/R2016b/ecoder/ug/view-and-compare-code-execution-times.html

When array element assignments occur in contiguous order, the CPU stores and accesses data in
continuous memory. This optimization increases code execution speed because it improves cache
efficiency.

For example, in the matrix_multiply model, the Product block processes the input vectors as
matrices.

In R2016a, the code generator produced this code.

 /* Product: '<Root>/Product' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 */
 for (i = 0; i < 5; i++) {
 for (i_0 = 0; i_0 < 5; i_0++) {
 matrix_multiply_B.Product3[i + 5 * i_0] = 0.0;
 for (i_1 = 0; i_1 < 5; i_1++) {
 matrix_multiply_B.Product3[i + 5 * i_0] += tmp_1[5 * i_1 + i] * tmp_2[5 *
 i_0 + i_1];
 }
 }
 }

 /* End of Product: '<Root>/Product' */

In the matrix_multiply_step function, element assignments to the array
matrix_multiply.Product3 occur in intervals of 5 (that is, one column at a time).

In R2016b, the code generator produces this code.

 /* Product: '<Root>/Product' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 */
 for (i_0 = 0; i_0 < 5; i_0++) {
 for (i = 0; i < 5; i++) {
 matrix_multiply_B.Product3[i + 5 * i_0] = 0.0;
 for (i_1 = 0; i_1 < 5; i_1++) {
 matrix_multiply_B.Product3[i + 5 * i_0] += tmp_1[5 * i_1 + i] * tmp_2[5 *
 i_0 + i_1];
 }
 }
 }

R2016b

14-34

 /* End of Product: '<Root>/Product' */

In the matrix_multiply_step function, element assignments to the array
matrix_multiply_B.Product3 occur in contiguous order (that is, one row at a time). The
assignments occur in contiguous order because the code generator interchanges the iteration
variables i_0 and i. In R2016a, i_0 is the iteration variable for the inner for loop, and i is the
iteration variable for the outer for loop. In R2016b, i_0 is the iteration variable for the outer for
loop, and i is the iteration variable for the inner for loop.

Loop fusion for nested for loops
In R2016a, for a model that used a Concatenate block to concatenate input signals into a continuous
multidimensional signal, the generated code contained separate nested for loops for each signal. In
R2016b, the code generator combines these for loops. This optimization conserves ROM
consumption and increases code execution speed.

For example, in the model loop_fusion, the Vertical Matrix Concatenate block concatenates three
signals that each have dimensions 3x4 into one signal with dimensions 9x4.

In R2016a, the code generator produced this code.

void loop_fusion_step(void)
{
 int32_T i;
 int32_T i_0;
 for (i = 0; i < 4; i++) {
 for (i_0 = 0; i_0 < 3; i_0++) {
 loop_fusion_Y.Out1[i_0 + 9 * i] = loop_fusion_U.In1[3 * i + i_0];
 }
 }

 for (i = 0; i < 4; i++) {
 for (i_0 = 0; i_0 < 3; i_0++) {
 loop_fusion_Y.Out1[(i_0 + 9 * i) + 3] = loop_fusion_U.In1[3 * i + i_0];
 }
 }

 for (i = 0; i < 4; i++) {
 for (i_0 = 0; i_0 < 3; i_0++) {
 loop_fusion_Y.Out1[(i_0 + 9 * i) + 6] = loop_fusion_U.In1[3 * i + i_0];

 Performance

14-35

 }
 }
}

There are three nested for loops.

In R2016b, the code generator produces this code.

void loop_fusion_step(void)
{
 int32_T i;
 int32_T i_0;
 for (i_0 = 0; i_0 < 4; i_0++) {
 for (i = 0; i < 3; i++) {
 loop_fusion_Y.Out1[i + 9 * i_0] = loop_fusion_U.In1[3 * i_0 + i];
 loop_fusion_Y.Out1[(i + 9 * i_0) + 3] = loop_fusion_U.In1[3 * i_0 + i];
 loop_fusion_Y.Out1[(i + 9 * i_0) + 6] = loop_fusion_U.In1[3 * i_0 + i];
 }
 }
}

There is one nested for loop.

More efficient initialization code for root-level inports
Loop fusion in model_initialize function

In R2016a, the code generator did not fuse for loops that initialized data for root-level inports.

In R2016b, the code generator can fuse for loops that have the same upper bound value.

For example, in loopfusionex, for each Inport block, the Port dimensions parameter is [50 47].

In R2016a, in the loopfusionex_initialize function, the code generator produced this code.

R2016b

14-36

/* external inputs */
 {
 int32_T i;
 for (i = 0; i < 2350; i++) {
 loopfusionex_U.In1[i] = 0.0;
 }
 }

 {
 int32_T i;
 for (i = 0; i < 2350; i++) {
 loopfusionex_U.In2[i] = 0.0;
 }
 }

 {
 int32_T i;
 for (i = 0; i < 2350; i++) {
 loopfusionex_U.In3[i] = 0.0;
 }
 }

For each Inport block, the generated code contained a separate for loop. The code generator
generated code that initialized root inports to zero because in the Configuration Parameters dialog
box, on the Optimization pane, the Remove root level I/O zero initialization parameter is not
selected.

In R2016b, the code generator produces this code.

 /* external inputs */
 {
 int32_T i;
 for (i = 0; i < 2350; i++) {
 loopfusionex_U.In1[i] = 0.0;
 loopfusionex_U.In2[i] = 0.0;
 loopfusionex_U.In3[i] = 0.0;
 }
 }

The generated code contains one for loop to initialize data for the three root-level inports.

One iteration variable for multiple for loops

In R2016a, in the model_ initialize function, for for loops that initialized data for root-level
Inport blocks, there was an iteration variable for each for loop.

In R2016b, for for loops that initialize data for root-level Inport blocks, there is one iteration variable
for these for loops.

For example, in for_loop_iterator, for In1, In2, and In3, the Port dimension parameter is [50
47], [20 10], and 20, respectively. In the Configuration Parameters dialog box, on the
Optimization pane, the Remove root level I/O zero initialization parameter is not selected.

 Performance

14-37

In R2016a, in the for_loop_iterator_initialize function, the code generator produced this
code:

/* external inputs */
 {
 int32_T i;
 for (i = 0; i < 2350; i++) {
 for_loop_iterator_U.In1[i] = 0.0;
 }
 }

 {
 int32_T i;
 for (i = 0; i < 200; i++) {
 for_loop_iterator_U.In2[i] = 0.0;
 }
 }

 {
 int32_T i;
 for (i = 0; i < 20; i++) {
 for_loop_iterator_U.In3[i] = 0.0;
 }
 }

The iteration variable i was declared three times—once for each for loop.

In R2016b, in the for_loop_iterator_initialize function, the code generator produces this
code:

/* external inputs */
 {
 int32_T i;
 for (i = 0; i < 2350; i++) {

R2016b

14-38

 for_loop_iterator_U.In1[i] = 0.0;
 }

 for (i = 0; i < 200; i++) {
 for_loop_iterator_U.In2[i] = 0.0;
 }

 for (i = 0; i < 20; i++) {
 for_loop_iterator_U.In3[i] = 0.0;
 }
 }

The generated code declares the iteration variable, i, once.

More efficient code for Boolean expressions
In R2016b, for a model containing a Logic block with the Operator parameter set to NXOR, the code
generator removes an equality operator. Removing this operator makes the generated code less
complex and more efficient.

For example, the model nxor_example contains two Inport blocks that connect to a Logic block. In
the Inport block parameters dialog box, on the Signal Attributes tab, the Data type parameter is
set to Boolean.

In R2016a, in the nxor_example_step function, the code generator produced this code:

void nxor_example_step(void)
{
 Y2 = !(U3 != U4);
}

The generated code contained two equality operators.

In R2016b, the code generator produces this code:

void nxor_example_step(void)
{
 Y2 = (U3 == U4);
}

 Performance

14-39

The generated code contains one equality operator.

R2016b

14-40

Verification

Verification of size_t and ptrdiff_t hardware settings
In R2016b, the Configuration Parameters > Hardware Implementation pane provides settings
for the ANSI C data types size_t and ptrdiff_t. At the start of a processor-in-the-loop (PIL)
simulation, the software verifies the settings with reference to the target hardware.

Verification of PIL target connectivity configuration
Through the piltest function, you can use a test suite to verify your custom processor-in-the-loop
(PIL) target connectivity configuration. Verify the target connectivity configuration early and
independently of your model development and code generation.

For more information, see Create PIL Target Connectivity Configuration.

Signal range checking in SIL and PIL simulations
Top-model and Model block software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations
support the Configuration Parameters > Diagnostics > Data Validity > Simulation range
checking (SignalRangeChecking) diagnostic. With this diagnostic, you can detect mismatches
between model and generated code simulations that arise when you specify the code optimization
configuration parameter, UseSpecifiedMinMax. The range checking applies to only root-level I/O
signals of the SIL or PIL component.

SIL and PIL block support for Simulink Function and Function Caller
blocks
You can run simulations with SIL and PIL blocks that you create from subsystems containing Simulink
Function or Function Caller blocks. Function calls across the SIL or PIL block boundary are not
supported.

 Verification

14-41

https://www.mathworks.com/help/releases/R2016b/ecoder/ref/piltest.html
https://www.mathworks.com/help/releases/R2016b/ecoder/ug/create-pil-target-connectivity-configuration.html
https://www.mathworks.com/help/releases/R2016b/simulink/gui/simulation-range-checking.html
https://www.mathworks.com/help/releases/R2016b/simulink/gui/optimize-using-the-specified-minimum-and-maximum-values.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2016b

14-42

https://www.mathworks.com/support/bugreports/

R2016a

Version: 6.10

New Features

Bug Fixes

Compatibility Considerations

15

Code Generation from MATLAB Code

Export data by using ExportedDefine storage class
In R2016a, when you generate C/C++ code from MATLAB code, you can use an ExportedDefine
storage class to declare global variables with #define directives. The code generator emits these
directives to the entryfcn.h header file. entryfcn.h is the name of the first entry-point function.

To assign the ExportedDefine storage class to a global variable, in your MATLAB code, use the
coder.storageClass function. Only when you use an Embedded Coder project or configuration
object for generation of C/C++ libraries or executables does the code generation software recognize
coder.storageClass calls.

The syntax for coder.storageClass is:

coder.storageClass(var_name, storage_class)

var_name is the name of a global variable. Specify var_name as a constant string. Specify
storage_class as 'ExportedDefine'. For example,
coder.StorageClass('g','ExportedDefine') assigns the ExportedDefine storage class to
the global variable g. To assign the ExportedDefine storage class to a global variable, the global
variable must be only read and not written to in the code.

SIL execution returns standard output and standard error streams
During a SIL execution, the SIL application redirects the stdout and stderr streams. When the
application terminates, the MATLAB Command Window now displays the information from the
redirected streams.

The SIL application also provides a basic signal handler, which captures the POSIX® signals SIGFPE,
SIGILL, SIGABRT, and SIGSEV. The SIL application includes the file signal.h for the signal
handler.

The information from the redirected streams can help you to debug SIL applications that fail before
the execution is complete. For example, you can view:

• Output from printf statements in your code.
• If you enable run-time error detection, messages sent to stderr.
• Some low-level system messages.

For more information, see Debug SIL Execution.

R2016a

15-2

https://www.mathworks.com/help/releases/R2016a/ecoder/ref/coder.storageclass.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/code-debugging-during-sil-execution.html

Model Architecture and Design

Compile-Time Dimensions: Generate compiler directives (#define) for
implementing signal dimensions
Previously, Simulink treated signal and parameter dimension specifications as numeric constants. In
R2016a, you can use a Simulink.Parameter object as a symbol in a MATLAB expression to
represent a dimension value. During simulation, Simulink propagates dimension symbols throughout
the model and preserves these symbols in the propagated signal dimensions.

For example, in the model sym_dim_ex, the Port Dimensions parameter of In1 is the
Simulink.Parameter D.

The sym_dim_ex.c file contains the following code:

for (i = 0; i < D; i++) {
 sym_dim_ex_Y.Out1[i] = 2.0 * sym_dim_ex_U.In1[i];
 }

In a header file, a macro defines the symbol D:

#define D 100

For the same model, if you change the value of D, the generated code remains the same except for the
definition of D:

#define D 200

When you use symbols instead of numeric constants for dimension specifications, you can compile the
same generated code into multiple applications of different sizes. When you simulate the model, you
validate the behavior of the generated code for a set of symbolic dimension values. Change the values
of the Simulink.Parameter objects that define the dimension symbols and simulate the model with
the new values to check that the new values are valid.

For more information on how to specify dimensions with Simulink.Parameters, see Implement
Dimension Variants for Array Sizes in Generated Code

The dimension variants feature is on by default. You can turn off this feature by clearing the Allow
symbolic dimension specification parameter on the All Parameters tab of the Configuration
Parameters dialog box.

Compile-Time Variants: Generate compiler directives (#if) for variant
choices specified with Variant Source and Variant Sink blocks
Previously, you used model variants and variant subsystems to make parts of a model conditional.
Preprocessor conditionals controlled which child subsystem of the variant subsystem or which child
model of the model variant was active in the generated code.

 Model Architecture and Design

15-3

https://www.mathworks.com/help/releases/R2016a/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/implement-dimension-variants-for-array-sizes-in-generated-code.html
https://www.mathworks.com/help/releases/R2016a/simulink/gui/configuration-parameters-on-all-parameters-tab.html#Tag_ConfigSet_Debug_AllowSymbolicDim
https://www.mathworks.com/help/releases/R2016a/simulink/gui/configuration-parameters-on-all-parameters-tab.html#Tag_ConfigSet_Debug_AllowSymbolicDim

In R2016a, you can make parts of a model conditional without placing blocks inside variant
subsystems or model variants. A Variant Source block enables variant choices at the source of a
signal. For the Variant Source block, you can specify one or no active input port. A Variant Sink block
enables variant choices at the destination of a signal. For the Variant Sink block, you can specify one
or no active output port. During simulation, Simulink ignores blocks that connect to inactive ports.

When you generate code, you can generate code for only the active variant choice or generate
preprocessor conditionals that defer the choice of active variant until compilation time. You can
generate preprocessor conditionals that allow for no active variant choice. For more information, see
Represent Variant Source and Sink Blocks in Generated Code

C++ Code Generation: Use referenced models with multitasking,
export-functions, and virtual buses
Previously, code generation for the C++ model class interface was limited to single tasking mode for
model reference targets and non-virtual buses for crossing model boundaries. Also, the Export
Function feature could not generate code for the C++ model class interface.

The C++ model class interface support in this release provides multitasking mode for model
reference target, provides virtual bus for crossing model boundaries, and supports export function-
call subsystems. For more information about using exported functions with a C++ model class
interface, see Export Function-Call Subsystems. For more information about multitasking and virtual
buses with C++ code generation, see “Default style C++ interface replaces the void-void style C++
interface” on page 15-13.

MISRA C:2012 Compliance: Check block names and Assignment blocks
by using the Model Advisor
To improve MISRA C:2012 compliance, in the Model Advisor By Task > Modeling Guidelines for
MISRA C:2012 folder, you can run the following new checks.

Check Description Addresses
MISRA C:2012
Rule

Check for unsupported block names Identifies block names that contain a /
character.

3.1

Check usage of Assignment blocks Identifies Assignment blocks with
incomplete array initialization that do not
have block parameter Action if any output
element is not assigned set to Error or
Warning.

9.1

AUTOSAR Round Trip: Automate model additions for update and
merge of ARXML files
Simulink provides the ability to merge AUTOSAR authoring tool changes into a model as part of
round-trip iterations. R2016a adds more automation and better reporting to the merge process. The
software:

R2016a

15-4

https://www.mathworks.com/help/releases/R2016a/ecoder/ug/represent-inline-variants-in-generated-code.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/export-function-call-subsystems.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ref/embedded-codersimulink-coder-checks.html#bu20qj1-1
https://www.mathworks.com/help/releases/R2016a/ecoder/ref/embedded-codersimulink-coder-checks.html#bu20rna-1

• Automates Simulink block additions. In the updated model, green highlighting identifies the added
blocks.

• Lists required Simulink block deletions. In the updated model, red highlighting identifies the
blocks to delete.

For more information, see Import AUTOSAR Software Component Updates.

Note This capability is available to R2015b Embedded Coder customers by installing the R2015b
Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.2 or later.

R2016a provides many other enhancements to Simulink modeling of AUTOSAR elements and
AUTOSAR code generation. For more information, see:

• Under Model Architecture and Design:

• “Variants in AUTOSAR component modeling” on page 15-5
• “AUTOSAR DataReceivedEvents for receiver ports in ImplicitReceive data access mode” on

page 15-7
• “AUTOSAR LiteralPrefix for enumerations in IncludedDataTypeSets” on page 15-7
• “Programmatic validation and synchronization of AUTOSAR model configurations” on page 15-

7
• Under Code Generation:

• “AUTOSAR arxml round trip” on page 15-14
• “Improved AUTOSAR library support for Mfx functions” on page 15-15
• “AUTOSAR target no longer supports building wrapper subsystem as AUTOSAR SW-

Component” on page 15-15

Comment change in generated code
In R2016a, for models containing hierarchical model elements such as a conditionally executed
subsystem and either a reusable subsystem, a Stateflow Chart, or a model reference, there is a
comment change in the generated code.

In R2015b, for the code that sets the initial conditions of block states inside these hierarchical model
elements, the comment states Initial Conditions or InitializeConditions.

In R2016a, the comment states System initialize or SystemInitialize.

Variants in AUTOSAR component modeling
R2016a enhances AUTOSAR component modeling with modeling support for:

• AUTOSAR variants in ports and runnables
• AUTOSAR variants in array sizes

 Model Architecture and Design

15-5

https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/merge-autosar-authoring-tool-changes-into-model.html

AUTOSAR variants in ports and runnables

AUTOSAR software components can use variants to enable or disable AUTOSAR elements, such as
ports and runnables, based on defined conditions. Embedded Coder now supports modeling
AUTOSAR variants in ports and runnables.

In Simulink, you can:

• Import AUTOSAR ports and runnables with variation points.

The arxml importer creates the required model elements, including workspace variables for
modeling with variants, Variant Sink blocks, and Variant Source blocks to propagate variant
conditions.

• Model AUTOSAR ports and runnables with variation points.

• To define variant condition logic, use Simulink.Variant data objects.
• To represent AUTOSAR system constants, use AUTOSAR.Parameter data objects with storage

class SystemConstant.
• To propagate variant conditions for the AUTOSAR elements, use Variant Sink and Variant

Source blocks.
• Run validation on the AUTOSAR configuration. The validation software checks that variant

conditions on Simulink blocks match the designed behavior from the imported arxml code.
• Export previously imported AUTOSAR ports and runnables with variation points.

For more information, see Model AUTOSAR Variants and Configure AUTOSAR Variants in Ports and
Runnables.

AUTOSAR variants in array sizes

AUTOSAR software components can flexibly specify the dimensions of an AUTOSAR element, such as
a port, by using a symbolic reference to a system constant. The system constant defines the array size
of the port data type.

Embedded Coder now supports modeling AUTOSAR variants in array sizes.

In Simulink, you can:

• Import AUTOSAR elements with variant array sizes.

• The arxml importer creates the required model elements, including AUTOSAR.Parameter
data objects with storage class SystemConstant, to represent the array size values.

• Each block created by the importer to represent an AUTOSAR element with variant array sizes
references AUTOSAR.Parameter data objects to define its dimensions.

• Model AUTOSAR elements with variant array sizes.

• Create blocks that represent AUTOSAR elements.
• To represent array size values, add AUTOSAR.Parameter data objects with storage class

SystemConstant.
• To specify array size for an AUTOSAR element, reference an AUTOSAR.Parameter data

object.
• Modify array size values in system constants and simulate the model, without regenerating code

for simulation.

R2016a

15-6

https://www.mathworks.com/help/releases/R2016a/simulink/slref/variantsink.html
https://www.mathworks.com/help/releases/R2016a/simulink/slref/variantsource.html
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/model-autosar-variants.html
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-variants-in-ports-and-runnables.html
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-variants-in-ports-and-runnables.html

• Generate C and arxml code with symbols corresponding to variant array sizes.

For more information, see Variants in Array Sizes and Configure AUTOSAR Variants in Array Sizes.

AUTOSAR DataReceivedEvents for receiver ports in ImplicitReceive
data access mode
R2016a enhances AUTOSAR sender-receiver modeling with support for DataReceivedEvents for
receiver ports in ImplicitReceive data access mode. Previously, the software supported
DataReceivedEvents for receiver ports only in ExplicitReceive, QueuedExplicitReceive,
and EndToEndRead data access modes.

Note This capability is available to R2015b Embedded Coder customers by installing the R2015b
Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.0 or later.

AUTOSAR LiteralPrefix for enumerations in IncludedDataTypeSets
The arxml importer can now import AUTOSAR LiteralPrefixs defined in
IncludedDataTypeSets. The software adds LiteralPrefixs to Simulink enumerated data types
generated by the importer.

Note This capability is available to R2015b Embedded Coder customers by installing the R2015b
Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.2 or later.

Programmatic validation and synchronization of AUTOSAR model
configurations
R2016a adds MATLAB functions for validating and synchronizing AUTOSAR model configurations:

• autosar.api.validateModel — Validate AUTOSAR properties and Simulink to AUTOSAR
mapping of specified model.

• autosar.api.syncModel — Synchronize Simulink to AUTOSAR mapping of specified model
with Simulink block modifications.

The functions are equivalent to using the Validate and Synchronize icons in the graphical
views of an AUTOSAR configuration.

Note This capability is available to R2015b Embedded Coder customers by installing the R2015b
Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.1 or later.

 Model Architecture and Design

15-7

https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/model-autosar-variants.html#bu7wh1j-1
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-variant-dimensions.html
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/autosar.api.validatemodel.html
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/autosar.api.syncmodel.html

Data, Function, and File Definition

In/Out Arguments: Specify same variable name for in/out arguments
of MATLAB Function and Model blocks
Buffer reuse across Model blocks

Previously, the code generator tried to reuse buffers for a pair of model step function input and
output ports that were assigned the same argument name using function prototype control. This
optimization decreases RAM/ROM consumption because there are less data copies and global
variables in the generated code.

In R2016a, the code generator tries to reuse the input and output buffers of Model blocks.

For example, the model parent_model contains three copies of the model child_model.

In R2015b and R2016a, the code generator produces the following code in child_model.cpp:

void bottommodel::step(real_T arg_Inout1[9], const real_T arg_In2[9])
{
 int32_T i;
 for (i = 0; i < 9; i++) {
 arg_Inout1[i] += arg_In2[i];
 }
}

The generated code uses the same buffer arg_Inout1 for the input In1 and the output Out1.

In R2015b, the code generator produces this code in parent_model.cpp:

void topmodel::step()
{
 real_T rtb_Model[9];
 real_T rtb_Model1[9];

R2016a

15-8

 real_T rtb_Model2[9];
 int32_T rtb_PulseGenerator1;
 real_T rtb_Add[9];
 real_T rtb_Add1[9];
 int32_T i;
 …
 for (i = 0; i < 9; i++) {
 rtb_Add[i] = parent_model_U.In1[i] + (real_T)rtb_PulseGenerator1;
 }

 …

 for (i = 0; i < 9; i++) {
 rtb_Add1[i] = parent_model_U.In2[i] + (real_T)rtb_PulseGenerator1;
 }

 (void) memcpy(&rtb_Model[0], &rtb_Add[0],
 9*sizeof(real_T));
 ModelMDLOBJ1.step(&rtb_Model[0], &rtb_Add1[0]);
 (void) memcpy(&rtb_Model1[0], &rtb_Model[0],
 9*sizeof(real_T));
 Model1MDLOBJ2.step(&rtb_Model1[0], &rtb_Add1[0]);
 (void) memcpy(&rtb_Model2[0], &rtb_Model1[0],
 9*sizeof(real_T));
 Model2MDLOBJ3.step(&rtb_Model2[0], &rtb_Add1[0]);
 (void) memcpy(&parent_model_Y.Out1[0], &rtb_Model2[0],
 9*sizeof(real_T));
 Model3MDLOBJ4.step(&parent_model_Y.Out1[0], &rtb_Add1[0]);
}

The code generator does not reuse the output of one child model as the input to the next child model.
Instead, there is a full array data copy prior to each call to the model step function.

In R2016a, the code generator produces the following code:

void topmodel::step()
{
 int32_T rtb_PulseGenerator1;
 real_T rtb_Model2[9];
 real_T rtb_Add1[9];
 int32_T i;

 for (i = 0; i < 9; i++) {
 rtb_Model2[i] = parent_model_U.In1[i] + (real_T)rtb_PulseGenerator1;
 }

 …

 for (i = 0; i < 9; i++) {
 rtb_Add1[i] = parent_model_U.In2[i] + (real_T)rtb_PulseGenerator1;
 }

 ModelMDLOBJ1.step(&rtb_Model2[0], &rtb_Add1[0]);
 Model1MDLOBJ2.step(&rtb_Model2[0], &rtb_Add1[0]);
 Model2MDLOBJ3.step(&rtb_Model2[0], &rtb_Add1[0]);
 memcpy(&parent_model_Y.Out1[0], &rtb_Model2[0], (uint32_T)(9U * sizeof(real_T)));
 Model3MDLOBJ4.step(&parent_model_Y.Out1[0], &rtb_Add1[0]);
}

 Data, Function, and File Definition

15-9

The code generator reuses the output of each child model as the input to the next child model. As a
result, there are three less local arrays and four less full array data copies in the generated code.

To configure model step function I/O arguments to allow buffer reuse, use either C function prototype
control or C++ class interface control. When generating C code, there can be only one instance of
the same Model Reference block in the parent model. When generating C++ code, the same Model
Reference block can occur multiple times in the parent model. For more information, see Combine I/O
Arguments in Model Step Interface

Buffer reuse across MATLAB Function blocks

In R2016a, you can specify the same variable name for the input and output of a MATLAB Function
block. If you connect multiple MATLAB Function blocks with the same variable name for the input
and output arguments, the code generator tries to reuse the output of one MATLAB Function block as
the input to the next MATLAB Function block. This optimization conserves RAM/ROM consumption by
reducing the number of local variables and data copies in the generated code.

For example, the model named mb_reuse contains four MATLAB Function blocks.

Each MATLAB Function block contains the following code:

function y = fcn(y)

y = y+4;

In R2016a, the code generator produces this code:

void mb_reuse_MATLABFunction1(real_T *rty_y)
{
 *rty_y += 4.0;
}
void mb_reuse_step(void)
{
 real_T rtb_y_p;
 rtb_y_p = (mb_reuse_DW.clockTickCounter < mb_reuse_P.PulseGenerator_Duty) &&
 (mb_reuse_DW.clockTickCounter >= 0) ? mb_reuse_P.PulseGenerator_Amp : 0.0;
 if (mb_reuse_DW.clockTickCounter >= mb_reuse_P.PulseGenerator_Period - 1.0) {
 mb_reuse_DW.clockTickCounter = 0;
 } else {
 mb_reuse_DW.clockTickCounter++;
 }

 mb_reuse_MATLABFunction1(&rtb_y_p);
 mb_reuse_MATLABFunction1(&rtb_y_p);
 mb_reuse_MATLABFunction1(&rtb_y_p);
 mb_reuse_Y.Out1 = rtb_y_p;
 mb_reuse_MATLABFunction1(&mb_reuse_Y.Out1);
}

R2016a

15-10

https://www.mathworks.com/help/releases/R2016a/ecoder/ug/combine-io-arguments-in-model-step-interface.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/combine-io-arguments-in-model-step-interface.html

The code generator reuses the variable rtb_y_p for the input and output arguments of each
MATLAB Function block.

On the Code Generation tab in the subsystem Block Parameters dialog box, if Function packaging
is set to Nonreusable function and Function interface is set to Allows arguments, the code
generator cannot reuse the input and output buffers.

Custom Storage Class Type AccessFunction
In R2016a, you can use the Custom Storage Class Designer to create custom storage classes of the
new type AccessFunction. These custom storage classes access data in the generated code through
functions whose custom definitions you provide. The built-in custom storage class GetSet from the
package Simulink now uses this type.

You can configure these attributes as instance-specific or as common to all data items that use the
custom storage class:

• For your get and set functions, a naming scheme that uses the name of each data item
• The name of the header file in which you provide the function prototypes

When you copy the +SimulinkDemos package to create your own data class package, you can
modify the definition of the custom storage class GetSet by using the Custom Storage Class
Designer.

For more information about the built-in custom storage class GetSet, see Access Data Through
Functions with Custom Storage Class GetSet. To create custom storage classes, see Design Custom
Storage Classes and Memory Sections.

Creation of custom storage classes for macros defined by compiler
options
Previously, the built-in custom storage class CompilerFlag used the type Other. In R2016a,
CompilerFlag uses the type Unstructured and represents an imported macro that does not
require a header file.

To import macros that you define by configuring compiler options, you can use CompilerFlag or
create your own custom storage class. In the Custom Storage Class Designer:

• Set Data initialization to Macro.
• Set Data scope to Imported.
• Set Header file to Specify. Omit the header file name.

For more information, see Design Custom Storage Classes and Memory Sections.

Generation of ERT S-functions that represent variant controls as
preprocessor conditionals
Previously, when you generated an ERT S-function from a subsystem, Simulink.Parameter objects
that you selected as tunable appeared in the S-function code as tunable global variables. You could
change the values of these parameters in the S-Function block dialog box during simulation.

 Data, Function, and File Definition

15-11

https://www.mathworks.com/help/releases/R2016a/ecoder/ug/getset-custom-storage-classes.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/getset-custom-storage-classes.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/design-custom-storage-classes-and-memory-sections.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/design-custom-storage-classes-and-memory-sections.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/design-custom-storage-classes-and-memory-sections.html

In R2016a, if a Simulink.Parameter object uses a custom storage class that treats the parameter
as a macro in the generated code, you cannot select the parameter as a tunable parameter for the
generated S-function. Instead, the S-function code generator applies the custom storage class to the
parameter object. This generation of macros in the S-function code allows you to generate S-
functions from subsystems that contain variant elements, such as Variant Subsystem blocks, that you
configure to produce preprocessor conditionals in the generated code. However, you cannot change
the value of the parameter during simulation of the S-function.

For more information about generating S-functions from subsystems, see Macro Parameters.

Compatibility Considerations
If you apply macro custom storage classes to Simulink.Parameter objects, you can no longer
select the parameter objects as tunable parameters when you generate an ERT S-function. To select
these parameter objects as tunable parameters, apply a different storage class or custom storage
class.

R2016a

15-12

https://www.mathworks.com/help/releases/R2016a/rtw/ug/automated-s-function-generation.html#bu5ga6c

Code Generation

Default style C++ interface replaces the void-void style C++ interface
In C++ class interface support, the Default step method replaces the Void-void step method. The
default style interface adds support for:

• Multitasking mode for model reference target
• Virtual bus for crossing model boundaries

When the Code Generation pane selection for System target file is ert.tlc (or is an ERT-derived
target), the Code Generation pane selection for Language is C++, and the Code Generation >
Interface pane selection for Code interface packaging is C++ class, you click the Configure C+
+ Class Interface button to configure the step method for your model.

For models configured to use the Void-void step method, the code generator treats this replaced
configuration as the Default step method. No incompatibility occurs for the model configuration.

RTW.ModelCPPDefaultClass replaces RTW.ModelCPPVoidClass. Where code uses the replaced
RTW.ModelCPPVoidClass class, update the code to use the RTW.ModelCPPDefaultClass,
otherwise potential incompatibility can occur.

For information about the step methods, see Control Generation of C++ Class Interfaces. For
information about using an ERT-derived target with C++ support, see Support C++ Class Interface
Control.

Compiler warning limitation removed for portable word sizes in SIL
simulations
Prior to R2016a, compilation warnings occurred for code generated by using portable word sizes if all
of the following conditions existed:

• The combination of word sizes for the host and target computers caused rtwtypes.h to redefine
the word sizes by using preprocessor macros. For example, when the target computer had a 16-bit
int data type and the host computer had a 16-bit short data type, int16_T was redefined to be
short on the host computer and int on the target computer. The data types were used for
pointer arguments to function calls. The called functions resided on the host computer and were
precompiled (not compiled using rtwtypes.h).

• The data types were used in pointer arguments to function calls.
• The called functions resided on the host computer and were precompiled (not compiled by using

rtwtypes.h).

Under these conditions, the compiler typically issued a warning similar to the following warning:

warning: passing argument 2 of 'frexp' from incompatible pointer type

Executing the generated code on the host computer led to memory corruption. For example, the
function double frexp (double value, int *exp); expected int * as the second argument.
However, int16_T * is passed in the generated code. On the host computer, int16_T was redefined
to short. During SIL simulation, frexp attempted to write four bytes to a 2-byte location.

 Code Generation

15-13

https://www.mathworks.com/help/releases/R2016a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html
https://www.mathworks.com/help/releases/R2016a/rtw/ug/supporting-optional-features.html#bru4p0f-1
https://www.mathworks.com/help/releases/R2016a/rtw/ug/supporting-optional-features.html#bru4p0f-1

The suggested workaround for this limitation was to develop a custom code replacement library for
functions that wrote to address locations obtained through pointer arguments.

As of R2016a, this limitation does not apply. When you select portable word sizes, if possible, the code
generator handles unsized arguments for standard library functions registered in libraries that
MathWorks provides. For unhandled cases, the code generator reports an error.

If user-defined code replacements use arguments of word sizes that map to settings of hardware
implementation model configuration parameters, and you select portable word sizes, the code
generator issues a warning.

If you use portable word sizes, when possible, define the size of arguments.

For more information, see Configure Hardware Implementation Settings and Enable portable word
sizes.

AUTOSAR arxml round trip
R2016a enhances the AUTOSAR arxml round-trip workflow with support for:

• CompuMethods with LINEAR and TEXTTABLE COMPU-SCALEs
• PredefinedVariants import and export
• Enhanced control of AUTOSAR package path specification

CompuMethods with LINEAR and TEXTTABLE COMPU-SCALEs

In R2016a, you can import and export a CompuMethod that uses LINEAR and TEXTTABLE scaling.
Importing application data types that reference CompuMethods of category
SCALE_LINEAR_AND_TEXTTABLE creates Simulink.NumericType or Simulink.AliasType data
objects in the Simulink workspace. In Simulink, you can modify the LINEAR scaling for the
CompuMethods. The TEXTTABLE scaling is read-only.

For more information, see CompuMethod Categories for Data Types and Modify Linear Scaling for
SCALE_LINEAR_AND_TEXTTABLE CompuMethod.

Note This capability is available to R2015b Embedded Coder customers by installing the R2015b
Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.1 or later.

PredefinedVariants import and export

For an AUTOSAR software component that contains variation points, to define the values that control
variation points, you can use the following AUTOSAR elements:

• SwSystemconst — Defines a system constant that serves as an input to control a variation point.
• SwSystemconstantValueSet — Specifies a set of system constant values.
• PredefinedVariant — Describes a combination of system constant values, among potentially

multiple valid combinations, to apply to an AUTOSAR software component.

Previously, when creating a model from arxml code, the arxml importer did not provide a way to
specify a PredefinedVariant or SwSystemconstantValueSets as a basis for resolving variation
points in the model.

R2016a

15-14

https://www.mathworks.com/help/releases/R2016a/ecoder/ug/configuring-a-sil-or-pil-simulation.html#br86vhn
https://www.mathworks.com/help/releases/R2016a/ecoder/ref/enable-portable-word-sizes.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ref/enable-portable-word-sizes.html
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/data-types.html#bua1enf-1
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-compumethods.html#bu7wkgr-1
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-compumethods.html#bu7wkgr-1

In R2016a, you can resolve variation points in an AUTOSAR software component at model creation
time. Specify a PredefinedVariant or SwSystemconstantValueSets with which the importer
can initialize SwSystemconst data.

After model creation, you can run simulations and generate code based on the combination of
variation point input values that you specified.

For more information, see Model AUTOSAR Variants and Control AUTOSAR Variants with Predefined
Value Combinations.

Enhanced control of AUTOSAR package path specification

In R2016a, if you modify an AUTOSAR package path, and if packageable elements of that category
are affected, you can:

• Move the elements from the existing package to the new package.
• Set the new package path without moving the elements.

If you modify a package path in the Configure AUTOSAR Interface dialog box, and if packageable
elements of that category are affected, a dialog box opens with control options. If you
programmatically modify a package path, you can use the MoveElements property to specify
handling of affected elements.

For more information, see Control AUTOSAR Elements Affected by Package Path Modifications.

Note This capability is available to R2015b Embedded Coder customers by installing the R2015b
Embedded Coder Support Package for AUTOSAR Standard, Version 15.2.0 or later.

Improved AUTOSAR library support for Mfx functions
As of R2016a, the AUTOSAR 4.0 code replacement library (CRL) replaces abs, saturate, min, and
max function calls that involve operands with equal slope and bias with calls to corresponding Mfx
functions.

Calls To Replace
Mfx_Abs abs with operands that have equal slope
Mfx_Limit saturate with operands that have equal slope and bias
Mfx_Max max with operands that have equal slope and bias
Mfx_Min min with operands that have equal slope and bias

For more information about using the AUTOSAR 4.0 CRL, see Code Generation with AUTOSAR
Library.

AUTOSAR target no longer supports building wrapper subsystem as
AUTOSAR SW-Component
In R2016a, the AUTOSAR target removes support for using right-click builds to build a wrapper
subsystem that models an AUTOSAR SW-Component. In R2013b, a top model approach to modeling
multirunnable AUTOSAR SW-Components replaced the wrapper subsystem approach. For more
information, see Multi-Runnable Software Components and Configure AUTOSAR Multiple Runnables.

 Code Generation

15-15

https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/model-autosar-variants.html
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/control-autosar-variants-with-predefinedvariant-or-swsystemconstantvaluesets.html
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/control-autosar-variants-with-predefinedvariant-or-swsystemconstantvaluesets.html
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-autosar-packages.html#bu7wp5o-1
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/code-replacement-for-autosar.html
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/code-replacement-for-autosar.html
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/autosar-software-components.html#buryr9d-1
https://www.mathworks.com/help/releases/R2016a/ecoder/autosar/configure-multiple-runnables.html

Compatibility Considerations
In R2016a, if you try to configure and build an AUTOSAR SW-Component by using a wrapper
subsystem, the software issues an error message. The message states that configuring a subsystem
as an AUTOSAR SW-Component is not supported.

To convert subsystem multirunnables to top model multirunnables, use the subsystem-to-model
conversion techniques described in Convert a Subsystem to a Referenced Model. After the basic
conversion, you must manually reestablish some AUTOSAR configuration information from the
subsystem configuration in the new configuration.

Root model name in generated identifier for shared utility files
In R2016a, you can add the root model name to the generated identifier for shared utility files. When
you merge code for multiple models, including the root model name in the generated identifier avoids
name clashes. Name clashes arise due to identical shared utility file names.

To specify that the code generator add the root model name, in the Configuration Parameters dialog
box, on the Code Generation > Symbols pane, add the $R token to the Shared Utilities field.

Improved configuration parameter defaults for Embedded Coder
targets
Improved configuration parameter defaults for Embedded Coder targets enable more optimizations
and traceability options. These parameter defaults make it easier to develop your model for
production code generation. In R2016a, when you switch your system target file to ert.tlc, the
following configuration parameters are enabled by default:

• Convert if-elseif-else patterns to switch-case statements (ConvertIfToSwitch)
• Suppress generation of default cases for Stateflow switch statements if unreachable

(SuppressUnreachableDefaultCases)
• Simulink data object descriptions (SimulinkDataObjDesc)
• Simulink block descriptions (InsertBlockDesc)
• Verbose comments for SimulinkGlobal storage class (ForceParamTrailComments)
• Open report automatically (LaunchReport)
• Create code generation report (GenerateReport)
• Stateflow object descriptions (SFDataObjDesc)
• Show eliminated blocks (ShowEliminatedStatement)
• Operator annotations (OperatorAnnotations)
• MATLAB function help text (MATLABFcnDesc)
• MATLAB source code as comments (MATLABSourceComments)
• Traceable Simulink blocks (GenerateTraceReportSl)
• Traceable Stateflow objects (GenerateTraceReportSf)
• Traceable MATLAB functions (GenerateTraceReportEml)
• Model-to-code (GenerateTraceInfo)
• Code-to-model (IncludeHyperlinkInReport)

R2016a

15-16

https://www.mathworks.com/help/releases/R2016a/simulink/ug/convert-a-subsystem-to-a-referenced-model.html

• Eliminated / virtual blocks (GenerateTraceReport)

Streamlined code generation panes for easier model configuration
In the Configuration Parameters dialog box, streamlined category panes display only configuration
parameters that you are most likely to use when configuring your model for code generation.

The category panes, previously referred to as the Category view, are now available on the Commonly
Used Parameters tab. The All Parameters tab, previously referred to as the List view, provides the
complete list of parameters in the model configuration set.

Compatibility Considerations
Following are the configuration parameters that have moved to the All Parameters tab or moved to
a different pane.

Note Parameters that are removed from a pane are still available for configuration on the All
Parameters tab. To locate a parameter on this tab, use either the search box or the Category filter.

Code Generation Pane

The following are moved to the All Parameters tab:

• Ignore custom storage classes parameter
• Ignore test point signals parameter
• Validate button for Toolchain parameter

Code Generation > Interface Pane

The following parameters are moved to the All Parameters tab:

• Standard math library
• Support: non-inlined S-functions
• Multiword type definitions
• Maximum word length

 Code Generation

15-17

• Use dynamic memory allocation for model initialization
• Classic call interface
• Single output/update function
• Terminate function required
• Combine signal/state structures
• Internal data visibility
• Internal data access
• Generate destructor
• Use dynamic memory allocation for model block instantiation
• MAT-file logging
• MAT-file variable name modifier

Code Generation > Debug Pane

The pane is removed and its parameters are moved to the All Parameters tab:

• Profile TLC
• Verbose build
• Retain .rtw file
• Enable TLC assertion
• Start TLC coverage when generating code
• Start TLC debugger when generating code

Code Generation > Verification Pane

The following parameter is moved to the All Parameters tab:

• Create block

Data Import/Export Pane

The Enable live streaming of selected signal to Simulation Data Inspector parameter is moved
to the All Parameters tab.

The following parameters are available by clicking Additional Parameters at the bottom of the
pane:

• Limit data points to last
• Decimation
• Output options
• Refine factor

Diagnostics Pane

The following parameter is moved to the All Parameters tab:

• Solver data inconsistency

R2016a

15-18

Diagnostics > Data Validity Pane

The following parameters are moved to the All Parameters tab:

• Array bounds exceeded
• Model verification block enabling
• Check preactivation output of execution context
• Check runtime output of execution context
• Check undefined subsystem initial output
• Detect multiple driving blocks executing at the same time step
• Underspecified initialization detection

Diagnostics > Saving Pane

The pane is removed and its parameters are moved to the All Parameters tab:

• Block diagram contains disabled library links
• Block diagram contains parameterized library links

Diagnostics > Solver Pane

The following parameters are moved to the Diagnostics > Sample Time pane:

• Sample hit time adjusting
• Unspecified inheritability of sample time

The following parameter is moved to the Diagnostics > Compatibility pane:

• SimState object from earlier release

Optimization Pane

The following parameters are moved to the All Parameters tab:

• Remove code from floating-point to integer conversions with saturation that maps NaN
to zero

• Compiler optimization level
• Verbose accelerator builds
• Implement logic signals as Boolean data (vs. double)
• Block reduction
• Conditional input branch execution
• Use memset to initialize floats and doubles to 0.0

Optimization > Signals and Parameters Pane

The following parameters are moved to the All Parameters tab:

• Signal storage reuse
• Enable local block outputs
• Reuse local block outputs

 Code Generation

15-19

• Optimize global data access
• Reuse global block outputs
• Eliminate superfluous local variables (Expression folding)
• Simplify array indexing

Simulation Target Pane

The following parameters are moved to the All Parameters tab:

• Echo expressions without semicolons
• Simulation target build mode
• Ensure responsiveness
• Generate typedefs for imported bus and enumeration types
• Ensure memory integrity

Simulation Target > Custom Code Pane

The pane is removed and its parameters are moved to the Simulation Target pane:

• Header file
• Initialize function
• Source file
• Terminate function
• Parse custom code symbols
• Include directories
• Libraries
• Source files
• Defines

Simulation Target > Symbols Pane

The pane is removed and its parameter is moved to the Simulation Target pane:

• Reserved names

Build button removed from Configuration Parameters dialog box
The Build / Generate Code button is no longer available on the Code Generation pane in the
Configuration Parameters dialog box.

Compatibility Considerations
To initiate code generation and the build process, press Ctrl-B or, on the Simulink Editor toolbar,
click the Build Model icon.

R2016a

15-20

Improved web view for code generation report
In R2016a, significant updates improve the model Web view in the code generation report. Updates
include:

• Graphics and navigation similar to the Simulink Editor.
• Block parameter and signal property value inspection using the Object Inspector pane.
• Model search for locating Simulink blocks and Stateflow objects.
• Tab support for displaying individual block diagrams.

For more information, see the Simulink Report Generator™ documentation.

Dependent parameters not added to custom code generation
objective
Previously, when you added a parameter to a custom code generation objective using the addParam
function, the software included the parameter dependencies in the list of parameter values that the
Code Generation Advisor reviews. In R2016a, these dependent parameters are not added.

Removal of leading underscore character in macro type definitions
In R2015b, generated type definition macros began with an underscore character (_). In R2016a, the
code generator does not include the underscore character at the beginning of these macros. This
change in the generated code addresses MISRA C:2012 Rule 21.1.

For example, in R2015b, the code generator produced this code for an enumeration type definition:

#ifndef _DEFINED_TYPEDEF_FOR_EnumErrorType_
#define _DEFINED_TYPEDEF_FOR_EnumErrorType_

typedef enum {
 NoError = 0, /* Default value */
 MeasuredVelocityError
} EnumErrorType;

#endif

The code contained an underscore character at the beginning of the name
_DEFINED_TYPEDEF_FOR_EnumErrorType_.

In R2016a, the code generator produces this code for the same type definition:

#ifndef DEFINED_TYPEDEF_FOR_EnumErrorType_
#define DEFINED_TYPEDEF_FOR_EnumErrorType_

typedef enum {
 NoError = 0, /* Default value */
 MeasuredVelocityError
} EnumErrorType;

#endif

 Code Generation

15-21

https://www.mathworks.com/help/releases/R2016a/ecoder/ref/rtw.codegenobjectives.objective.addparam.html

The code does not contain an underscore character at the beginning of the name
DEFINED_TYPEDEF_FOR_EnumErrorType_.

R2016a

15-22

Deployment

Hardware implementation parameters enabled by default
In R2016a, the Enable hardware specification button is removed from the Configuration
Parameters > Hardware Implementation pane. By default, the parameters on the pane are
enabled.

MATLAB Coder PIL With ARM Cortex-A: Verify and profile ARM
optimized code with Altera SoC and Xilinx Zynq hardware
In R2016a, you can use processor-in-the-loop (PIL) executions to verify generated code that you
deploy to target hardware using a MATLAB Coder workflow with an Embedded Coder license. By
using PIL with hardware, you can more effectively generate customized code for your hardware by
profiling speed and algorithm performance. You have the option of using the command-line workflow
or the MATLAB Coder app to configure your target hardware for PIL executions.

This PIL execution is available with the following hardware support packages:

• Embedded Coder Support Package for Altera SoC Platform
• Embedded Coder Support Package for Xilinx Zynq-7000 Platform

To use this PIL execution, you must install one of these support packages. For more information, see:

• PIL Execution with ARM Cortex-A at the Command Line
• PIL Execution with ARM Cortex-A by Using the MATLAB Coder App

Updates to support package for Texas Instruments C2000 processors
The updated Embedded Coder Support Package for Texas Instruments C2000™ Processors, adds the
code generation support for Texas Instruments Delfino F2837xD, F2837xS and Texas Instruments
Piccolo F2807x processors. You must install the Embedded Coder Support Package for Texas
Instruments C2000 Processors to use this support.

To install or update this support package, perform the steps described in Install Support for TI’s
C2000 Processors.

For more information, see Texas Instruments C2000 Processors.

Support package for Freescale FRDM-K64F board
You can use the Embedded Coder Support Package for Freescale® FRDM-K64F Board to generate,
build, and deploy code to the Freescale FRDM-K64F board. See Install Support for Freescale FRDM-
K64F Board. For more information, see Embedded Coder Support Package for Freescale FRDMK64F
Board.

 Deployment

15-23

https://www.mathworks.com/help/releases/R2016a/supportpkg/alterasocembeddedcoder/index.html
https://www.mathworks.com/help/releases/R2016a/supportpkg/xilinxzynq7000ec/index.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/pil-execution-with-arm-cortex-a-from-command-line.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/pil-execution-with-arm-cortex-a-using-the-matlab-coder-app.html
https://www.mathworks.com/help/releases/R2016a/supportpkg/texasinstrumentsc2000/ug/install-support-for-c2000-processors.html
https://www.mathworks.com/help/releases/R2016a/supportpkg/texasinstrumentsc2000/ug/install-support-for-c2000-processors.html
https://www.mathworks.com/help/releases/R2016a/supportpkg/texasinstrumentsc2000/index.html
https://www.mathworks.com/help/releases/R2016a/supportpkg/freescalefrdmk64fboard/ug/intro.html
https://www.mathworks.com/help/releases/R2016a/supportpkg/freescalefrdmk64fboard/ug/intro.html
https://www.mathworks.com/help/releases/R2016a/supportpkg/freescalefrdmk64fboard/index.html
https://www.mathworks.com/help/releases/R2016a/supportpkg/freescalefrdmk64fboard/index.html

Support for TI’s C5000 DSPs will be removed
Support for TI’s C5000™ DSPs will be removed. You can still use Embedded Coder for TI’s C5000
processors, but need to manually integrate the generated code with hand written schedulers and
drivers.

Support for TI’s C6000 DSPs will be removed
Support for TI’s C6000 DSPs will be removed in a future release. You will still be able to use
Embedded Coder for TI’s C6000 processors, but will need to manually integrate the generated code
with hand written schedulers and drivers.

Change in base product for ARM Cortex-Based VEX Microcontroller
support package
The base product for ARM Cortex-Based VEX Microcontroller support package is changed from
Embedded Coder to Simulink Coder. However, you can use this support package with Embedded
Coder to use some of the Embedded Coder features. For more information on Simulink Coder Support
Package for ARM Cortex-based VEX® Microcontroller, see Simulink Coder Support Package for ARM
Cortex-Based VEX Microcontroller.

R2016a

15-24

https://www.mathworks.com/help/releases/R2016a/rtw/release-notes.html#bu9rpp8
https://www.mathworks.com/help/releases/R2016a/rtw/release-notes.html#bu9rpp8

Performance

Data Buffer Reuse: Use same variable for multiple signals in a path by
using the same Reusable storage class specification
Previously, if the input and output signals at a block or subsystem boundary shared the same
Reusable storage class specification, the code generator tried to reuse the signals in the generated
code.

In R2016a, this optimization extends to blocks or subsystems that are in a path. The optimization
decreases RAM/ROM consumption by reducing the number of global variables and data copies in the
generated code.

For more information, see Buffer Reuse Around a Block or Subsystem Boundary.

Reuse input, output, and state of Delay block
Previously, the code generator reused the input, output, and state of a Unit Delay block. In R2016a,
the code generator tries to reuse the input, output, and state of a Delay block if in the Delay block
parameters dialog box, the following conditions exist:

• The Delay length parameter has a value of 1.
• The Initial condition > Source parameter is set to Dialog.

For more information, see Buffer Reuse for Model Block Boundary and Unit Delay.

Initialization code occurs once after start code in model_initialize
function
In R2016a, for conditionally executed subsystems, there are the following changes in the generated
code for the model_initialize function:

• In R2015b, the code generator called the model_Subsystem_Init function possibly before and
after the model_Subsystem_Start function. In R2016a, the generated code contains one call to
the model_Subsystem_Init function. This call occurs after the model_Subsystem_Start
function. One call reduces code size and improves ROM consumption.

• In R2015b, the model_Subsystem_Start function and the model_Subsystem_Init function
initialized the states of blocks. In R2016a, the model_Subsystem_Init function initializes the
states of blocks. The model_Subsystem_Start function still performs other tasks involving a
small selection of blocks.

For example, in the model cond_sub, a Mux block combines the signals from two enabled
subsystems into one signal. This signal feeds into a function-call subsystem. One of the outputs from
the function-call subsystem is the combination of signals from two subsystems. The other output is
the signal from the Unit Delay block.

 Performance

15-25

https://www.mathworks.com/help/releases/R2016a/ecoder/ug/buffer-reuse-at-block-or-subsystem-boundary.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

R2016a

15-26

In R2015b, the code generator produced this code in the cond_sub.c file:

void cond_sub_IASS1_Init(void)
{
 cond_sub_DW.UD_DSTATE_c = 0.0;
}
void cond_sub_IASS1_Start(void)
{
 cond_sub_IASS1_Init();
}
…

void cond_sub_FCSS_Init(void)
{
 cond_sub_DW.UD_DSTATE = 2.0;
}
…

void cond_sub_FCSS_Start(void)
{
 cond_sub_DW.If_ActiveSubsystem = -1;
 cond_sub_IASS1_Start();
 cond_sub_B.M = 3.0;
 cond_sub_Y.O1 = 4.0;
}

void cond_sub_initialize(void)
{

 Performance

15-27

 (void) memset((void *)&cond_sub_U, 0,
 sizeof(ExtU_cond_sub_T));
 (void) memset((void *)&cond_sub_Y, 0,
 sizeof(ExtY_cond_sub_T));
 cond_sub_FCSS_Init();
 cond_sub_FCSS_Start();
 cond_sub_FCSS_Init();
}

The cond_sub_initialize function calls the cond_sub_FCSS_Init function before and after the
cond_subFCSS_Start function. The cond_sub_FCSS_Init function sets the initial condition of the
Unit Delay block. The cond_sub_FCSS_Start function sets the initial conditions of the Merge block
and the Outport block, O1.

In R2016a, the code generator produces this code in the cond_sub.c file:

void cond_sub_FCSS_Init(void)
{
 cond_sub_DW.UD_DSTATE = 2.0;
 cond_sub_B.M = 3.0;
 cond_sub_Y.O1 = 4.0;
}
…
void cond_sub_FCSS_Start(void)
{
 cond_sub_DW.If_ActiveSubsystem = -1;
}
…
void cond_sub_initialize(void)
{
 (void) memset((void *)&cond_sub_U, 0,
 sizeof(ExtU_cond_sub_T));
 (void) memset((void *)&cond_sub_Y, 0,
 sizeof(ExtY_cond_sub_T));
 cond_sub_FCSS_Start();
 cond_sub_FCSS_Init();
}

In R2016a, the cond_sub_FCSS_Start function occurs once before the cond_sub_FCSS_Init
function. The cond_sub_FCSS_Init function sets the initial condition of the Merge block, the
Outport block, O1, and the Unit Delay block. The cond_sub_FCSS_Start function does not set the
initial conditions of blocks.

Reset function improves initialization code optimization
In R2016a, for models containing a conditionally executed subsystem and a reusable subsystem or
model reference, the initialization code contains a new function called model_Reset or
subsystem_Reset. The model_Reset or subsystem_Reset function sets the states of blocks
inside a subsystem or model reference back to their initial conditions. The subsystem_Init function
sets the states of blocks inside a model reference or subsystem to their initial conditions for the first
time.

In the Configuration Parameters dialog box, when you select Optimization > Remove internal data
zero initialization, the code generator does not generate code that initializes internal work
structures to zero. This optimization reduces code size and increases execution speed.

R2016a

15-28

For example, in the cond_sub model (shown in this release note: “Initialization code occurs once
after start code in model_initialize function” on page 15-25), the function-call subsystem contains two
Unit Delay blocks. One Unit Delay block connects to the output, o2 and has an initial condition of 2.
The other Unit Delay block is inside the subsystem IASS1 and has an initial condition of 0.

In R2015b, the code generator produced the following code in the cond_sub.c file:

void cond_sub_IASS1_Init(void)
{
 /* InitializeConditions for UnitDelay: '<S4>/UD' */
 cond_sub_DW.UD_DSTATE_c = 0.0;
}
…
void cond_sub_FCSS_Init(void)
{
 /* InitializeConditions for UnitDelay: '<S1>/UD' */
 cond_sub_DW.UD_DSTATE = 2.0;
}

In R2015b, the code generator creates the cond_sub_FCSS_Init and the cond_sub_IASS1_init
functions to initialize and reset the state of each Unit Delay block.

In R2016a, the code generator produces the following code inside of the cond_sub.c file:

/* System reset for action system: '<S1>/IASS1' */
void cond_sub_IASS1_Reset(void)
{
 /* InitializeConditions for UnitDelay: '<S4>/UD' */
 cond_sub_DW.UD_DSTATE_c = 0.0;
}
 …
/* System initialize for function-call system: '<Root>/FCSS' */
void cond_sub_FCSS_Init(void)
{
 /* InitializeConditions for UnitDelay: '<S1>/UD' */
 cond_sub_DW.UD_DSTATE = 2.0;

 /* SystemInitialize for Merge: '<S1>/M' */
 cond_sub_B.M = 3.0;

 /* SystemInitialize for Outport: '<Root>/O1' incorporates:
 * SystemInitialize for Outport: '<S1>/O1'
 */
 cond_sub_Y.O1 = 4.0;
}

/* System reset for function-call system: '<Root>/FCSS' */
void cond_sub_FCSS_Reset(void)
{
 /* InitializeConditions for UnitDelay: '<S1>/UD' */
 cond_sub_DW.UD_DSTATE = 2.0;
}

In R2016a, the cond_sub_FCSS_init function initializes the state of one Unit Delay block. The code
generator does not generate a cond_sub_IASS1_Init function to initialize the state of the other
Unit Delay block to zero because the Remove internal data zero initialization parameter is
selected.

 Performance

15-29

The void cond_sub_IASS1_Reset and the void cond_sub_FCSS_Reset functions reset the
states of the Unit Delay blocks.

If you know that a parent model does not have to reset the states of blocks inside a model reference,
you can remove the model_Reset function from the generated code. In the Configuration
Parameters dialog box, select Optimization > Optimize initialization code for model reference
to remove the model_Reset function.

Removal of unnecessary rtmIsFirstInitCond flag
In R2015b, for modeling patterns involving conditionally executed subsystems, the code generator
created an rtmIsFirstInitCond flag in the model_initialize function and in the model_step
function.

In R2016a, the code generator does not generate the rtmIsFirstInitCond flag, except for S-
Function blocks. This enhancement reduces code size and ROM consumption and enables code reuse
and a Simulink Code Inspector™ verification.

For example, the model removeflag contains a subsystem. This subsystem contains an enabled and
triggered subsystem and a triggered subsystem that feed into a Merge block.

R2016a

15-30

In R2015b, in the removeflag.c file, the code generator produced this code in the
removeflag_initialize function:

/* InitializeConditions for Atomic SubSystem: '<Root>/SS' */
 removeflag_SS_Init(removeflag_M, &removeflag_B.SS);

 /* End of InitializeConditions for SubSystem: '<Root>/SS' */

The code for the removeflag_SS_Init function was as follows:

/* Initial conditions for atomic system: '<Root>/SS' */
void removeflag_SS_Init(RT_MODEL_removeflag_T * const removeflag_M,
 B_SS_removeflag_T *localB)
{
 /* InitializeConditions for Merge: '<S1>/M' */
 if (rtmIsFirstInitCond(removeflag_M)) {
 localB->M = 3.0;
 }

 /* End of InitializeConditions for Merge: '<S1>/M' */
}

In R2015b, for the removeflag_SS_Init function, the generated code contained the
rtmIsFirstInitCond flag.

In R2016a, in the _sharedutils folder, the code generator produces this reusable code:

/* System initialize for atomic system: 'SS' ('removeflagLib:1') */
void SS_bbDo8UEo_Init(B_SS_bbDo8UEo_T *localB)
{
 /* SystemInitialize for Merge: 'M' ('removeflagLib:11') */
 localB->M = 3.0;
}

 Performance

15-31

The removeflag.c file contains a call to the SS_bbDo8UEo_T_Init function inside the
removeflag_initialize function:

/* SystemInitialize for Atomic SubSystem: '<Root>/SS' */
 SS_bbDo8UEo_Init(&removeflag_B.SS);

 /* End of SystemInitialize for SubSystem: '<Root>/SS' */

The generated code does not contain the rtmIsFirstInitCond flag. Instead, the code generator
generates reusable code for the SS_bbDo8UEo_T_Init function. The rtmIsFirstInitCond flag is
not needed because the model_Subsystem_Init function initializes the states of blocks while the
new reset function sets the states of all blocks back to their initial conditions.

Optimized code for models containing logical operator blocks
In R2015b, for a model where an input signal fed into a Logical NOT block and either a Logical AND
block or a Logical OR block, the generated code contained an expression for the Logical NOT and
Logical AND or Logical OR blocks. In R2016a, the generated code sets the output equal to either true
or false. This optimization simplifies the code and improves code efficiency.

For example, in the model andornotself, the input signal feeds into the Logical NOT block and the
Logical AND block.

In R2015b, the generated code contained this code:

/* Model step function */
void andornotself_step(void)
{
 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/In1'
 * Logic: '<Root>/Logical AND'
 * Logic: '<Root>/Logical NOT'
 */
 andornotself_Y.Out1 = (andornotself_U.In1 && (!andornotself_U.In1));
}

In R2016a, the generated code contains this code:

/* Model step function */
void andornotself_step(void)
{
 /* Outport: '<Root>/Out1' */
 andornotself_Y.Out1 = false;
}

R2016a

15-32

The optimized code sets andornotself_Y.Out1 equal to false because the condition
andornotself_Y.Out1 = (andornotself_U.In1 && (!andornotself_U.In1)) is false.

Improved code for conditional expressions involving Boolean
expressions
In R2015b, for a model in which the generated code contained a conditional expression involving
Boolean expressions, the generated code contained an if-else statement. In R2016a, the generated
code uses && and || operators to enable short-circuit evaluation. This optimization simplifies the
code and improves code efficiency.

For example, the model booleanConditionalExpr contains two Inport blocks, a Switch block, a
Constant block, and an Outport block. The Constant block has a value of false.

In R2015b, the code generator generated this code:

/* Model step function */
void booleanConditionalExpr_step(void)
{
 /* Switch: '<Root>/Switch' incorporates:
 * Inport: '<Root>/cond'
 */
 if (booleanConditionalExpr_U.cond) {
 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/val'
 */
 booleanConditionalExpr_Y.Out1 = booleanConditionalExpr_U.val;
 } else {
 /* Outport: '<Root>/Out1' incorporates:
 * Constant: '<Root>/Constant'
 */
 booleanConditionalExpr_Y.Out1 = false;
 }

 /* End of Switch: '<Root>/Switch' */
}

The generated code contained an if-else statement.

In R2016a, the code generator generates this code:

 Performance

15-33

/* Model step function */
void booleanConditionalExpr_step(void)
{
 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/cond'
 * Inport: '<Root>/val'
 */
 booleanConditionalExpr_Y.Out1 = (booleanConditionalExpr_U.cond &&
 booleanConditionalExpr_U.val);
}

The generated code contains an && expression. If booleanConditionalExpr_U.cond is false, the
&& expression short-circuits and booleanConditionalExpr_Y.Out1 is equal to false. Otherwise,
booleanConditionalExpr_Y.Out1 is equal to booleanConditionalExpr_U.val.

memset Optimization for more scenarios
• “memset optimization for assigning a constant value to fields of a structure array” on page 15-34
• “memset optimization for array element assignments” on page 15-36
• “memset optimization for consecutive assignments that define a continuous write” on page 15-37

In R2015b, the code generator tried to replace a for loop that assigned a literal constant to
consecutive array elements with a memset function call. A memset function call can be more efficient
than for-loop controlled array element assignments.

In R2016a, the code generator attempts to invoke the memset optimization when assigning a
constant value to all fields of a structure array. The code generator attempts to invoke the memset
optimization for a loop with one or more array element assignments and for consecutive statements
that define a continuous write.

Note The minimum array size for which memset function calls can replace for loops depends on the
setting of the Memcpy threshold (bytes) parameter. By default, this parameter specifies 64 bytes as
the minimum array size for which memset function calls can replace for loops in the generated code.

memset optimization for assigning a constant value to fields of a structure array

The following Simulink modeling pattern produces C code with a constant value assignment to fields
of a structure array:

• The input to a MATLAB Function block is an array of buses. The bus elements are scalars.
• The MATLAB Function block contains a structure that writes the same value to each bus element.

In R2015b, for this modeling pattern, the generated code contained for loop controlled array
element assignments. In R2016a, the code generator can replace these for loop controlled array
element assignments with memset function calls. This optimization improves execution speed.

For example, in the following model, the input signal is an array of busses. The bus elements are the
three scalars, f1, f2, and f3.

R2016a

15-34

The MATLAB Function block contains this code:

function outBus = fcn(inBus)
%#codegen

for k = 1:24
 inBus(k).f1 = int32(0);
 inBus(k).f2 = int32(0);
 inBus(k).f3 = int32(0);
end

outBus=inBus;
end

In R2015b, the code generator produced this code:

 /* MATLAB Function 'AssignArrayOfBus': '<S1>:1' */
 /* '<S1>:1:4' for k = 1:24 */
 for (k = 0; k < 24; k++) {
 /* '<S1>:1:5' inBus(k).f1 = int32(0); */
 inBus[k].f1 = 0;

 /* '<S1>:1:6' inBus(k).f2 = int32(0); */
 inBus[k].f2 = 0;

 /* '<S1>:1:7' inBus(k).f3 = int32(0); */
 inBus[k].f3 = 0;
 }

 /* '<S1>:1:10' outbus = inBus; */
 memcpy(&localB->outBus[0], &inBus[0], sizeof(busOfScalars) << 5U);

The generated code contained a for loop for assigning a value of int32(0) to the structure fields,
f1, f2, and f3.

In R2016a, the code generator produces this code:

 /* MATLAB Function 'AssignArrayOfBus': '<S1>:1' */
 /* '<S1>:1:4' for k = 1:24 */
 /* '<S1>:1:5' inBus(k).f1 = int32(0); */

 Performance

15-35

 /* '<S1>:1:6' inBus(k).f2 = int32(0); */
 /* '<S1>:1:7' inBus(k).f3 = int32(0); */
 memset(&inBus[0], 0, 24U * sizeof(busOfScalars));

 /* '<S1>:1:9' outBus=inBus; */
 memcpy(&localB->outBus[0], &inBus[0], sizeof(busOfScalars) << 5U); }

The generated code contains a memset function call for assigning a value of int32(0) to the
structure fields f1, f2, and f3.

memset optimization for array element assignments

For a Simulink model containing a Bus Assignment block that accepts a bus signal consisting of
arrays, the code generator produces C code with one or more array element assignments. If the Bus
Assignment block assigns values to a single array of the bus signal, the generated code contains one
array element assignment. If the Bus Assignment block assigns values to arrays in the bus signal,
there are multiple array element assignments. In R2015b, the generated code contained for loop
controlled array element assignments. In R2016a, the code generator can replace these for loop
controlled array element assignments with memset function calls. This optimization improves
execution speed.

For example, in following model, the input signal is a Simulink.Bus object consisting of two arrays,
f1 and f2. The Bus Assignment block assigns a value of 0 to every element in f1 and a value of
255(MAX_uint8_T) to every element in f2.

R2016a

15-36

In R2015b, the code generator produced this code:

/* Model step function */
void memsetexample_step(void)
{
 int32_T i;

 /* Outport: '<Root>/Out1' */
 for (i = 0; i < 84; i++) {
 memsetexample_Y.Out1.f1[i] = 0;
 memsetexample_Y.Out1.f2[i] = MAX_uint8_T;
 }

 /* End of Outport: '<Root>/Out1' */
}

The generated code contained a for loop for assigning values to the arrays f1 and f2.

In R2016a, the code generator produces this code:

/* Model step function */
void memsetexample_step(void)
{
 /* Outport: '<Root>/Out1' */
 memset(&memsetexample_Y.Out1.f1[0], 0, 84U * sizeof(int16_T));
 memset(&memsetexample_Y.Out1.f2[0], 255, 84U * sizeof(uint8_T));
}

The generated code contains memset function calls for assigning values to f1 and f2.

memset optimization for consecutive assignments that define a continuous write

For a Simulink model containing a 1-D, 2-D, or multidimensional signal that feeds into an Assignment
block, the code generator produces C code with consecutive array element assignments. In R2015b, if
the following modeling conditions were met, the generated code contained multiple assignment
statements:

 Performance

15-37

• The Assignment block assigned a value of 0 to multiply elements of an output signal.
• In the generated code, the array size was below the value of the loop unrolling threshold

parameter.

In R2016a, regardless of the value you set for the Loop unrolling threshold parameter, the code
generator can replace these assignment statements with a memset function call. This optimization
improves execution speed.

For example, in the Inport block parameters dialog box, the Port Dimensions parameter has a value
of 128. The Assignment block assigns a value of 0 to the first 10 elements of this signal.

In R2015b, with a the code generator produced this code:

void memsetEx_basicDoubleZeroAssign(const real_T rtu_In1[128],
 B_basicDoubleZeroAssign_memse_T *localB)
{
 int32_T i;

 /* Assignment: '<S1>/Assignment' incorporates:
 * Constant: '<S1>/Constant'
 */
 memcpy(&localB->Assignment[0], &rtu_In1[0], sizeof(real_T) << 7U);
 localB->Assignment[0] = 0.0;
 localB->Assignment[1] = 0.0;
 localB->Assignment[2] = 0.0;
 localB->Assignment[3] = 0.0;
 localB->Assignment[4] = 0.0;
 localB->Assignment[5] = 0.0;
 localB->Assignment[6] = 0.0;
 localB->Assignment[7] = 0.0;
 localB->Assignment[8] = 0.0;
 localB->Assignment[9] = 0.0;
 /* End of Assignment: '<S1>/Assignment' */
}

R2016a

15-38

The generated code contained individual write statements for assigning a value of 0 to the first 10
elements of the Assignment array.

In R2016a, the code generator produces this code:

void memsetEx_basicDoubleZeroAssign(const real_T rtu_In1[128],
 B_basicDoubleZeroAssign_memse_T *localB)
{
 /* Assignment: '<S1>/Assignment' incorporates:
 * Constant: '<S1>/Constant'
 */
 memcpy(&localB->Assignment[0], &rtu_In1[0], sizeof(real_T) << 7U);
 memset(&localB->Assignment[0], 0, 10U * sizeof(real_T));
}

The generated code contains a memset function call for assigning a value of 0 to the first 10 elements
of the Assignment array.

Changes to meaning of createCRLEntry wildcard syntax for fixed-point
data
The meaning of wildcard symbols tilde (~) and asterisk (*) in conceptual argument syntax
specifications that you specify with the createCRLEntry function have changed.

Modified Syntax Meaning Prior to R2016a Meaning Starting with R2016a
Tilde symbol Slopes must be the same

across data types
Based on the position of the symbol,
slopes or bias must be the same
across data types

fixdt(1,16,*) y1 =
sin(fixdt(1,16,*) u1)
conceptual specification

Specify fixed-point data types
and wildcard

Specify fixed-point data types and
set CheckSlope to false and
CheckBias to true

fixdt(1,16,~) y1 =
sin(fixdt(1,16,~) u1)
conceptual specification

Not applicable Specify fixed-point data types and
set SlopesMustBeTheSame to
true, CheckSlope to false, and
CheckBias to true

fixdt(1,16,~,~) y1 =
sin(fixdt(1,16,~,~) u1)
conceptual specification

Not applicable Specify fixed-point data types and
set SlopesMustBeTheSame to
true, BiasMustBeTheSame to
true, CheckSlope to false, and
CheckBias to false

fixdt(1,16,*) y1 =
fixdt(1,16,*) u1 +
fixdt(1,16,*) u2
conceptual specification

Specify fixed-point data types
and wildcard

Specify fixed-point data types and
set CheckSlope to false and
CheckBias to true

For more information, see the description of the createCRLEntry function.

 Performance

15-39

https://www.mathworks.com/help/releases/R2016a/ecoder/ref/createcrlentry.html

Code replacements involving root-level I/O variables and data
alignment
The code generator does not replace functions that use root-level I/O variables or AUTOSAR inter-
runnable access functions when it generates function code with C function prototype control, C++
class I/O arguments step method, or the AUTOSAR system target file.

If the following conditions exist, the code generator includes data alignment directives for root-level
I/O variables in the example main program file (ert_main.c or ert_main.cpp) that it produces:

• Compiler supports global variable alignment
• Generate an example main program (select Configuration Parameters > All Parameters >

Generate an example main program)
• Generate a reusable function interface for the model (set Configuration Parameters > Code

Generation > Interface > Code interface packaging to Reusable function)
• Function uses root-level I/O variables that are passed in as individual arguments (set
Configuration Parameters > Code Generation > Interface > Pass root-level I/O asto
Individual arguments)

• Replaced function uses a root-level I/O variable
• Replaced function imposes alignment requirements

If you discard the generated example main program, align used root-level I/O variables correctly.

If you choose not to generate an example main program in this case, the code generator does not
replace the function.

For more information, see Code Replacement Customization Limitations.

R2016a

15-40

https://www.mathworks.com/help/releases/R2016a/ecoder/ug/code-replacement-customization-limitations-scec.html

Verification

SIL/PIL Data Access: Use vector Get/Set custom storage class and C++
parameter access methods
R2016a adds SIL and PIL support for data access capabilities:

• GetSet custom storage class support for vector signals and parameters. Previously, GetSet SIL
and PIL support was available for scalar signals, parameters, and global data stores. For more
information, see Access Data Through Functions with Custom Storage Class GetSet.

• Simulation support for the Method and Inlined method options for the Configuration
Parameters > Code Generation > Interface > Parameter access parameter. For more
information, see Control Generation of C++ Class Interfaces.

SIL/PIL support for variant condition propagation
Model block SIL/PIL simulations support variant condition propagation with Variant Source and
Variant Sink blocks.

Top-model SIL/PIL and SIL/PIL block simulations do not support the propagation of variant conditions
across component boundaries.

SIL simulation returns standard output and standard error streams
During a SIL simulation, the SIL application redirects the stdout and stderr streams. When the
application terminates, the Diagnostic Viewer now displays the information from the redirected
streams.

The SIL application also provides a basic signal handler, which captures the POSIX signals SIGFPE,
SIGILL, SIGABRT, and SIGSEV. The SIL application includes the file signal.h for the signal
handler.

The information from the redirected streams can help you to debug SIL applications that fail before
the simulation is complete. For example, you can view:

• Output from printf statements in your code.
• Messages sent to stderr.
• Some low-level system messages.

For more information, see Debug SIL Simulation.

Linux SIL/PIL support for LDRA Testbed
For SIL and PIL simulations on Linux systems, you can collect code coverage metrics by using LDRA
Testbed® from LDRA Technology. For more information, see Code Coverage Tool Support.

 Verification

15-41

https://www.mathworks.com/help/releases/R2016a/ecoder/ug/getset-custom-storage-classes.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/debug-code-during-sil-simulations.html
https://www.mathworks.com/help/releases/R2016a/ecoder/ug/code-coverage-tool-support.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2016a

15-42

https://www.mathworks.com/support/bugreports/

R2015aSP1

Version: 6.8.1

Bug Fixes

16

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2015aSP1

16-2

https://www.mathworks.com/support/bugreports/

R2015b

Version: 6.9

New Features

Bug Fixes

Compatibility Considerations

17

Code Generation from MATLAB Code

MATLAB Coder Storage Classes: Easily import and export data by
using storage classes
In R2015b, when you generate C/C++ code from MATLAB code, you can use a storage class to
control the declaration and definition of a global variable in the generated code. Use of storage
classes requires an Embedded Coder license.

In the context of code generation, a storage class is a specification that determines the declaration
and definition of a variable in the generated code. For code generation, the term storage class is not
the same as the C language term storage class specifier.

Storage classes help you to integrate generated code with external code. You can make a generated
variable visible to external code. You can also make variables declared in the external code visible to
the generated code. For code generation from MATLAB code, you can use storage classes with global
variables only. The storage class determines:

• The file placement of a global variable declaration and definition.
• Whether the global variable is imported from external code or exported for use by external code.

To assign a storage class to a global variable, in your MATLAB code, use the coder.storageClass
function. Only when you use an Embedded Coder project or configuration object for generation of C/C
++ libraries or executables does the code generation software recognize coder.storageClass
calls.

The syntax for coder.storageClass is:

coder.storageClass(var_name, storage_class)

var_name is the name of a global variable. Specify var_name as a constant string.

storage_class can be one of the following values:

• 'ExportedGlobal'
• 'ImportedExtern'
• 'ImportedExternPointer'

For descriptions of these storage classes, see Storage Classes for Code Generation from MATLAB
Code.

For example, coder.StorageClass('g','ExportedGlobal') assigns the exported global
storage class to the global variable g.

For a detailed example, see Control Declarations and Definitions of Global Variables in Code
Generated from MATLAB Code.

If you do not assign a storage class to a global variable, the code generated for the variable is the
same as the code generated in previous releases.

R2015b

17-2

https://www.mathworks.com/help/releases/R2015b/ecoder/ref/coder.storageclass.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/storage-classes-for-code-generation-from-matlab-code.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/storage-classes-for-code-generation-from-matlab-code.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/control-declarations-and-definitions-of-global-variables-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/control-declarations-and-definitions-of-global-variables-in-the-generated-code.html

MATLAB Coder PIL With ARM Cortex-A: Verify and profile ARM
optimized code with BeagleBone Black hardware
In R2015b, you can use processor-in-the-loop (PIL) executions to verify generated code that you
deploy to target hardware using a MATLAB Coder workflow with an Embedded Coder license. By
using PIL with hardware, you can more effectively generate customized code for your hardware by
profiling speed and algorithm performance. You have the option of using the command-line workflow
or the MATLAB Coder app to configure your target hardware for PIL executions.

This PIL execution is available with the following hardware support packages:

• Embedded Coder Support Package for BeagleBone® Black Hardware
• Embedded Coder Support Package for ARM Cortex-A Processors

To use this PIL execution, you must install one of these support packages. For more information, see:

• PIL Execution with ARM Cortex-A at the Command Line
• PIL Execution with ARM Cortex-A by Using the MATLAB Coder App

Code generation assumptions verified during PIL execution
The settings on the More Settings > Hardware tab specify target behavior, which result in the
implementation of implicit assumptions in the generated code. Incorrect settings can lead to:

• Suboptimal code
• Code execution failure, incorrect code output, and nondeterministic code behavior

At the start of a processor-in-the-loop (PIL) execution, the software verifies the Hardware tab
settings with reference to the target hardware. The software checks:

• The correctness of settings. For example, the integer bit length in the Sizes > int field.
• Whether the settings are optimized. For example, the rounding of signed integer division in the

Signed integer division rounds to field.

If required, the software generates warnings and errors.

Control of signed right shifts in generated code
You can now control the use of signed right shifts in your generated code. Some coding standards do
not allow bitwise operations on signed integers. Disabling the use of signed shifts in generated code
increases the likelihood of compliance with MISRA. When you specify that signed right shifts should
not be used in your generated code, the software replaces signed shifts with a call to a function that
performs the operation without the use of signed shifts.

To specify that MATLAB Coder not use signed right shifts:

• Using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the Generate arrow
.

2 Set Build type to one of the following:

 Code Generation from MATLAB Code

17-3

https://www.mathworks.com/help/releases/R2015b/ecoder/ug/pil-execution-with-arm-cortex-a-from-command-line.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/pil-execution-with-arm-cortex-a-using-the-matlab-coder-app.html

• Source Code
• Static Library (.lib)
• Dynamic Library (.dll)
• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, clear the Allow right shifts on signed integers check box.

• Using the command-line interface:

1 Create a code configuration object for 'lib', 'dll', or 'exe'.

cfg = coder.config('lib','ecoder',true); % or dll or exe
2 Set the EnableSignedRightShifts property to false.

cfg.EnableSignedRightShifts = false;

Detection of multiword operations
When an operation has an input or output larger than the largest word size of your processor, the
generated code contains multiword operations. Multiword operations can be inefficient on hardware.
The expensive fixed-point operations check now highlights expressions in your MATLAB code that
could result in multiword operations in generated code. For more information on this check, see Find
and Address Multiword Operations.

R2015b

17-4

https://www.mathworks.com/help/releases/R2015b/ecoder/ug/data-type-issues-in-generated-code.html#buth98k
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/data-type-issues-in-generated-code.html#buth98k

Model Architecture and Design

MISRA-C 2012: Comply with mandatory and required rules
Model Advisor checks support compliance with MISRA C:2012. Previously, Model Advisor checks
supported compliance with MISRA C:2004. To check that you developed your model or subsystem to
increase the likelihood of generating MISRA C:2012 compliant code:

1 Open the Model Advisor.
2 Navigate to By Task > Modeling Guidelines for MISRA C:2012.
3 Run the checks in the folder.

The following table summarizes the check changes. For information about MISRA C versions and
updates, see MISRA C Guidelines.

Check Update Addresses
Check configuration parameters for
MISRA C:2012

Renamed from Check
configuration parameters
for MISRA-C:2004
compliance

MISRA C:2012

Check for blocks not recommended
for MISRA C:2012

Renamed from Check for
blocks not recommended for
MISRA-C:2004 compliance

MISRA C:2012

Check for bitwise operations on
signed integers

None MISRA C:2012, Dir 10.1

Check for recursive function calls New MISRA C:2012, Dir 17.2
Check for equality and inequality
operations on floating-point values

New MISRA C:2012, Dir 1.1

Check for switch case expressions
without a default case

New MISRA C:2012, Rule 16.4

AUTOSAR 4.1.3 and 4.2: Import and export ARXML and generate code
for latest AUTOSAR standard
R2015b extends AUTOSAR schema support to schema 4.2 (revision 4.2.1) and schema 4.1 (revision
4.1.3). For a detailed list of AUTOSAR schemas supported for import and export of arxml files and
generation of AUTOSAR-compatible C code, see Select an AUTOSAR Schema.

R2015b provides many other enhancements to Simulink modeling of AUTOSAR elements and
AUTOSAR code generation. For more information, see:

• Under Model Architecture and Design:

• “AUTOSAR sender-receiver modeling” on page 17-6
• “AUTOSAR client-server modeling” on page 17-8
• “AUTOSAR nonvolatile data communication modeling” on page 17-9
• “AUTOSAR component behavior modeling” on page 17-11

 Model Architecture and Design

17-5

https://www.mathworks.com/help/releases/R2015b/simulink/ug/consult-the-model-advisor.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/developing-models-and-code-that-comply-with-misra-c-guidelines.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7lc-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui66n-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui66n-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7dv-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/embedded-codersimulink-coder-checks.html#buui7dv-1
https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/generating-autosar-code-and-description-files.html#brsz5z2-1

• “AUTOSAR COM_AXIS lookup table modeling” on page 17-12
• Under Code Generation:

• “AUTOSAR arxml round-trip” on page 17-17
• “Toolchain controls for AUTOSAR code generation” on page 17-19
• “AUTOSAR RTE file generation enhanced for SIL and PIL” on page 17-19
• “Lookup table blocks with new even spacing specification generate AUTOSAR compatible IFX

library routines” on page 17-20

AUTOSAR sender-receiver modeling
R2015b enhances AUTOSAR sender-receiver modeling with support for:

• IsUpdated API for receiver ports
• Data element invalidation policies on sender ports
• End-to-end protection for sender and receiver ports
• DataReceiveErrorEvent for receiver ports
• Rte_IWriteRef for sender ports

IsUpdated API for receiver ports

AUTOSAR defines quality of service attributes, such as ErrorStatus and IsUpdated, for sender-
receiver interfaces. R2015b adds support for the AUTOSAR IsUpdated attribute and API. The
IsUpdated attribute allows an AUTOSAR receiver to detect when a receiver port data element has
received data since the last read occurred. When data is idle, the receiver can save computational
resources. You can:

• Import an AUTOSAR receiver port for which IsUpdated service is configured.
• Use Simulink to configure an AUTOSAR receiver port for IsUpdated service.
• Generate C and arxml code for an AUTOSAR receiver port for which IsUpdated service is
configured.

For more information, see Configure AUTOSAR Receiver Port for IsUpdated Service.

Data element invalidation policies on sender ports

AUTOSAR defines an invalidation mechanism for data elements on AUTOSAR sender ports. To protect
downstream data consumers from receiving invalid data, you can define an invalidation policy for a
sender port data element. R2015b adds support for data element invalidation policies on sender
ports. You can:

• Import AUTOSAR sender port data elements for which an invalidation policy is configured.
• Use Simulink to configure an invalidation policy for AUTOSAR sender port data elements.
• Generate C and arxml code for AUTOSAR sender port data elements for which an invalidation

policy is configured.

For more information, see Configure AUTOSAR Sender Port for Data Element Invalidation.

End-to-end protection for sender and receiver ports

AUTOSAR end-to-end (E2E) protection for sender and receiver ports is based on the E2E library. E2E
is a C library that you can use to transmit data securely between AUTOSAR components. End-to-end

R2015b

17-6

https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-receiver-port-for-isupdated-service.html
https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-sender-port-for-data-element-invalidation.html

protection adds additional information to an outbound data packet. The component receiving the
packet can then verify independently that the received data packet matches the sent packet.
Potentially, the receiving component can detect errors and take action.

For easier integration of AUTOSAR generated code with AUTOSAR E2E solutions, R2015b adds
support for AUTOSAR E2E protection. You can:

• Import AUTOSAR sender port and receiver ports for which E2E protection is configured.
• Use Simulink to configure an AUTOSAR sender or receiver port for E2E protection.
• Generate C and arxml code for AUTOSAR sender and receiver ports for which E2E protection is
configured.

For more information, see Configure AUTOSAR S-R Interface Port for End-To-End Protection.

DataReceiveErrorEvent for receiver ports

In AUTOSAR sender-receiver communication between software components, the run-time
environment (RTE) raises a DataReceiveErrorEvent when the communication layer reports an
error in data reception by the receiver component. For example. the event can indicate that the
sender component failed to reply within an aliveTimeout limit, or that the sender component sent
invalid data.

R2015b adds support for creating DataReceiveErrorEvents in AUTOSAR receiver components.
You can:

• Import an AUTOSAR DataReceiveErrorEvent definition.
• Use Simulink to define a DataReceiveErrorEvent.
• Generate arxml code for AUTOSAR receiver ports for which a DataReceiveErrorEvent is
configured.

For more information, see Configure AUTOSAR Receiver Port for DataReceiveErrorEvent.

Rte_IWriteRef for sender ports

In R2015b, you can leverage the Rte_IWriteRef API (AUTOSAR Release 4.x) when writing to
AUTOSAR sender ports. Rte_IWriteRef returns a reference to the write data, which the runnable
code can use to directly update the corresponding data elements. The API provides constant
execution time for writes of any data element type, including structure and matrix data.

If you want AUTOSAR sender port data to be written using Rte_IWriteRef rather than
Rte_IWrite, configure the corresponding Simulink root outport for ImplicitSendByRef access.
For example, suppose that you open the example model rtwdemo_autosar_counter, and change
the data access mode of its root outport, Output, from ImplicitSend to ImplicitSendByRef.

 Model Architecture and Design

17-7

https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-sender-or-receiver-port-for-end-to-end-protection.html
https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-receiver-port-for-datareceiveerrorevent-.html

When you generate code, in rtwdemo_autosar_counter.c, the model step function uses
Rte_IWriteRef to write the sender port data.
void Runnable_Step(void)
{
 ...
 int32_T *tmp;
 tmp = Rte_IWriteRef_Runnable_Step_Output_Output();
 ...
 /* Outport: '<Root>/Output' incorporates:
 * Gain: '<S1>/Gain'
 * Inport: '<Root>/Input'
 ...
 */
 *tmp = Rte_Prm_rCounter_K() * Rte_IRead_Runnable_Step_Input_Input();
 ...
}

AUTOSAR client-server modeling
R2015b enhances AUTOSAR client-server modeling with support for:

• AUTOSAR error status
• AUTOSAR NVRAM memory services

AUTOSAR error status

In R2015b, you can model AUTOSAR application error status for client-server error handling. In
Simulink, you can:

• Import arxml code that implements client-server error handling.
• Configure error handling for a client-server interface.
• Generate C and arxml code for client-server error handling.

For more information, see Configure AUTOSAR Client-Server Error Handling.

AUTOSAR NVRAM memory services

R2015b provides improved support for AUTOSAR nonvolatile RAM memory (NvM) services, including
the NvM APIs ReadBlock, WriteBlock, and RestoreBlockDefaults. On ECU hardware startup
or shutdown, or in response to an explicit read or write request, NvM services store data needed by
the AUTOSAR software component. To better support NvM services, Embedded Coder:

R2015b

17-8

https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-client-server-communication.html#buzvyn4-1

• Imports and exports the void pointer data type that the NvM APIs use.
• Imports and exports asynchronous-server call points for calling the NvM APIs. The arxml

importer creates Function Caller blocks to model the call points.
• Enforces constraints for modeling the RAM block required for NvM API calls. A data store memory

block models the RAM block, and must directly connect to the Function Caller block.
• Generates C code that provides the RAM block to the NvM API calls without creating a local
buffer.

Here is an example of Data Store Read and Function Caller blocks that model an asynchronous call to
the NvM WriteBlock service.

The generated C code calls the NvM WriteBlock service with the global RAM block as an argument.

appErrType = Rte_Call_WriteBlock_client_WriteBlock(Rte_Pim_myDSM());

Compatibility Considerations
Enforcing the new modeling constraints can generate errors for models that previously did not get
errors. For example, if a Function Caller block configured to call an AUTOSAR NvM API does not
directly connect to a data store block, Embedded Coder generates an error.

AUTOSAR nonvolatile data communication modeling
In R2015b, you can model AUTOSAR nonvolatile (NV) data communication, as defined in AUTOSAR
Release 4.0 or later. To implement NV data communication, AUTOSAR software components define
provide and require ports that send and receive NV data. In Simulink, you can:

• Import AUTOSAR NV data communication definitions from arxml code.
• Create AUTOSAR NV data communication elements, including an NV interface and ports, and map

Simulink inports and outports to AUTOSAR NV ports.
• Generate C and arxml code for AUTOSAR NV data communication elements.

To create NV data communication elements in Simulink:

1 Open the Configure AUTOSAR Interface dialog box and select AUTOSAR Properties.
2

Select NV Interfaces. Click the Add icon to create a new NV data interface. Specify its
name and the number of associated NV data elements.

3 Select and expand the new NV interface. Select Data Elements, and modify the data element
attributes.

 Model Architecture and Design

17-9

4 In the left-hand pane of the Configure AUTOSAR Interface dialog box, under AUTOSAR, select
AtomicComponents. Expand AtomicComponents and select an AUTOSAR component. Expand
the component.

5 Select and use the NvReceiverPorts, NvSenderPorts, and NvSenderReceiverPorts views to
add the NV ports you require. For each NV port, select the NV interface you created.

6 Switch to the Simulink mapping view. Select Simulink-AUTOSAR Mapping.
7 Select and use the Inports and Outports views to map Simulink inports and outports to

AUTOSAR NV ports. For each inport or outport, select an AUTOSAR port, data element, and data
access mode.

R2015b

17-10

To programmatically configure AUTOSAR NV data communication elements, use the AUTOSAR
property and mapping functions. For example, the following MATLAB code adds an AUTOSAR NV
data interface and an NV receiver port to an open model. It then maps a Simulink inport to the
AUTOSAR NV receiver port.
% Add AUTOSAR NV data interface myNvInterface with NV data element DE3
arProps = autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables_nv');
addPackageableElement(arProps,'NvDataInterface','/pkg/if','myNvInterface');
add(arProps,'myNvInterface','DataElements','DE3');

% Add AUTOSAR NV receiver port NvRPort, associated with myNvInterface
add(arProps,'ASWC','NvReceiverPorts','NvRPort','Interface','myNvInterface');

% Map Simulink inport NvRPort_DE3 to AUTOSAR port/element pair NvRPort and DE3
slMap = autosar.api.getSimulinkMapping('rtwdemo_autosar_multirunnables_nv');
mapInport(slMap,'NvRPort_DE3','NvRPort','DE3','ImplicitReceive');

AUTOSAR component behavior modeling
R2015b enhances AUTOSAR component behavior modeling with support for:

• IRVs in feedback loops
• Constant memory with const or volatile type qualifiers

IRVs in feedback loops

Simulink modeling now supports an AUTOSAR inter-runnable feedback loop, that is, AUTOSAR
runnables accessing an AUTOSAR inter-runnable variable (IRV) with both read and write access. For
example, in the figure, Runnable2_subsystem can read and write irv1. (Signal irv1 is shown in
Highlight Signal to Source view.) In previous releases, the software flagged an error for this
modeling pattern.

Constant memory with const or volatile type qualifiers

When modeling an AUTOSAR constant or static memory variable (AUTOSAR schema 4.x), you can
now generate const, volatile, or const volatile qualifiers in C code to control data access.

You model AUTOSAR constant memory and static memory using AUTOSAR4.Parameter and
AUTOSAR4.Signal data objects with a global storage class. Optionally, you can create custom
storage classes and memory sections to customize the code generated for the global memory data, as
described in Design Custom Storage Classes and Memory Sections. The AUTOSAR4 data class
package now provides CONST, VOLATILE, and CONST_VOLATILE memory section definitions for
configuring the const, volatile, and const volatile qualifiers. You can reference the new

 Model Architecture and Design

17-11

https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/autosar4.parameter.html
https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/autosar4.signal.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/design-custom-storage-classes-and-memory-sections.html

memory-section values in cscdesigner to set up memory sections, and then reference the values
from within AUTOSAR4.Parameter and AUTOSAR4.Signal data objects.

AUTOSAR COM_AXIS lookup table modeling
R2015b provides the ability to model common axis (COM_AXIS) lookup tables for AUTOSAR
applications. You can:

• Import AUTOSAR calibration parameters of category CURVE, MAP, CUBOID, and COM_AXIS from
arxml files into Simulink. The importer creates corresponding model content, including n-D
Lookup Table blocks and parameter objects.

• Use Simulink to create a COM_AXIS table and configure it for AUTOSAR run-time calibration.
• Export COM_AXIS lookup table information in arxml code, including calibration parameters of

category CURVE, MAP, CUBOID, and COM_AXIS.

For more information, see Calibration Parameters for COM_AXIS Lookup Tables and Configure
COM_AXIS Lookup Table for Measurement and Calibration.

Embedded Coder model templates
In R2015b, Embedded Coder templates provide you with a starting point for quickly developing
models for code generation. Embedded Coder templates provide starting models for the following
applications:

• Code Generation System. Create a model to get started with code generation.
• Exported functions. Create a model for generating code from function-call subsystems.
• Fixed-step, multirate. Create a fixed-step model with multiple rates for production code

generation.
• Fixed-step, single-rate. Create a fixed-step model with a single rate for production code

generation.

R2015b

17-12

https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/calibration-parameters.html#burrq1_-1
https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-com-axis-lookup-tables-for-measurement-and-calibration.html
https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-com-axis-lookup-tables-for-measurement-and-calibration.html

In the templates, traceability and reporting are turned on so that you can easily evaluate your
generated code. The model configuration settings are based on code generation objectives for
execution efficiency and traceability.

For more information on using the templates, see Create a Model Configured for Code Generation
Using Embedded Coder Templates.

Removal of uncalled Disable functions from generated code
In R2015a, the code generator created Disable functions that the generated code did not call. In
R2015b, the code generator does not create uncalled Disable functions, except in the following
cases:

• A model containing a Model Reference block or an S-function block.
• You are exporting code for a function-call subsystem.

In these cases, the code generator creates Disable functions that the generated code might not call.
The code generator does not have enough information to determine whether the generated code
requires the Disable functions.

This enhancement reduces code size and ROM consumption.

Enhancement to option for generating preprocessor conditionals
Previously, the Code Generation > Interface pane of the Model Configuration Parameters dialog
box contained the option to Generate preprocessor conditionals. When you set this option to
Enable all or Disable all, the global setting overrode the local setting Generate preprocessor
conditionals that you specified on Variant Subsystem or Variant Model blocks.

In R2015b, the following enhancements have been made to the Generate preprocessor
conditionals option.

• The option is now local to Variant Subsystem and Variant Model blocks. The global option has
been removed from the Model Configuration Parameters dialog box. This enhancement eliminates
the confusion regarding which option, global or local, is active.

• When you select this option, Simulink analyzes variant choices during an update diagram or
simulation. This analysis provides early validation of the code generation readiness of variant
choices.

• The Model Advisor now includes a check to identify models whose global Generate preprocessor
conditionals option is set to Enable all or Disable all. The check provides instructions on
how to migrate the global setting to individual variant blocks.

Compatibility Considerations
• Previously, when the Generate preprocessor conditionals option was switched on, Simulink

analyzed variant choices only during the code generation phase. Now, Simulink performs this
analysis during the update diagram phase. As a result, errors that you would normally see during
code generation appear earlier, during an update diagram.

• If you load a pre-R2015b model whose global Generate preprocessor conditionals option was
set to Enable all or Disable all, Embedded Coder generates a warning. The warning

 Model Architecture and Design

17-13

https://www.mathworks.com/help/releases/R2015b/ecoder/ug/create-a-model-configured-for-code-generation-using-embedded-coder-templates.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/create-a-model-configured-for-code-generation-using-embedded-coder-templates.html

contains instructions on how to migrate the global setting to individual variant blocks. After the
migration is complete, the affected variant blocks behave as they did in previous releases.

R2015b

17-14

Data, Function, and File Definition

Tokenized function names for custom storage class GetSet
When you apply the custom storage class GetSet to a signal, block parameter, or state, you specify
the names of functions to read or write the data in the generated code. In R2015b, when you identify
these function names by specifying the properties GetFunction and SetFunction, you can use the
token $N. The generated code calls the functions that you specify by replacing the token with the
name of the signal, parameter, or state.

For example, if you specify the property GetFunction as get_$N_data for a signal named mySig,
the generated code calls the function get_mySig_data to access the signal.

When you apply the custom storage class GetSet to new signals, parameters, or states, the default
GetFunction value is get_$N, and the default SetFunction value is set_$N.

For more information, see Access Data Through Functions with Custom Storage Class GetSet.

 Data, Function, and File Definition

17-15

https://www.mathworks.com/help/releases/R2015b/ecoder/ug/getset-custom-storage-classes.html

Code Generation
Embedded Coder Quick Start: Quickly configure model to generate
reusable and efficient code
The Embedded Coder Quick Start tool helps you quickly generate readable, efficient code from your
Simulink model. To start the tool, from the model window, select Code > C/C++ > Embedded Coder
Quick Start.

You must select preferences about your code generation objectives and target environment. The tool
then validates your choices against the model and presents the parameter changes required to
generate code. If you choose to generate code, the tool executes the changes to your configuration
set and generates the code.

When code generation is complete, links to the documentation present possible next steps, such as
customizing your generated code and refining code optimizations.

For more information, see Generate Code with the Embedded Coder Quick Start Tool.

Internationalization: Generate and review code containing mixed
languages for different locales
In R2015b, the code generator introduces support for non-US-ASCII characters in compilable
portions of generated source code. The code generator processes strings without loss of information
or character corruption by replacing unrepresented characters of the user default encoding with an
escape sequence of the form ode-unit;. code-unit is the hexadecimal value for the
unrepresented character. For example, the code generator replaces the Japanese full-width Katakana
letter ア with the escape sequence ア. Cases where escape sequence replacements occur
include:

• Strings representing model parameters, block names, and signal names that appear in generated
code comments.

• Output variables representing signal names and block names on block paths logged to MAT- files.
• Variables representing block names on block paths logged to C API files model_capi.c (or .cpp)

and model_capi.h.

When generating HTML code reports, the code generator converts replacement character escape
sequences with original strings to preserve model-to-code traceability.

Two exceptions to the character escape sequence replacement scheme are:

• Comments in code generation template (.cgt) files
• Variables and function names in Target Language Compiler (.tlc) files

By default, code generation template files do not contain encoding information. The operating system
reads the files in the user default encoding, regardless of the encoding that you use to write the file.
You can enable escape sequence replacements by adding the following token to your template file:

<encodingIn = "encoding">

Replace encoding with a string that names a standard character encoding scheme, such as UTF-8,
ISO-8859–1, or windows-1251.

R2015b

17-16

https://www.mathworks.com/help/releases/R2015b/ecoder/ug/generate-code-using-embedded-coder-quick-start.html

Target Language Compiler files support user default encoding only. To use the compiler to produce
international custom generated code that is portable, use the 7-bit ASCII character set when naming
variables and functions.

For more information, see Internationalization and Code Generation.

MISRA C:2012 code generation objective
The Code Generation Advisor includes a new objective for MISRA C:2012 guidelines. Setting the
objective increases the likelihood of generating MISRA C:2012 compliant code. The MISRA C:2012
guideline objective replaces the MISRA-C:2004 guideline.

For more information, see Configure Model for Code Generation Objectives Using Code Generation
Advisor.

Compatibility Considerations

The MISRA C:2012 guideline objective replaces the MISRA-C:2004 guideline. If you use the
command-line to set the ObjectivePriorities parameter to MISRA-C:2004 guideline,
Embedded Coder will use the MISRA C:2012 guideline objective.

AUTOSAR arxml round-trip
R2015b enhances the AUTOSAR arxml round-trip workflow with support for:

• Editable AUTOSAR display format for calibration
• Configurable export of AUTOSAR internal data constraints
• AUTOSAR reference bases
• AUTOSAR-typed per-instance memory import

Editable AUTOSAR display format for calibration

AUTOSAR display format specifications control the width and precision display for calibration and
measurement data. In R2015b, you can import and export AUTOSAR display format specifications,
and edit the specifications in Simulink. You can specify display format for the following AUTOSAR
data objects and elements:

• Signal and parameter data objects (AUTOSAR and AUTOSAR4 classes)
• Inter-runnable variables
• Sender-receiver interface data elements
• Client-server interface operation arguments
• CompuMethods

For more information, see Configure AUTOSAR Display Format for Measurement and Calibration.

Configurable export of AUTOSAR internal data constraints

In releases before R2015b, you could not control the export or packaging of AUTOSAR internal data
constraints from Simulink. Code generation exported internal data constraints to AUTOSAR package
DataConstrs at a fixed location under the AUTOSAR datatype package.

 Code Generation

17-17

https://www.mathworks.com/help/releases/R2015b/ecoder/ug/international-character-support.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/configure-model-for-code-generation-objectives-using-code-generation-advisor.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/configure-model-for-code-generation-objectives-using-code-generation-advisor.html
https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/configure-autosar-display-format-for-calibration.html

In R2015b, you can enable or disable export of AUTOSAR internal data constraints. Export now is
disabled by default. Optionally, you can specify the name and path of an AUTOSAR package into
which internal data constraints are exported. For more information, see Configure AUTOSAR Internal
Data Constraints Export.

AUTOSAR reference bases

Embedded Coder now can import AUTOSAR reference bases from arxml code into a model.
Reference bases, which are defined in AUTOSAR Release 4.0, allow the use of relative paths in
AUTOSAR specifications of packageable elements. In this arxml code example, reference base CMs
resolves to /pkg/Components/MyComponent/CompuMethods.

AUTOSAR-typed per-instance memory import

R2014a introduced modeling and code generation support for AUTOSAR-typed per-instance memory
(arTypedPerInstanceMemory) in Simulink models. With R2015b, you can import
arTypedPerInstanceMemory definitions from arxml code into a model. When you import an
arTypedPerInstanceMemory definition, the arxml importer:

• Creates an AUTOSAR.Signal data object, sets its Storage class to PerInstanceMemory, and
configures per-instance memory attributes.

R2015b

17-18

https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/control-autosar-internal-data-constraints-export.html
https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/control-autosar-internal-data-constraints-export.html

• Creates a Data Store Memory block that references the AUTOSAR.Signal object.

For more information, see Per-Instance Memory and Configure AUTOSAR Per-Instance Memory.

Toolchain controls for AUTOSAR code generation
The AUTOSAR target (autosar.tlc) now supports toolchain controls for C code generation. When
you select the AUTOSAR target, the Configuration Parameter dialog box displays toolchain
parameters rather than the template makefile (TMF) parameters previously displayed. You can more
flexibly configure AUTOSAR code generation, for example, for processor-in-the-loop (PIL) verification,
or to leverage a toolchain-based hardware support package.

Other targets that support toolchain controls include the ERT targets ert.tlc and
ert_shrlib.tlc.

AUTOSAR RTE file generation enhanced for SIL and PIL
Building an AUTOSAR model generates RTE (run-time environment) files into the stub subfolder of
the model build folder. The RTE files have .c and .h extensions, and contain stub implementations of
the AUTOSAR Rte functions. The stub implementations can be used to test the generated C code in
Simulink, for example, in software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulations of the
component under test. When the generated code ultimately is deployed in the AUTOSAR RTE, you
replace the RTE stub files with externally-generated RTE files.

R2015b enhances the generated RTE stub files in many respects. The build generates most of the
same RTE stub files as before, but with improved content:

• More closely reflects the AUTOSAR element content of the model.
• More closely resembles what an external RTE Generator creates.
• Better descriptions of content and possible uses.

R2015b also generates new stub files, Std_Types.h: and Platform_Types.h:

• Std_Types.h is a standard AUTOSAR file that defines basic data types.
• Platform_Types.h maps AUTOSAR base types to platform types.

 Code Generation

17-19

https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/model-autosar-component-behavior.html#bsn91k_
https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/use-data-store-memory-blocks-to-specify-per-instance-memory.html

• Std_Types.h includes Platform_Types.h, and is included by Rte_Type.h.

Lookup table blocks with new even spacing specification generate
AUTOSAR compatible IFX library routines
As of R2015b, lookup table blocks generate AUTOSAR compatible IFX library routines. Lookup table
blocks were enhanced to support a new specification for even-spacing breakpoints, which supports
and generates AUTOSAR IFX routines.

For more information, see Code Replacement for AUTOSAR.

Control use of signed shifts in generated code
You can now control the use of signed right shifts in your generated code. Some coding standards do
not allow bitwise operations on signed integers. Disabling the use of signed shifts in generated code
increases the likelihood of compliance with MISRA. When you specify that signed right shifts should
not be used in your generated code, the software replaces signed shifts with a call to a function that
performs the operation without the use of signed shifts.

To specify that the code generator not use signed right shifts, in the Configuration Parameters dialog
box, on the Code Generation > Code Style pane, clear Allow right shifts on signed integers or set
the parameter EnableSignedRightShifts to off.

R2015b

17-20

https://www.mathworks.com/help/releases/R2015b/ecoder/autosar/code-replacement-for-autosar.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/code-generation-pane-code-style.html#buu8gwr-1

Code generation report with operator traceability
In R2015b, the HTML code generation report provides traceability between operators in the
generated code and Simulink blocks. In the HTML report window, click an operator hyperlink to
highlight the source block in the model. In the model, right-click an operator block. From the context
menu, select C/C++ Code > Navigate to C/C++ Code. This selection highlights the generated code
for the block in the HTML code generation report. Operator traceability information is included in the
Traceability Report section of the code generation report. This information is also in the generated
traceability matrix.

The code generation report does not provide traceability between operators and Stateflow or
MATLAB Function blocks.

 Code Generation

17-21

Deployment

Hardware Implementation Selection: Quickly generate code for
popular embedded processors
Specification of hardware configurations has been simplified. Top-level Configuration Parameters
dialog box panes, Run on Target Hardware and Coder Target, have been removed. Parameters
previously available on those panes now appear on the Hardware Implementation pane. A
parameter has also moved from the Code Generation pane to the Hardware Implementation
pane.

This list summarizes the R2015b changes and new behavior:

• By default, the Hardware Implementation pane lists Hardware board, Device vendor, and
Device type parameter fields only.

• If you use Simulink without a Simulink Coder license, initially parameters on the Hardware
Implementation pane are disabled. To enable them, click Enable hardware specification. The
parameters remain enabled for the current MATLAB session.

• By default, the Hardware board list includes: None or Determine by Code Generation
system target file, and Get Hardware Support Packages. After installing a hardware
support package, the list also includes corresponding hardware board names.

• If you select a hardware board name, parameters for that board appear in the dialog box display.
• Lists for the Device vendor and Device type parameters have been updated to reflect hardware

that is available on the market. The default Device vendor and Device type are Intel and
x86-64 (Windows64), respectively.

• If Simulink Coder is installed, the revised Hardware Implementation pane identifies the system
target file that you selected on the Code Generation pane.

• A Device details option provides a way to display parameters for setting details such as number
of bits and byte ordering.

• To specify target hardware for a Simulink support package, select a value from Configuration
Parameters > Hardware Implementation > Hardware board. Before R2015b, you selected
Tools > Run on Target Hardware > Prepare to run. Then, you selected a value from
Configuration Parameters > Run on Target Hardware > Target hardware.

• To specify target hardware for an Embedded Coder support package, select a value from
Configuration Parameters > Hardware Implementation > Hardware board. Before R2015b,
you selected a value from Configuration Parameters > Code Generation > Target hardware.

• The Test hardware section was removed. Configure test hardware from the Configuration
Parameters list view. Set ProdEqTarget to off, which enables parameters for configuring test
hardware details.

• If you set Configuration Parameters > Code Generation > System target file to ert.tlc,
realtime.tlc, or autosar.tlc, the default setting for Configuration Parameters >
Hardware Implementation > Hardware board is None. If you set System target file to value
other than ert.tlc, autosar.tlc, or realtime.tlc, the default setting for Hardware board
is Determine by Code Generation system target file.

For more information, see Hardware Implementation Pane.

R2015b

17-22

https://www.mathworks.com/help/releases/R2015b/simulink/gui/hardware-implementation-pane.html

Compatibility Considerations
Starting in R2015b:

• By default, the Hardware Implementation pane lists Hardware board, Device vendor, and
Device type parameter fields only. To view parameters for setting details, such as number of bits
and byte ordering, click Device details.

• The following devices appear on the Hardware Implementation pane only for models that you
create with a version of the software earlier than R2015b. These devices are considered legacy
devices.

Generic, 32-bit Embedded Processor
Generic, 64-bit Embedded Processor (LP64)
Generic, 64-bit Embedded Processor (LLP64)
Generic, 16-bit Embedded Processor
Generic, 8-bit Embedded Processor
Generic, 32-bit Real-Time Simulator
Generic, 32-bit x86 compatible
Intel, 8051 Compatible
Intel, x86–64
SGI, UltraSPARC Iii

In R2015b, if you open a model configured for a legacy device and change the Device type
setting, you cannot select the legacy device again.

• Device parameter Signed integer division rounds to is set to Zero instead of Undefined. For
some cases, numerical differences can occur in results produced with Zero versus Undefined for
simulation and code generation.

This change does not apply to legacy devices.
• To associate a new model with an existing configuration set that has the following characteristics,
configure the model to use the same hardware device as the existing model.

• The model consists of a model reference hierarchy. Models in the hierarchy use different
configuration sets.

• The existing configuration set was saved as a script and associated with a configuration set
variable.

If the code generator detects differences in device parameter settings, a consistency error occurs.
To correct the condition, look for differences in the device parameter settings, and make the
appropriate adjustments.

Code Replacement Tool uses simplified specification
As of R2015b, where possible, the Code Replacement Tool creates code replacement table entries by
using an approach that significantly reduces the amount of relevant code. Instead of using separate
function calls to create the entry, conceptual arguments, and implementation arguments, the tool
uses the createCRLEntry function to create entries from conceptual and implementation argument
string specifications. The tool continues to use the more verbose approach for entries that involve:

• C++ implementations
• Data alignment

 Deployment

17-23

https://www.mathworks.com/help/releases/R2015b/ecoder/ref/codereplacementtool-app.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ref/createcrlentry.html

• Operator replacement with net slope arguments
• Entry parameter specifications (for example, priority, algorithm, build information)
• Semaphore and mutex function replacements

For more information, see createCRLEntry and Define Code Replacement Mappings.

Code replacement support for new lookup table breakpoint
specification
In R2015b, n-D Lookup Table and Prelookup blocks support a new specification for evenly spaced
breakpoints. Rather than specifying breakpoints as a vector, for n-D Lookup Table blocks, you can
enter values for First point and Spacing parameters for each dimension of the breakpoint data. For
Prelookup blocks, you can enter values for First point, Spacing, and Number of points. The code
replacement software supports this new breakpoint specification through alternative conceptual
function signatures for n-D Lookup Table and Prelookup blocks.

For more information, see n-D Lookup Table, Prelookup, and Lookup Table Function Code
Replacement.

Support for Analog Devices VisualDSP++ will be removed
Support for Analog Devices® VisualDSP++® will be removed in a future release.

R2015b

17-24

https://www.mathworks.com/help/releases/R2015b/ecoder/ref/createcrlentry.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/define-code-replacement-mappings-sc.html
https://www.mathworks.com/help/releases/R2015b/simulink/slref/ndlookuptable.html
https://www.mathworks.com/help/releases/R2015b/simulink/slref/prelookup.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/lookup-table-function-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/lookup-table-function-code-replacement-sc.html

Performance

RAM/ROM Optimization Improvements: Generate more efficient code
using reusable storage class and converting data copies to pointer
assignments
Reuse input and output of a block or subsystem

Previously, if a pair of model block I/O signals shared the same Reusable storage class specification,
the code generator reused the root I/O signals in the generated code. In R2015b, this optimization
extends to the input and output signals at a block or subsystem boundary if the input and output
arguments have the same data types and sampling rates. This optimization can reduce the number of
global variables, data copies, and RAM/ROM consumption in the generated code. For more
information, see Buffer Reuse Around a Block or Subsystem Boundary

More efficient code for large data sets

Previously, for many data transfers involving vector signals, the code generator replaced a for loop
controlled array element assignment with a memcpy function call. In R2015b, the code generator can
replace a for loop controlled array element assignment that is inside of an if-else statement with
a memcpy function call. The code generator can replace multiple array element assignments inside of
a for loop with memcpy function calls. These optimizations improve execution speed.

In R2015b, the code generator attempts to replace for loop controlled array element assignments
and memcpy function calls with pointer assignments. Because this optimization eliminates full array
data copies, it improves execution speed and saves stack space.

Consider the following model named dynamicLookup. The Data Store Read blocks are copying data
from their named data stores (Data1 or Data2) to the input buffers of the Lookup Table.

In R2015a, the code generator produced this code:

/* Model step function */
void dynamicLookup_step(void)

 Performance

17-25

https://www.mathworks.com/help/releases/R2015b/ecoder/ug/buffer-reuse-at-block-or-subsystem-boundary.html

{
 /* local block i/o variables */
 real32_T rtb_DataStoreRead[10];
 uint16_T rtb_DataStoreRead1[10];
 int32_T i;

 /* DataStoreRead: '<>/Data Store Read' */
 for (i = 0; i < 10; i++) {
 rtb_DataStoreRead[i] = Data1[i];

 /* DataStoreRead: '<>/Data Store Read1' */
 rtb_DataStoreRead1[i] = Data2[i];
 }
...
LookUp_real_TU16_real32_T(&(dynamicLookup_Y.Out1), &rtb_DataStoreRead1[0],
 dynamicLookup_U.In1, &rtb_DataStoreRead[0], 9U);
}

In R2015b, the code generator produces this code:

/* Model step function */
void dynamicLookup_step(void)
{
real32_T *rtb_DataStoreRead_0;
uint16_T *rtb_DataStoreRead1_0;
/* DataStoreRead: '<Root>/Data Store Read' */
rtb_DataStoreRead_0 = (&(Data1[0]));
/* DataStoreRead: '<Root>/Data Store Read1' incorporates:
* DataStoreRead: '<Root>/Data Store Read'
*/
rtb_DataStoreRead1_0=(&(Data2[0]));
...
LookUp_real_TU16_real32_T(&(dynamicLookup_Y.Out1), rtb_DataStoreRead1_0,
 dynamicLookup_U.In1, rtb_DataStoreRead_0, 9U);
}

In R2015a, the generated code contains a for loop and data copies to the arrays
rtb_DataStoreRead and rtb_DataStoreRead1. In R2015b, the code generator replaces the for
loop with pointer assignments to the variables rtb_DataStoreRead_0 and
rtb_DataStoreRead1_0. For more information, see Optimize Memory Usage for Vector Signal
Assignments

Live Execution Profiling: View PIL profile results during run-time
During a processor-in-the-loop (PIL) simulation, you can use the Simulation Data Inspector to view
streamed task execution times. Previously, this data was available only at the end of the PIL
simulation. For more information, see View and Compare Code Execution Times.

Enhanced support for buffer reuse at the root-level input and output
ports
Reusable custom storage class for model block input and output ports

Previously, if a pair of root-level model input and output signals used the same Reusable storage
class specification, the code generator reused the root I/O signals in the generated code. In R2015b,

R2015b

17-26

https://www.mathworks.com/help/releases/R2015b/ecoder/ug/optimize-memory-usage-for-vector-signal-assignments.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/optimize-memory-usage-for-vector-signal-assignments.html
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/view-and-compare-code-execution-times.html

the code generator enables this optimization for models containing subsystems. This optimization can
reduce data copies, global variables, and ROM/RAM consumption. For example, consider the
following model named IObuffreuse.

In R2015a, the code generator produces the following code:

void IObuffreuse_Subsystem(const real_T rtu_In1[6], B_Subsystem_IObuffreuse_T
 *localB)
{
 int32_T i;
 for (i = 0; i < 6; i++) {
 localB->ca[i] = 4.0 * rtu_In1[i];
 }
}

void IObuffreuse_step(void)
{
 int32_T i;
 for (i = 0; i < 6; i++) {
 abc_0[i] = abc[i];
 }

 IObuffreuse_Subsystem(abc_0, &IObuffreuse_B.Subsystem);
 for (i = 0; i < 6; i++) {
 abc[i] = 11.0 * IObuffreuse_B.Subsystem.ca[i];
 }
}

In R2015b, the code generator produces the following code:

void IObuffreuse_Subsystem(const real_T rtu_In1[6], B_Subsystem_IObuffreuse_T
 *localB)
{
 int32_T i;
 for (i = 0; i < 6; i++) {
 localB->ca[i] = 4.0 * rtu_In1[i];
 }
}

void IObuffreuse_step(void)
{
 int32_T i;
 IObuffreuse_Subsystem((&(abc[0])), &IObuffreuse_B.Subsystem);
 for (i = 0; i < 6; i++) {
 abc[i] = 11.0 * IObuffreuse_B.Subsystem.ca[i];
 }
}

 Performance

17-27

In R2015a, the generated code contains an additional buffer named abc_0. The code also contains a
full array data copy from abc_0 to abc in the model step function. In R2015b, the additional buffer
and the full array data copy are not in the generated code.

For more information on how to configure your model to use this optimization, see Buffer Reuse for
Model Block Boundary and Unit Delay.

Combined input and output arguments with function prototype control

Previously, the code generator tried to reuse buffers for a pair of model step function input and
output ports that were assigned the same argument name using function prototype control. This
optimization can reduce data copies, global variables, and ROM/RAM consumption. In R2015b, the
code generator enables this optimization for models containing subsystems. For example, consider
the following model named FPCioreuse.

In R2015a, the code generator produces the following code:

void mg956114fpc2_custom(real_T arg_Inout1[6])
{
 int32_T i;
 for (i = 0; i < 6; i++) {
 arg_Inout1_0[i] = arg_Inout1[i];
 }

 FPCioReuse_Subsystem(arg_Inout1_0, &FPCioReuse_B.Subsystem);
 for (i = 0; i < 6; i++) {
 arg_Inout1[i] = 11.0 * FPCioReuse_B.Subsystem.ca[i];
 }
}

In R2015b, the code generator produces the following code:

void mg956114fpc2_custom(real_T arg_Inout1[6])
{
 int32_T i;
 FPCioReuse_Subsystem(arg_Inout1, &FPCioReuse_B.Subsystem);
 for (i = 0; i < 6; i++) {
 arg_Inout1[i] = 11.0 * FPCioReuse_B.Subsystem.ca[i];
 }
}

In R2015a, the code contains an additional buffer named arg_Inout1_0. The code also contains a
full array data copy from arg_Inout1 to arg_Inout1_0. In R2015b, the temporary buffer and full
array data copy are not in the generated code.

R2015b

17-28

https://www.mathworks.com/help/releases/R2015a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

To configure model step function I/O arguments to allow buffer reuse, use either C function prototype
control or C++ class interface control. For more information, see Combine Input and Output
Arguments in Model Step Interface.

More efficient code for small subsystems
Previously, if a subsystem was in a model or model hierarchy more than once and the subsystem
Function packaging was set to Auto, Embedded Coder generated a separate, reusable function
with arguments.

In R2015b, if these subsystems are small and not too complex, the code generator inlines the code for
each subsystem. This enhancement reduces data copies, RAM consumption, and code size. It also
improves execution speed. For large-scale models containing thousands of subsystems, this
enhancement saves time because you do not have to manually set Function packaging to Inline
for each subsystem.

Consider the following model named auto_funcpackaging. This model contains two identical,
simple subsystems named if Action Subsystem and If Action Subsystem1.

In R2015a, the code generator produced the following code:

void auto_funcpack_IfActionSubsystem(real_T rtu_In1,
 rtDW_IfActionSubsystem_auto_fun *localDW)
{
 localDW->Gain = 4.0 * rtu_In1;
}

void auto_funcpackaging_step(void)
{
 if (auto_funcpackaging_U.Cond > 0.0) {
 auto_funcpack_IfActionSubsystem(auto_funcpackaging_U.In1,

 Performance

17-29

https://www.mathworks.com/help/releases/R2015a/ecoder/ug/function-prototype-control.html#burd979-1
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/function-prototype-control.html#burd979-1

 &auto_funcpackagin_DWork.IfActionSubsystem);
 } else {
 auto_funcpack_IfActionSubsystem(auto_funcpackaging_U.In2,
 &auto_funcpackaging_DWork.IfActionSubsystem);
 }

 auto_funcpackaging_Y.outa =
 auto_funcpackaging_DWork.IfActionSubsystem.Gain;
 auto_funcpackaging_Y.outa1 =
 auto_funcpackaging_DWork.IfActionSubsystem1.Gain;
}

In R2015b, the code generator produces this code:

void auto_funcpackaging_step(void)
{
 if (auto_funcpackaging_U.Cond > 0.0) {
 auto_funcpackaging_Y.outa = 4.0 * auto_funcpackaging_U.In1;
 } else {
 auto_funcpackaging_Y.outa1 = 4.0 * auto_funcpackaging_U.In2;
 }
}

In R2015a, the code generator produced the reusable function named
auto_funcpack_IfActionSubsystem, which is called twice in the generated code. In R2015b,
because the subsystem consists of simple signal paths, the code generator inlines the code for each
subsystem. For more information, see Generate Inlined Subsystem Code

More efficient code for Simulink.Bus objects
Previously, if a Data Store Memory block stored a Simulink.Bus object, and Data Store Read and
Data Store Write blocks updated the Simulink.Bus object, there were extra data copies in the
generated code.

In R2015b, the code generator has improved expression folding capabilities, so that these additional
data copies are not in the generated code. This enhancement reduces code size and RAM
consumption and increases execution speed.

For example, consider the following subsystem.

R2015b

17-30

https://www.mathworks.com/help/releases/R2015b/ecoder/ug/inline-subsystem-code.html

In R2015a, the code generator produced this code:

void f(void)
{
 real_T rtb_Gain2[170];
 real_T rtb_Gain3[190];
 int32_T i;
 for (i = 0; i < 170; i++) {
 rtb_Gain2[i] = 3.0 * rtDW.A.c[i];
 }

 for (i = 0; i < 190; i++) {
 rtb_Gain3[i] = 4.0 * rtDW.A.d[i];
 }

 for (i = 0; i < 150; i++) {
 rtDW.A.b[i] *= 2.0;
 }

 for (i = 0; i < 170; i++) {
 rtDW.A.c[i] = rtb_Gain2[i];
 }

 for (i = 0; i < 190; i++) {
 rtDW.A.d[i] = rtb_Gain3[i];
 }
}

In R2015b, the code generator produces this code:

void f(void)
{
 int32_T i;
 for (i = 0; i < 150; i++) {
 rtDW.A.b[i] *= 2.0;
 }

 for (i = 0; i < 170; i++) {
 rtDW.A.c[i] *= 3.0;

 Performance

17-31

 }

 for (i = 0; i < 190; i++) {
 rtDW.A.d[i] *= 4.0;
 }
}

In R2015a, the generated code contained full array data copies from rtb_Gain2 to rtDW.A.c and
from rtb_Gain3 to rtDW.A.d. In R2015b, if a Bus Assignment block source and destination are the
same Data Store Memory block, the code generator implements the Bus Assignment block in place in
the generated code. As a result, the extra data copies are not in the generated code.

Enhanced local variable reuse
In R2015b, the code generator reuses more local variables, which reduces RAM and ROM
consumption.

Consider the following model named local_reuse. This model contains four identical MATLAB
Functions and a subsystem. The signals are matrices of size [5 5].

In R2015a, for the model step function, the code generator produced this code:

void local_reuse_step(void)
{
 real_T rtb_sum_g[25];
 real_T rtb_prod_o[25];
 real_T rtb_sum_a[25];
 real_T rtb_prod_h[25];
 real_T rtb_sum_j0[25];
 real_T rtb_prod_i[25];
 int32_T i;
 local_reuse_Step0(local_reuse_U.In1, local_reuse_U.In2, rtb_sum_g, rtb_prod_o);
 local_reuse_Subsystem(rtb_sum_g, rtb_prod_o, local_reuse_B.Gain,
 local_reuse_B.Gain1, &local_reuse_DW.Subsystem);
 local_reuse_Step0(rtb_sum_g, rtb_prod_o, rtb_sum_a, rtb_prod_h);
 local_reuse_Step0(rtb_sum_a, rtb_prod_h, rtb_sum_j0, rtb_prod_i);
 local_reuse_Step0(rtb_sum_j0, rtb_prod_i, rtb_sum_g, rtb_prod_o);
 for (i = 0; i < 25; i++) {
 local_reuse_Y.Out1[i] = local_reuse_B.Gain[i] * rtb_sum_g[i];
 local_reuse_Y.Out2[i] = local_reuse_B.Gain1[i] * rtb_prod_o[i];

R2015b

17-32

 }
}

The generated code contained six local arrays, rtb_sum_g, rtb_prod_o, rtb_sum_a, rtb_prod_h,
rtb_sum_jo, and rtb_prod_i to handle the input and output of the four MATLAB Functions.

In R2015b, for the model step function, the code generator produces this code:

void local_reuse_step(void)
{
 real_T rtb_sum_g[25];
 real_T rtb_prod_o[25];
 real_T rtb_sum_a[25];
 real_T rtb_prod_h[25];
 int32_T i;
 local_reuse_Step0(local_reuse_U.In1, local_reuse_U.In2, rtb_sum_g, rtb_prod_o);
 local_reuse_Subsystem(rtb_sum_g, rtb_prod_o, local_reuse_B.Gain,
 local_reuse_B.Gain1, &local_reuse_DW.Subsystem);
 local_reuse_Step0(rtb_sum_g, rtb_prod_o, rtb_sum_a, rtb_prod_h);
 local_reuse_Step0(rtb_sum_a, rtb_prod_h, rtb_sum_g, rtb_prod_o);
 local_reuse_Step0(rtb_sum_g, rtb_prod_o, rtb_sum_a, rtb_prod_h);
 for (i = 0; i < 25; i++) {
 local_reuse_Y.Out1[i] = local_reuse_B.Gain[i] * rtb_sum_a[i];
 local_reuse_Y.Out2[i] = local_reuse_B.Gain1[i] * rtb_prod_h[i];
 }
}

The generated code contains four local arrays, rtb_sum_g, rtb_prod_o, rtb_sum_a, and
rtb_prod_h to handle the input and output of the four MATLAB Functions. Because the code
generator reuses more local variables, there are two less local arrays than there were in R2015a.

Enhanced consolidation of for loops
Previously, the code generator tried to combine for loops that had the same number of iterations. In
R2015b, the code generator combines more cases of for loops that have the same number of
iterations. These for loops read and write to separate sections of the same array and write to scalar
variables. This optimization conserves ROM consumption and improves execution speed.

Consider the following model named loopfusion. This model contains two Mux blocks that combine
vector signals from three Inport blocks into an output vector signal. The three input vector signals
have a dimension size of 5. The output vector signal has a dimension size of 15.

In R2015a, the code generator produced this code:

 Performance

17-33

/* Model step function */
void loopfusion_step(void)
{
 int32_T i;

 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 * Inport: '<Root>/In3'
 */
 for (i = 0; i < 5; i++) {
 loopfusion_Y.Out1[i] = loopfusion_U.In1[i];
 }

 for (i = 0; i < 5; i++) {
 loopfusion_Y.Out1[i + 5] = loopfusion_U.In2[i];
 }

 for (i = 0; i < 5; i++) {
 loopfusion_Y.Out1[i + 10] = loopfusion_U.In3[i];
 }

 /* End of Outport: '<Root>/Out1' */

In R2015a, there were three for loops that wrote to three separate sections of the array,
loopfusion_Y.Out1.

In R2015b, the code generator produces this code:

/* Model step function */
void loopfusion_step(void)
{
 int32_T i;

 /* Outport: '<Root>/Out1' incorporates:
 * Inport: '<Root>/In1'
 * Inport: '<Root>/In2'
 * Inport: '<Root>/In3'
 */
 for (i = 0; i < 5; i++) {
 loopfusion_Y.Out1[i] = loopfusion_U.In1[i];
 loopfusion_Y.Out1[i + 5] = loopfusion_U.In2[i];
 loopfusion_Y.Out1[i + 10] = loopfusion_U.In3[i];
 }

 /* End of Outport: '<Root>/Out1' */

In R2015b, there is one for loop that writes to three separate sections of the array,
loopfusion.Out1.

R2015b

17-34

Verification

Faster SIL and PIL Verification Workflow
R2015b enables faster software-in-the-loop (SIL) and processor-in-the-loop (PIL) verification by
providing:

• Model block SIL/PIL and SIL/PIL block support for fast restart — You can tune parameters and run
simulations without model recompilation.

• Model block SIL/PIL support for Accelerator mode — If you have a model with Model blocks in
SIL/PIL mode, you can run the top-model simulation in Accelerator mode, which speeds up the
simulation of components that are not in SIL or PIL mode.

For more information, see Speed Up SIL/PIL Verification .

Code generation assumptions verified during PIL simulation
The settings on the Configuration Parameters > Hardware Implementation pane specify target
behavior, which result in the implementation of implicit assumptions in the generated code. Incorrect
settings can lead to:

• Suboptimal code
• Code execution failure, incorrect code output, and nondeterministic code behavior

At the start of a PIL simulation, the software verifies the Hardware Implementation pane settings
with reference to the target hardware. The software checks:

• The correctness of settings. For example, the integer bit length in the Number of bits: int field.
• Whether the settings are optimized. For example, the rounding of signed integer division in the

Signed integer division rounds to field.

If required, the software generates warnings and errors.

SIL and PIL support for C++ class root-level I/O access methods
The Configuration Parameters > Code Generation > Interface > External I/O access
parameter (GenerateExternalIOAccessMethods) specifies whether to generate root-level I/O
signal access methods for a C++ class. R2015b provides SIL and PIL simulation support for these
parameter values:

• Structure-based method — Code generator produces noninlined, structure-based access
methods.

• Inlined structure-based method — Code generator produces inlined, structure-based
access methods.

Previously, SIL and PIL simulations supported only access methods that were not structure-based.

For more information, see External I/O access and Configure Step Method for Model Class.

 Verification

17-35

https://www.mathworks.com/help/releases/R2015b/ecoder/ug/speed-up-silpil-verification.html
https://www.mathworks.com/help/releases/R2015b/rtw/ref/simulink-coder-parameters-on-all-parameters-tab.html#br55ax2-1
https://www.mathworks.com/help/releases/R2015b/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#brre99z-1

Removal of Generate code only parameter restriction
You can run top-model and Model block SIL and PIL simulations even if you select the Generate
code only (GenCodeOnly) parameter. Previously, running the SIL and PIL simulations with the
parameter produced an error. For a SIL or PIL block, the restriction still applies. For additional
Generate code only enhancements, see Smarter Code Regeneration: Regenerate code only when
model settings that impact code are modified.

Removal of scheduling limitations that caused algebraic loops
In R2015b, the internal scheduling of messages between host and target in a SIL or PIL simulation is
modified. This modification removes the S-function scheduling limitations that previously caused
algebraic loops in SIL and PIL simulations.

R2015b

17-36

https://www.mathworks.com/help/releases/R2015b/rtw/release-notes.html#buwgpa6-1
https://www.mathworks.com/help/releases/R2015b/rtw/release-notes.html#buwgpa6-1

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

17-37

https://www.mathworks.com/support/bugreports/

R2015a

Version: 6.8

New Features

Compatibility Considerations

18

Code Generation from MATLAB Code

Indent style and size control for generated C/C++ code
You can control the indent style and size in C/C++ code generated from MATLAB code.

You can specify the K&R indent style or the Allman indent style. The K&R style places the opening
brace of a control statement on the same line as the control statement. The Allman style places the
opening brace on its own line at the same indentation level as the control statement.

Indent size is the number of characters per indentation level.

To specify the indent style and size using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the Generate arrow .
2 Set Build type to one of the following:

• Source Code
• Static Library (.lib)
• Dynamic Library (.dll)
• Executable (.exe)

3 Click More Settings.
4 On the All Settings tab, under Advanced, set Indent style to K&R or Allman.
5 On the All Settings tab, under Advanced, set Indent size to an integer from 2 to 8.

To specify the indent style and size using the command-line interface:

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib','ecoder',true); % or dll or exe
2 Set the IndentStyle property to 'K&R' or 'Allman'. For example:

cfg.IndentStyle = 'Allman';
3 Set the IndentSize property to an integer from 2 to 8. For example:

cfg.IndentSize = 4;

See Specify Indent Style for C/C++ Code.

Improved MISRA-C compliance for bitwise operations on signed
integers
In previous releases, MATLAB Coder replaced multiplication by powers of two with signed left bitwise
shifts. In R2015a, to increase the likelihood of compliance with MISRA C, you can disable this
replacement. MISRA rule 12.7 does not allow bitwise operations on signed integers.

To specify that MATLAB Coder not replace multiplication by powers of two with signed left bitwise
shifts:

• Using the MATLAB Coder app:

R2015a

18-2

https://www.mathworks.com/help/releases/R2015a/ecoder/ug/specify-indentation-style-and-size-for-cc-code.html

1 On the Generate Code page, to open the Generate dialog box, click the Generate arrow
.

2 Set Build type to one of the following:

• Source Code
• Static Library (.lib)
• Dynamic Library (.dll)
• Executable (.exe)

3 Click More Settings.
4 On the Code Appearance tab, clear the Use signed shift left for fixed-point operations

and multiplication by powers of 2 check box.
• Using the command-line interface:

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib','ecoder',true); % or dll or exe
2 Set the EnableSignedLeftShifts property to false. For example:

cfg.EnableSignedLeftShifts = false;

See Control Signed Left Shifts in Generated Code.

Improved MISRA-C type cast compliance
You can specify the casting mode that MATLAB Coder uses for data type casts in the generated C/C+
+ code. You can specify these modes:

Casting Mode Description
Nominal Nominal casting mode is the default casting

mode. The generated C/C++ code uses the
default C compiler data type casting. When you
do not have special data type information
requirements, choose this option.

Standards Compliant Generated C/C++ code has data type casts that
conform to MISRA standards. The MISRA data
type casting mode eliminates common MISRA
standard violations, including address arithmetic
and assignment. It reduces 10.1, 10.2, 10.3, and
10.4 violations.

Explicit Generated C/C++ code has explicit data type
casts. Explicit data type casts provide information
about the amount of memory that the variable
uses and the level of precision for calculations
using the variable.

To specify the casting mode using the MATLAB Coder app:

1 On the Generate Code page, to open the Generate dialog box, click the Generate arrow .
2 Click More Settings.

 Code Generation from MATLAB Code

18-3

https://www.mathworks.com/help/releases/R2015a/ecoder/ug/control-signed-left-shifts-in-generated-code.html

3 On the All Settings tab, under Advanced, set Casting mode to Nominal, Standards
Compliant, or Explicit.

To specify the casting mode using the command-line interface:

1 Create a code configuration object for 'lib', 'dll', or 'exe'. For example:

cfg = coder.config('lib', 'ecoder', true); % or dll or exe
2 Set the CastingMode property to 'Nominal', 'Standards', or 'Explicit'. For example:

cfg = CastingMode = 'Standard';

See Control Data Type Casts in Generated Code.

R2015a

18-4

https://www.mathworks.com/help/releases/R2015a/ecoder/ug/control-data-type-casts-in-generated-code.html

Model Architecture and Design

AUTOSAR improvements including multi-runnable modeling and code
efficiency
R2015a provides many enhancements to Simulink modeling of AUTOSAR elements and AUTOSAR
code generation. Highlights include:

• AUTOSAR multi-runnable modeling using Simulink rate-based multitasking
• Improved traceability for AUTOSAR RTE implicit read

For more information about AUTOSAR-related enhancements in R2015a, see:

• Under Model Architecture and Design:

• “AUTOSAR multi-runnable modeling using Simulink rate-based multitasking” on page 18-6
• “Enhanced modeling with AUTOSAR system constants” on page 18-6
• “AUTOSAR CompuMethod enhancements” on page 18-7

• Under Code Generation:

• “Improved traceability for AUTOSAR RTE implicit read” on page 18-12
• “Configurable aliveTimeout value for AUTOSAR ports” on page 18-13
• “AUTOSAR calibration parameter export for COM_AXIS lookup tables” on page 18-13

Combined input/output arguments with function prototype control
In R2015a, the code generator tries to reuse buffers for a pair of model step function input/output
ports assigned the same argument name using function prototype control. The corresponding inport
and outport blocks must have the same data type and sampling rate. This reuse can eliminate buffers
in the generated code.

To configure model step function I/O arguments to allow buffer reuse, use either C function prototype
control or C++ class interface control. For more information, see Combine Input and Output
Arguments in Model Step Interface.

Improved MISRA-C compliance for bitwise operations on signed
integers
You can specify that the code generator not replace multiplications by powers of two with signed
bitwise shifts, increasing the likelihood of generating code that is compliant with MISRA-C. MISRA
rule 12.7 does not allow bitwise operations on signed integers. Previously, the code generator
replaced multiplications by powers of two with signed bitwise shifts.

To specify that the code generator not replace multiplications by power of two with signed bitwise
shifts, in the Configuration Parameters dialog box, on the Code Generation > Code Style pane,
clear Replace multiplications by powers of two with signed bitwise shifts or set the parameter
EnableSignedLeftShifts to off.

To improve MISRA-C compliance for bitwise operations on signed integers, run the following checks:

 Model Architecture and Design

18-5

https://www.mathworks.com/help/releases/R2015a/ecoder/ug/function-prototype-control.html#burd979-1
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/function-prototype-control.html#burd979-1
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/code-generation-pane-code-style.html#bumt8oa-1

• Check for bitwise operations on signed integers - New check to identify blocks that contain bitwise
operations on signed integers.

• Check configuration parameters for MISRA-C:2004 compliance - Enhanced check that verifies that
you cleared Code Generation > Code Style > Replace multiplications by powers of two with
signed bitwise shifts.

AUTOSAR multi-runnable modeling using Simulink rate-based
multitasking
In previous releases, you modeled a multi-runnable AUTOSAR software component using Simulink
function-call subsystems or Simulink Function blocks at the top level of a model. In R2015a, you can
model a multi-runnable AUTOSAR software component using Simulink rate-based multitasking. Using
this approach, you can:

• Create an AUTOSAR software component with multiple periodic runnables in Simulink.
• Import an AUTOSAR software component with multiple periodic runnables from arxml into

Simulink.
• Migrate an existing rate-based, multitasking Simulink model to the AUTOSAR target.

For more information, see Multi-Runnable Software Components and Configure Multiple Runnables
Using Rate-Based Multitasking.

Compatibility Considerations
Before R2015a, you could not configure a multitasking model for the AUTOSAR target. If you
attempted to import an AUTOSAR software component with multiple periodic runnables and create a
rate-based model (that is, if you invoked arxml.importer method createComponentAsModel with
CreateInternalBehavior set to false), the importer would:

• Discard all but one runnable and create a rate-based, single-tasking model.
• For each AUTOSAR port, create an inport or outport and related Simulink elements even if the

port was not accessed by the AUTOSAR runnable.

Performing the same import in R2015b produces different results in two respects. The importer:

• Creates a rate-based, multitasking model, rather than rate-based, single-tasking.
• For each AUTOSAR port, creates an inport or outport and related Simulink elements only if the

port is accessed by an AUTOSAR runnable.

Enhanced modeling with AUTOSAR system constants
In previous releases, you could define AUTOSAR system constants (SwSystemConstants) in
Simulink, but their use was limited to condition formulas inside variant subsystems and model
references. In R2015a, you can directly reference AUTOSAR system constants in Simulink
algorithms. For example, you could reference a system constant in a Gain block.

For more information, see System Constants and Model AUTOSAR Component Behavior.

R2015a

18-6

https://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/autosar-software-components.html#buryr9d-1
https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/configure-multiple-runnables.html#buryp53-1
https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/configure-multiple-runnables.html#buryp53-1
https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/arxml.importer-class.html
https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/model-autosar-component-behavior.html#burhjck-1
https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/model-autosar-component-behavior.html

AUTOSAR CompuMethod enhancements
R2015a significantly enhances AUTOSAR CompuMethod related workflows in Simulink. You can:

• Configure the properties of imported AUTOSAR CompuMethods
• Create and configure AUTOSAR CompuMethods in Simulink
• Use externally-defined AUTOSAR CompuMethods
• Use externally-defined AUTOSAR Units

For more information, see Configure AUTOSAR CompuMethods.

Preprocessor conditionals for single variant choice
Previously, you could not generate preprocessor conditionals if a variant subsystem in your model
contained a single variant choice.

In R2015a, you can represent an empty subsystem as a variant choice. During code generation, if the
empty variant choice is inactive, the generated code does not contain the #elif preprocessor
conditional. Instead, the active variant choice is enclosed between a #if and an #endif.

 Model Architecture and Design

18-7

https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/configure-autosar-compumethods.html

Data, Function, and File Definition

Control of Boolean and data type limit identifiers in generated code
In R2015a, if you want to associate the data type limit identifiers with the data type names, you can
use command-line parameters to replace these default data type limit identifiers:

• MAX_int8_T
• MAX_int16_T
• MAX_int32_T
• MAX_uint8_T
• MAX_uint16_T
• MAX_uint32_T
• MIN_int8_T
• MIN_int16_T
• MIN_int32_T

You can also use command-line parameters to:

• Replace the default true and false Boolean identifiers.
• Import a header file with the Boolean and data type limit identifier definitions.

For more information, see Specify Boolean and Data Type Limit Identifiers.

Names of built-in storage classes reserved
You can no longer define custom storage classes with the same name as the built-in storage classes
Auto, SimulinkGlobal, ExportedGlobal, ImportedExtern, and ImportedExternPointer.
The Custom Storage Class Designer now fails validation of custom storage classes that have these
names.

Compatibility Considerations
If you previously defined custom storage classes with the same name as the built-in storage classes,
MATLAB returns an error when you try to create data objects that use any of the custom storage
classes defined in the affected package. If you try to load such data objects from a MAT-file, the
objects do not load successfully.

To resolve these compatibility issues:

1 Rename the affected custom storage classes.
2 Update your MATLAB code to use the new names.
3 Recover affected data objects from existing MAT-files.

To recover affected data objects from existing MAT-files:

1 Start a prior release of MATLAB that uses the affected custom storage classes.
2 Load the MAT-files.

R2015a

18-8

https://www.mathworks.com/help/releases/R2015a/ecoder/ug/customize-boolean-and-data-type-limit-identifiers.html

3 Use the function matlab.io.saveVariablesToScript to generate a MATLAB script that
defines the affected data objects.

4 Manually update the generated script with the new names of your custom storage classes.
5 In release R2015a or later of MATLAB, rename the affected custom storage classes.
6 Run the generated script in release R2015a or later of MATLAB.

 Data, Function, and File Definition

18-9

Code Generation

Simplified Code Replacement Library specification plus more
replacements involving integer operations
Simplified Code Replacement Library specification

R2015a introduces a simpler approach to defining code replacement table entries programmatically.
This approach significantly reduces the amount of code that you write. Consider using this approach
if both of the following conditions apply:

• The workflow that you use for defining mappings involves copying, pasting, and editing existing
mappings.

• You prefer not to use the Code Replacement Tool to create an initial mapping definition.

To use the approach, specify conceptual and implementation information for a table entry as detailed
string specifications in a call to the function createCRLEntry.

This approach for defining mappings for code replacement table entries does not support:

• C++ implementations
• Data alignment
• Operator replacement with net slope arguments
• Entry parameter specifications (for example, priority, algorithm, building information)
• Semaphore and mutex function replacements

For more information, see createCRLEntry and Define Code Replacement Mappings.

More replacements involving integer operations

As of R2015a, code replacement opportunities have been improved for the following binary-point
scaling operations. To increase match opportunities, the code generator applies equivalent scaling to
inputs before performing the stored integer operation. However, input scaling occurs only if a match
exists and the code generator is able to apply the replacement for the stored integer operation.

Operator Key Scalar, Vector, Matrix
Support

Real, Complex
Support

Addition (+) RTW_OP_ADD Scalar
Vector
Matrix

Real
Complex

Subtraction (-) RTW_OP_MINUS Scalar
Vector
Matrix

Real
Complex

Multiplication (*) RTW_OP_MUL Scalar Real
Division (/) RTW_OP_DIV Scalar Real
Element-wise matrix
multiplication (.*)

RTW_OP_ELEM_MUL Vector
Matrix

Real

R2015a

18-10

https://www.mathworks.com/help/releases/R2015a/ecoder/ref/createcrlentry.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/createcrlentry.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/define-code-replacement-mappings-sc.html

Improved readability for shared header file 'rtwtypes.h'
To improve code readability and reduce code review cost, in the rtwtypes.h file, the software does
not generate the following definitions:

• The preprocessor directive #define __TMWTYPES__. The removal of this preprocessor directive
prevents the inclusion of tmwtypes.h, making rtwtypes.h the single source of type definitions.

• Definitions for zero-crossing detection in triggered subsystems. For example:

#ifndef __ZERO_CROSSING_TYPES_H__
#define __ZERO_CROSSING_TYPES_H__

/* Trigger directions: falling, either, and rising */
typedef enum {
 FALLING_ZERO_CROSSING = -1,
 ANY_ZERO_CROSSING = 0,
 RISING_ZERO_CROSSING = 1
} ZCDirection;

/* Previous state of a trigger signal */
...
#endif

Models containing triggered subsystems require zero-crossing definitions when the trigger is
rising, falling, or either. In R2015a, the software generates these definitions in a separate
file called zero_crossing_types.h. The software creates the file only if the model requires the
file.

Compatibility Considerations
Because of the removal of the #define __TMWTYPES__ directive, the rtwtypes.h file generated
using R2015a might not be compatible with code that you generate using a previous release. For
example, in some circumstances, the generated code from an older release might include
tmwtypes.h after rtwtypes.h. This code does not compile without the #define __TMWTYPES__
directive.

If your build process uses custom code that includes the header file tmwtypes.h instead of
rtwtypes.h, you might observe a compiler error that indicates a redefined type.

To avoid this error, in the custom code, replace:

#include "tmwtypes.h"

with:

#include "rtwtypes.h"

If you use the mex command to compile custom code for an S-function, include tmwtypes.h for the
mex compilation and rtwtypes.h for the code generation compilation:

#ifdef MATLAB_MEX_FILE
#include "tmwtypes.h"
#else
#include "rtwtypes.h"
#endif

 Code Generation

18-11

Alternatively, before generating code for your model, configure the model for backward compatibility
by setting the parameter InferredTypesCompatibility to on.

set_param(model, 'InferredTypesCompatibility', 'on')

When you enable backward compatibility, the code generator creates the preprocessor directive
#define __TMWTYPES__ inside model.h.

New and enhanced Model Advisor checks for MISRA-C compliance
To improve MISRA-C compliance, you can run the following Model Advisor checks:

Check New or
Enhanced

Description Addresses
MISRA-C Rule
Numbers

Check for bitwise operations on
signed integers

New Identifies blocks that contain bitwise
operations on signed integers.

12.7

Check configuration parameters
for MISRA-C:2004 compliance

Enhanced Now verifies that you cleared Code
Generation > Code Style >
Replace multiplications by
powers of two with signed
bitwise shifts

12.7

Check for blocks not
recommended for MISRA-
C:2004 compliance

Enhanced Now identifies Lookup Table blocks
using cubic spline interpolation or
extrapolation methods.

11.4 and 11.5

Improved traceability for AUTOSAR RTE implicit read
AUTOSAR code generation now generates more traceable and readable code for a root inport that
models an AUTOSAR RTE implicit read, especially when the inport data type is a matrix.

For example, consider root inport In1 the following model:

In R2014b, the generated code introduces a hidden Signal Conversion block:
void Runnable_Step(void)
{
const real_T *rtb_TmpSignalConversionAtIn1Out;
real_T tmp[9];
int32_T
/* SignalConversion: '<Root>/TmpSignal ConversionAtIn1Outport1' incorporate
Inport: '<Root>/In1 */
rtb_TmpSignalConversionAtIn1Out = Rte_IRead_Runnable_Step_Input_Element0();
 /* Sum: '<Root>/Add' incorporates:
 * Constant: '<Root>/Constant'
 */
 for (i = 0; i < 9; i++) {
 tmp[i] = rtb_TmpSignalConversionAtIn1Out [i] + 1.0;
 }

R2015a

18-12

https://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bumt5qx-1
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fj-1
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/embedded-codersimulink-coder-checks.html#bsc06fh-1

 ...
 Rte_IWrite_Runnable_Step_Output_Output(tmp);
}

In R2015a, the generated code is traceable and more readable. A hyperlink is generated for <Root>/
In1.
void Runnable_Step(void)
{
const real_T *tmp_In1;
real_T tmp[9];
int32_T i;
 /* Inport: '<Root>/In1' */
 tmp_In1 = Rte_IRead_Runnable_Step_Input_Element0();
 /* Sum: '<Root>/Add' incorporates:
 * Constant: '<Root>/Constant'
 */
 for (i = 0; i < 9; i++) {
 tmp[i] = rtb_tmp_In1[i] + 1.0;
 }
 ...
 Rte_IWrite_Runnable_Step_Output_Output(tmp);
}

Configurable aliveTimeout value for AUTOSAR ports
In AUTOSAR applications, the aliveTimeout value for an AUTOSAR port specifies the amount of
time in seconds after which the AUTOSAR software component must be notified if the port has not
received data according to a specified timing description. In previous releases, arxml export
generated a fixed aliveTimeout value of 60 for each AUTOSAR port, without providing a way to
modify the aliveTimeout value in Simulink.

The software now allows you to configure an aliveTimeout value that subsequent arxml exports
generate for each AUTOSAR port. For more information, see Configure AUTOSAR Port aliveTimeout
Value.

AUTOSAR calibration parameter export for COM_AXIS lookup tables
For shared axis (COM_AXIS) lookup tables, AUTOSAR code generation now exports arxml that
supports run-time calibration of lookup table parameters. To configure a lookup table for run-time
calibration, add an n-D Lookup Table block to your model and configure it for COM_AXIS data. For
table data and axis data that you want to tune or manipulate at run-time, reference AUTOSAR
calibration parameters. For more information, see Calibration Parameters for COM_AXIS Lookup
Tables.

Fixed-point scaling information in Code Interface Report
Fixed-point scaling information is added to the code generation report in the Code Interface Report
section. Better accessibility to this information makes it easier for you to integrate your code with
generated code containing fixed-point data types. Each fixed-point entry in a report table has a value
in the new Scaling column giving its data type and fraction length using Simulink fixed-point data
type notation. Here is an example of fixed-point data representations in the Outports table.

 Code Generation

18-13

https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/configure-default-alivetimeout-value-for-autosar-ports.html
https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/configure-default-alivetimeout-value-for-autosar-ports.html
https://www.mathworks.com/help/releases/R2015a/simulink/slref/ndlookuptable.html
https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/calibration-parameters.html#burrq1_-1
https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/calibration-parameters.html#burrq1_-1

You must have a Fixed-Point Designer™ license to see fixed-point scaling information in the report.
For more information on how scaling is represented in the table, see Fixed-Point Data Type and
Scaling Notation.

Unsigned integer minimum data limit identifiers
The following unsigned integer minimum data limit identifiers are no longer defined in rtwtypes.h:

• MIN_uint8_T
• MIN_uint16_T
• MIN_uint32_T
• MIN_uint64_T

Previously, the unsigned integer minimum data limit identifiers defined in rtwtypes.h were
potentially not used in the generated code:

• Standard C header files do not provide an unsigned integer minimum data limit constant.
• In most instances, the code generator did not replace 0 with the unsigned integer minimum limit
identifier.

Compatibility Considerations
If you previously used unsigned integer minimum data limit identifiers in custom code, for example in
an S-Function, replace the limit with 0.

Default iteration variable data type
The default data type for iteration variables in the generated code is a 32-bit integer. Previously, the
default data type was int with an unspecified bit size.

For example, consider the following model.

The code generator produced this code in R2014b:

R2015a

18-14

https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/fixed-point-numbers.html#br4g2lj-1
https://www.mathworks.com/help/releases/R2015a/fixedpoint/ug/fixed-point-numbers.html#br4g2lj-1

 {
 int_T i;
 for (i = 0; i < 16; i++) {
 test1_2a_Y.Out7[i].re = (0L);
 test1_2a_Y.Out7[i].im = (0L);
 }
 }

The code generator produces this code in R2015a:

 {
 int32_T i;
 for (i = 0; i < 16; i++) {
 test1_2a_Y.Out7[i].re = (0L);
 test1_2a_Y.Out7[i].im = (0L);
 }
 }

 Code Generation

18-15

Deployment

Code Replacement Viewer enhanced
• MATLAB command for invoking the Code Replacement Viewer is renamed from RTW.viewTfl to

crviewer.
• The trace information for misses that occur during the match process is reformatted as a table.

For more information, see Verify Code Replacements.

Model configuration parameter considered for division operator code
replacements
When determining match criteria for division operator code replacement entries, the code generator
uses model configuration parameter Signed integer division rounds to (ProdIntDivRoundTo) to
determine equivalent rounding modes. For example, assume that Signed integer division rounds
to is set to Floor. The code generator matches model division operations with integer rounding
modes set to simplest or floor to division operator code replacement entries with the Rounding
mode (RoundingModes) parameter set to Simplest or Floor.

Lookup table algorithm parameter specification enhancements
R2015a introduces enhancements for setting algorithm parameters for lookup table function code
replacement table entries.

• From the Code Replacement Tool, you can specify multiple values for an algorithm parameter.
• Programming interface improvements include:

• Algorithm parameter set objects for discovering and managing algorithm parameter settings.
• For a given lookup table function, default settings for unchanged algorithm parameters.
• Validation of syntax, parameter names, and values in parameter assignment statements.
• getAlgorithmParameters function for examining the algorithm parameter settings for a

lookup table function code replacement table entry.
• setAlgorithmParameters function for setting the algorithm parameters for a lookup table

function code replacement table entry.

For more information, see getAlgorithmParameters, setAlgorithmParameters, and Lookup
Table Function Code Replacement.

Header file for Basic Linear Algebra Subroutine (BLAS) multiplication
function code replacement example changed
The header file for the Basic Linear Algebra Subroutine (BLAS) multiplication function code
replacement example changed from blascompat32.h to blascompat32_crl.h. The associated
include path for this header file changed to matlab/toolbox/rtw/rtwdemos/crl_demo. For more
information, see “Improved readability for shared header file 'rtwtypes.h'” on page 18-11.

R2015a

18-16

https://www.mathworks.com/help/releases/R2015a/ecoder/ug/verify-code-replacements-sc.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/getalgorithmparameters.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/setalgorithmparameters.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/getalgorithmparameters.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ref/setalgorithmparameters.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/lookup-table-function-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/lookup-table-function-code-replacement-sc.html

Code replacement detection of overflow and rounding mode
equivalence
As of R2015a, the code replacement software detects overflow and rounding mode equivalence for
real scalar multiplication and division operations. When an operation does not overflow, based on
input and output data types, a match occurs for code replacement table entries with the saturation
mode set to Wrap on Overflow (RTW_WRAP_ON_OVERFLOW). Similarly, if the code replacement
software detects equivalent rounding modes, a match occurs.

Feature being removed in a future release
The Filter Design and Analysis Tool option to target the Code Composer Studio™ IDE will be removed
in a future release. The Filter Design and Analysis Tool is available with Signal Processing Toolbox™.

 Deployment

18-17

Performance
More efficient code involving model references, unit delays, and
global data references
Reusable custom storage class for Model block input/output ports

Previously, if a pair of root-level model input and output signals used the same Reusable storage
class specification, the code generator could reuse the root I/O signals in the generated code. In
R2015a, this optimization extends to Model block I/O signals. The code generator tries to reuse
buffers for a pair of Model block I/O signals with the same Reusable storage class specification. This
reuse can eliminate buffers in the generated code.

The input/output signals must have the same data types and sampling rates. This optimization does
not apply to conditional output ports.

For more information on how to configure your model to take advantage of this optimization, see
Buffer Reuse for Model Block Boundary and Unit Delay.

Reuse input, output, and state of Unit Delay block

If any of the following conditions exist, the code generator tries to reuse the input, output, and state
of a Unit Delay block:

• In the Configuration Parameters dialog box, on the Optimizations > Signals and Parameters
pane, you select Use global to hold temporary results from the Optimize global data
access list.

• You use the same Reusable custom storage class specification for a pair of input and state
arguments or a pair of output and state arguments of a Unit Delay block.

• You use a Reusable custom storage class specification for a state argument of a Unit Delay block.

The reusable input, output, and state arguments must have the same data types and sampling rates.
This optimization can reduce the number of global variables. For example, consider the following
model.

In R2014b, the code generator produces the following code:

DW_reuse_ex_T reuse_ex_DW;
void reuse_ex_step(void)
{
 reuse_ex_Y.Out2 = reuse_ex_P.Gain1_Gain * reuse_ex_DW.UnitDelay1_DSTATE;
 reuse_ex_Subsystem();
 reuse_ex_DW.UnitDelay1_DSTATE = reuse_ex_B.Gain2;
}

R2015a

18-18

https://www.mathworks.com/help/releases/R2015a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

In R2015a, the code generator produces the following code:

void reuse_ex_step(void)
{
 reuse_ex_Y.Out2 = reuse_ex_P.Gain1_Gain * reuse_ex_B.Gain2;
 reuse_ex_Subsystem();
}

For more information on how to configure your model to use this optimization, see Buffer Reuse for
Model Block Boundary and Unit Delay.

Enhanced variable reuse optimizations

The code generator has improved analysis of data copies to provide more variables for reuse and
more consistent variable reuse behavior. These enhancements result in:

• Reduced data copies, code size, and RAM consumption.
• Improved execution speed.

For example, consider the following model.

The code generator produced this code in R2014b:

int32_T i;

/* Sum: '<Root>/Sum' incorporates:
* Constant: '<Root>/Increment'
* UnitDelay: '<Root>/Unit_Delay'

 Performance

18-19

https://www.mathworks.com/help/releases/R2015a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/signal-reuse-at-model-and-unit-delay-boundary.html

*/
outc = (uint8_T)(outc + 1);

/* Assignment: '<Root>/Assignment' incorporates:
* Inport: '<Root>/ina'
* UnitDelay: '<Root>/Unit_Delay1'
*/
for (i = 0; i < 100; i++) {
 outa[i] = mg909420_DWork.Unit_Delay1_DSTATE[i];
}

outa[outc] = ina;

/* End of Assignment: '<Root>/Assignment' */

/* Update for UnitDelay: '<Root>/Unit_Delay1' */
for (i = 0; i < 100; i++) {
 mg909420_DWork.Unit_Delay1_DSTATE[i] = outa[i];
}

The code generator produces this code in R2015a:

outc = (uint8_T)(outc + 1);

/* Assignment: '<Root>/Assignment' incorporates:
* Inport: '<Root>/ina'
*/
outa[outc] = ina;

Strategic caching of global variable references

The code generator replaces global variables used for temporary storage with local variables. This
replacement enables expression folding and other optimizations available for local variables,
resulting in:

• Reduced data copies, code size, and RAM consumption.
• Improved execution speed.

For example, in the following model, the signal from a Constant block feeds into an Outport block. On
the Optimization > Signals and Parameters pane, the Optimize global data access parameter is
set to Minimize global data access.

R2015a

18-20

The code generator produced this code in R2014b:

/* Outport: '<Root>/Out3' incorporates:
* Constant: '<Root>/B3'
*/
mg1003222_Y.Out3 = K + 1.0;
mg1003222_Y.Out3 = sin(mg1003222_Y.Out3);

The code generator produces this code in R2015a:

/* Outport: '<Root>/Out3' incorporates:
* Constant: '<Root>/B3'
*/
mg1003222_Y.Out3 = sin(K + 1.0);

Enhanced global variable localization optimizations

The code generator has more information to determine which global variables it can replace with
local variables. It can also update function interfaces to pass these local variables. With these
enhancements, the code generator can:

• Enable more optimizations for local variables.
• Potentially reduce the number and use of global variables.

For example, consider the following Stateflow chart.

 Performance

18-21

The code generator produced this code in R2014b:

/* Function for Chart: '<Root>/Chart' */
static real_T test_f_fcn(void)
{
 /* MATLAB Function 'f_fcn': '<S1>:5' */
 /* Graphical Function 'f_fcn': '<S1>:5' */
 /* '<S1>:10:1' */
 test_g_fcn();
 /* '<S1>:10:1' */
 test_DW.data++;
 /* '<S1>:10:1' */
 return test_DW.data;
}

…

/* Function for Chart: '<Root>/Chart' */
static void test_g_fcn(void)
{
 /* MATLAB Function 'g_fcn': '<S1>:13' */
 /* Graphical Function 'g_fcn': '<S1>:13' */
 /* '<S1>:12:1' */
 test_DW.data = 1.0;
}

The code generator produces this code in R2015a:

/* Function for Chart:'<Root>/Chart'*/
static real_T test_f_fcn(void)
{
 real_T out;
 real_T data;
 /* MATLAB Function 'f_fcn': '<S1>:5'*/
 /* Graphical Function 'f_fcn': '<S1>:5'*/
 /*'<S1>:10:1'*/
 test_g_fcn(&data);
 /*'<S1>:10:1'*/
 out = data + 1.0;
 /*'<S1>:10:1'*/
 return out;
}

R2015a

18-22

…

/* Function for Chart: '<Root>/Chart' */
static void test_g_fcn(real_T *data)
{
 /* MATLAB Function 'g_fcn': '<S1>:13' */
 /* Graphical Function 'g_fcn': '<S1>:13' */
 /* '<S1>:12:1' */
 *data = 1.0;
}

Conditional compilation of Data Store Memory block memory
definition and declaration
When a Data Store Memory block has a non-auto storage class and variant subsystems reference the
block, the code conditionally compiles the definition and declaration of the block memory. To compile,
the code uses the preprocessor conditions associated with the variant subsystems. Previously, the
code did not conditionally compile the definition and declaration of the block memory, resulting in the
declaration and definition of global variables that the code potentially did not use.

For example, consider the following model.

In R2014b, the code generator produces this code:

volatile real_T dsm_var1;
void dsm_variants_ex_initialize(void)
{
 /* custom states */
 dsm_var1 = 0.0;
}

In R2015a, the code generator produces code using preprocessor conditionals:

#if VARI1 == USE
 volatile real_T dsm_var1;
#endif /* VARI1 == USE */

 Performance

18-23

void dsm_variants_ex_initialize(void)
{
 /* custom states */
 #if VARI1 == USE
 dsm_var1 = 0.0;
 #endif /* VARI1 == USE */
}

Ternary Boolean expressions transformed into assignment statements
In R2015a, the code generator removes the conditional part of a ternary Boolean expression, leaving
an assignment statement. An assignment statement in place of a ternary Boolean expression
improves execution speed and reduces RAM/ROM.

Observe the following lines of code generated in R2014b:

uint32_T a;
uint32_T b;
a = (a<b)?1U:0U;

Compare the same lines of code generated in R2015a:

uint32_T a;
uint32_T b;
a = uint32_T(a<b);

R2015a

18-24

Verification

SIL/PIL for protected models and SIL source code debugging using
Microsoft Visual Studio Express
• “SIL/PIL for protected models” on page 18-25
• “SIL source code debugging using Microsoft Visual Studio Express” on page 18-25

SIL/PIL for protected models

To verify the behavior of code generated from protected models, use Model block software-in-the-loop
(SIL) or processor-in-the-loop (PIL) simulations.

This feature supports:

• Generated code with standalone (Top model) and model reference (Model reference) code
interfaces.

• AUTOSAR models, including packaged ARXML files.
• Execution-time profiling of task entry-point functions.

For more information, see:

• Create a Protected Model
• Simulink.ModelReference.protect
• Referenced Model Simulation Using SIL or PIL

SIL source code debugging using Microsoft Visual Studio Express

Embedded Coder supports Microsoft Visual Studio® Express 2013 for Windows Desktop for
debugging code during software-in-the-loop (SIL) simulations. To specify Microsoft Visual Studio
Express for SIL debugging:

• In MATLAB, select the Microsoft Windows SDK 7.1 compiler.
• On the Configuration Parameters > Code Generation > Verification pane, select the Enable

source-level debugging for SIL simulations check box.

For more information, see Debug Code During SIL Simulations.

 Verification

18-25

https://www.mathworks.com/help/releases/R2015a/rtw/ug/create-a-protected-model-using-the-model-block-context-menu.html
https://www.mathworks.com/help/releases/R2015a/rtw/ref/simulink.modelreference.protect.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/referenced-model-simulation-using-sil-or-pil.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/debug-code-during-sil-simulations.html

Model block SIL/PIL parameter renamed
The following SIL/PIL changes apply to the Model block:

• The command-line parameter CodeUnderTest is renamed CodeInterface.
• In the Function Block Parameters dialog box, the field Code under test is renamed Code

interface.

ERT S-Function block no longer supported for AUTOSAR
As of R2015a, to verify code generated from AUTOSAR software component, use the SIL block.

For more information, see Verify AUTOSAR C Code with SIL and PIL.

Compatibility Considerations
R2014a introduced the ability to switch between two SIL block behaviors—legacy (ERT S-function)
and unified (SIL block). The software also indicated that ERT S-function support for code verification
would be removed in a future release. Starting in R2015a, for AUTOSAR code generation, use the SIL
block.

SIL/PIL support for replacing boolean data type with int8
You can replace the boolean built-in data type with an integer type in generated code. Before
R2015a, SIL and PIL execution supported data type replacement of boolean with uint8. As of
R2015a, SIL and PIL execution supports replacement of boolean with uint8 or int8.

For more information, see Replace boolean with Specific Integer Data Type and Data Type
Replacement.

SIL/PIL support for generated access methods for C++ model class
root-level I/O signals
In the Configuration Parameters dialog box, on the Code Generation > Interface pane, the
External I/O access parameter (GenerateExternalIOAccessMethods) specifies whether to
generate access methods for root-level I/O signals for a C++ model class. Before R2015a, SIL and PIL
simulations required that you set this parameter to None. As of R2015a, you can run SIL and PIL
simulations for code that you generate with the parameter set to Method or Inlined method. These
settings cause the code generator to produce noninlined or inlined access methods for the root-level
I/O signals for the class.

For more information, see External I/O access and Configure Step Method for Model Class.

R2015a

18-26

https://www.mathworks.com/help/releases/R2015a/simulink/slref/model.html
https://www.mathworks.com/help/releases/R2015a/ecoder/autosar/verifying-the-autosar-code-with-sil-and-pil-simulations.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/replace-boolean-with-specific-integer-data-type.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/data-type-replacement.html
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/data-type-replacement.html
https://www.mathworks.com/help/releases/R2015a/rtw/ref/code-generation-pane-interface.html#br55ax2-1
https://www.mathworks.com/help/releases/R2015a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#brre99z-1

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

18-27

https://www.mathworks.com/support/bugreports/

R2014b

Version: 6.7

New Features

Bug Fixes

Compatibility Considerations

19

Code Generation from MATLAB Code

Processor-in-the-loop (PIL) verification and execution profiling for
MATLAB code
Use processor-in-the-loop (PIL) execution to verify code that you intend to deploy in production. PIL
execution involves cross-compiling and running library object code on your target processor through
a MATLAB PIL interface. You can reuse test vectors developed for your MATLAB functions to verify
the numerical behavior of library code.

Before running PIL executions on your target hardware, specify a connectivity configuration for your
target. See PIL Customization for Target Environment and Create PIL Target Connectivity
Configuration.

You can run a PIL execution:

• Using the MATLAB Coder Project Interface. See Processor-in-the-Loop Execution Through Project
Interface.

• At the command line. See Processor-in-the-Loop Execution From Command Line.

Through software-in-the-loop (SIL) and processor-in-the-loop (PIL) execution, you can produce
execution time profiles of code generated from entry-point functions. Use these profiles to determine:

• Whether the generated code meets real-time requirements of your target hardware.
• Which entry-point functions require performance improvement.

For more information, see Execution Time Profiling.

Software-in-the-loop verification improvements for MATLAB Coder
The following table lists software-in-the-loop (SIL) execution improvements.

Feature R2014b support Previous support
Code debugging during SIL
execution

Linux: GNU® Data Display
Debugger (DDD)

Windows: Microsoft Visual Studio
debugger

Windows: Microsoft Visual Studio
debugger

Interface
types

Multiple entry
points

Yes No

Size Static variable-
size arrays

Yes Limited to function arguments
that were fixed-size structures
with variable-size fields.

For more information, see:

• Code Debugging During SIL Execution
• SIL/PIL Execution Support and Limitations

R2014b

19-2

https://www.mathworks.com/help/releases/R2014b/ecoder/ug/target-connectivity-configurations-for-pil.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/create-a-connectivity-configuration-for-a-target.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/create-a-connectivity-configuration-for-a-target.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/processor-in-the-loop-execution-through-project-interface.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/processor-in-the-loop-execution-through-project-interface.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/processor-in-the-loop-execution-from-the-command-line.html
https://www.mathworks.com/help/releases/R2014b/ecoder/execution-time-profiling.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/code-debugging-during-sil-execution.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/sil-execution-support-and-limitations.html

Additional options for custom banners and comments in C and C++
code generated from MATLAB code
In a code generation template (CGT) file, you can now specify the following:

• Custom banners for shared utility functions
• Custom comments before individual code sections such as Include Files and Function

Declarations
• doxygen style comments

The style attribute options for doxygen style comments are doxygen and doxygen_qt. The
TargetLang and CommentStyle code configuration object properties determine the use of C or
C++ style comments with the doxygen style comments.

doxygen with C style comments

/**
 * multiple line comments
 * second line
 */

doxygen with C++ style comments

///
/// multiple line comments
/// second line
///

doxygen_qt with C style comments

/*!
 * multiple line comments
 * second line
 */

doxygen_qt with C++ style comments

//!
//! multiple line comments
//! second line
//!

See Code Generation Template (CGT) Files for MATLAB.

Highlighting of potential data type issues in code generation reports
When you generate standalone code from MATLAB code, you now have the option to highlight
potential data type issues in the code generation report. The report highlights MATLAB code that
results in single-precision and double-precision operations in the generated C/C++ code. If you have
a Fixed-Point Designer license, the report also highlights expressions in the MATLAB code that result
in expensive fixed-point operations in the generated code. The expensive fixed-point operations check
identifies optimization opportunities for fixed-point code. It highlights expressions in the MATLAB
code that result in cumbersome multiplication and division, and expensive rounding in generated C/C
++ code.

 Code Generation from MATLAB Code

19-3

https://www.mathworks.com/help/releases/R2014b/ecoder/ug/code-generation-template-cgt-files-for-matlab-code-generation.html

The following example report highlights MATLAB code that results in double-precision operations in
the generated C code.

The checks are disabled by default.

To enable the checks in a project, on the Debugging tab, select the Always create a code
generation report and Highlight potential data types issues check boxes.

To enable the checks at the command line:

1 Create a configuration object to generate standalone C/C++ code for an embedded target. For
example:

cfg = coder.config('lib','ecoder',true);
2 Set the HighlightPotentialDataTypeIssues property to true:

cfg.HighlightPotentialDataTypeIssues = true;

See Highlight Potential Data Type Issues in a Report and Find Potential Data Type Issues in
Generated Code.

R2014b

19-4

https://www.mathworks.com/help/releases/R2014b/ecoder/ug/highlight-potential-data-type-issues-in-a-report.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/data-type-issues-in-generated-code.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/data-type-issues-in-generated-code.html

If you have a Fixed-Point Designer license, you have the option to highlight potential data type issues
in the generated HTML report that is available after the fixed-point type validation step of the fixed-
point conversion process. An Embedded Coder license is not required to highlight potential data
types issues in this report. The report highlights MATLAB code that requires single-precision, double-
precision, or expensive fixed-point operations.

The following example report highlights MATLAB code that requires expensive fixed-point operations.

The checks are disabled by default. To enable the checks in a project:

1 In the Fixed-Point Conversion Tool, click Advanced to view the advanced settings.
2 Set Highlight potential data type issues to Yes.

To enable the checks at the command line:

1 Create a floating-point to fixed-point conversion configuration object:

fxptcfg = coder.config('fixpt');
2 Set the HighlightPotentialDataTypeIssues property to true.

 Code Generation from MATLAB Code

19-5

fxptcfg.HighlightPotentialDataTypeIssues = true;

See Data Type Issues in Generated Code.

R2014b

19-6

https://www.mathworks.com/help/releases/R2014b/coder/ug/data-type-issues-in-generated-code.html

Model Architecture and Design

AUTOSAR targeting updates including 4.1 ARXML, client/server with
Simulink Functions, multi-instance components, and IFL/IFX libraries
R2014b provides many enhancements to AUTOSAR code generation and Simulink modeling of
AUTOSAR elements. Highlights include:

• Support for AUTOSAR Release 4.1, including:

• AUTOSAR 4.1 (schema version 4.1.1) arxml and C code generation
• AUTOSAR 4.1 initialization events
• AUTOSAR 4.1 provide-require ports

• Ability to model AUTOSAR clients and servers in Simulink, using Simulink Function and Function
Caller blocks.

• Ability to model multi-instance AUTOSAR software components (SWCs) in Simulink, using the
Reusable function setting of the model parameter Code interface packaging.

• AUTOSAR code replacement library support for:

• Floating-point interpolation (IFL) and fixed-point interpolation (IFX) library routines.
• Functions that perform a multiplication, and then a division operation in sequence.
• Addition and subtraction operator replacements for cast-after-operation algorithms. (For more

information, see “Algorithm specification for addition and subtraction operator replacement”
on page 19-21.)

For more information about AUTOSAR-related enhancements in R2014b, see:

• “Support for AUTOSAR Release 4.1” on page 19-11
• “AUTOSAR client and server modeling” on page 19-7
• “Multi-instance AUTOSAR atomic software components” on page 19-12
• Code Replacement for AUTOSAR
• “Support Package for AUTOSAR Standard” on page 19-10
• “AUTOSAR help navigation enhancements” on page 19-11

AUTOSAR client and server modeling
Beginning in R2014b, you can model AUTOSAR clients and servers in Simulink for simulation and
code generation.

• Use Simulink Function blocks at the root level of a model to model AUTOSAR servers.
• Use Function Caller blocks to model AUTOSAR client invocations.
• Use the top-model export-functions modeling style to create interconnected Simulink functions,

function-calls, and root model inports and outports.

For more information, see Client-Server Interface and Configure AUTOSAR Client-Server
Communication.

 Model Architecture and Design

19-7

https://www.mathworks.com/help/releases/R2014b/simulink/slref/simulinkfunction.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/functioncaller.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/functioncaller.html
https://www.mathworks.com/help/releases/R2014b/rtw/ref/code-generation-pane-interface.html#bt7cuoh-1
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/code-replacement-for-autosar.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/simulinkfunction.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/functioncaller.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar-communication.html#bsa24_3-7
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-client-server-communication.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-client-server-communication.html

Global From and Goto blocks for AUTOSAR modeling
Beginning in R2014b, you can use global From and Goto blocks in a model configured for AUTOSAR.
With From and Goto blocks, you can pass a signal from one block to another without actually
connecting them. You can model AUTOSAR runnables with more flexibility and cleaner separation of
components and interfaces.

AUTOSAR IRV branch from outport signal allowed outside runnable
In previous releases, if you wanted to branch an AUTOSAR runnable output signal to an AUTOSAR
inter-runnable variable (IRV) and a Simulink model root outport, AUTOSAR code generation
supported only branching inside the runnable.

Beginning in R2014b, AUTOSAR code generation supports branching outside the runnable. This
modeling pattern can potentially generate more efficient C code, for example, with fewer global
variables and fewer block I/O buffers.

The following guidelines and constraints apply to the new modeling pattern:

• You can branch a runnable output signal to only one root outport outside a runnable boundary.
• When a runnable output signal branches to an IRV and a root outport outside the runnable

subsystem:

• Only Goto and From blocks are allowed between the source and the destination of the signal.
• You cannot conditionally write to the IRV or root outport.

• When a runnable output signal does not branch, only Goto/From and Merge blocks are allowed
between the source and the destination of the signal.

R2014b

19-8

https://www.mathworks.com/help/releases/R2014b/simulink/slref/from.html
https://www.mathworks.com/help/releases/R2014b/simulink/slref/goto.html

Data, Function, and File Definition

Constant sample time limitation for AUTOSAR models
Previously, for models using the AUTOSAR target, the compiler reported a warning if you configured
a root-level Outport block to inherit a constant sample time from its sources. The compiler then set
the sample time of the root-level Outport block to the fundamental rate of the model. In R2014b, this
warning becomes an error.

Iteration variable in For Iterator block uses signal name
The code generator allows use of the signal name as part of the iteration variable name in the For
Iterator block. Using the signal name increases the traceability of the generated code.

You can control the name of the iteration variable. Specify the setting for Local temporary
variables on the Code Generation > Symbols pane. The signal name is the $N part of the variable
name.

Previously, the code generator used a default name, incorporating the name of the system hierarchy
for the iteration variable.

See also For Iterator and Local temporary variables.

Data type replacement specification can be used across models
When you specify data type replacement names for a model, the code generator can use the
replacement types to generate shared functions and constants. You save RAM/ROM space and the
code generator can use the user-defined types consistently.

For more information, see Data Type Replacement.

Definition file for grouped custom storage classes
When defining custom storage classes of the Struct or BitField type, you can now specify the
definition file for exported grouped custom storage classes.

Type definition location for custom storage classes
Previously, the type definitions for data that used the Struct or BitField custom storage class
were generated into the model_types.h header file. Now, those type definitions are generated into
the same header file as that containing the data declarations (model.h, by default). If you specify a
header file for such grouped custom storage classes, then both the type definitions and the data
declarations are generated into that specified file.

GetFunction and SetFunction included in checks for identifier clash
Simulink now includes the GetFunction and SetFunction properties of custom storage class
attributes during checks for identifier name clashes in data objects. Previously, these properties were
ignored during identifier clash detection.

 Data, Function, and File Definition

19-9

https://www.mathworks.com/help/releases/R2014b/simulink/slref/foriterator.html
https://www.mathworks.com/help/releases/R2014b/rtw/ref/code-generation-pane-symbols.html#bq9i3s4-1
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/data-type-replacement.html

Code Generation

Enhanced reporting of eliminated blocks
In R2014b, the Eliminated/Virtual Blocks section of the traceability report includes a more
accurate list of blocks eliminated by optimization. For these blocks, the code can now identify if the
block was eliminated by a code generation optimization or by a block reduction. The comments for
these blocks are more informative and include the following changes:

• Previously, a block eliminated from a model during code generation was reported as Not
traceable. In R2014b, the block comment is Eliminated by code generation
optimization.

• Previously, a block eliminated by Simulink block reduction was reported as Not traceable. In
R2014b, the block comment is the same optimization information available in the model.h file
when you select Code Generation > Comments > Show eliminated blocks .

• Previously, a block eliminated by code generation or block reduction was reported as Not
traceable in the Model Optimization Rationale column of a generated traceability matrix. In
R2014b, a block eliminated by code generation has CodeGenerationReducedBlock in the
Model Optimization Rationale column. A block eliminated by block reduction has
SimulationReducedBlock in this column.

For more information on traceability reports, see Customize Traceability Reports.

Improved MISRA-C type cast compliance
You can choose how the code generator specifies data type casts in the generated code, including an
option to choose MISRA data type cast compliance. The MISRA data type casting eliminates common
MISRA standard violations, including address arithmetic and assignment. It reduces 10.1, 10.2, 10.3,
and 10.4 violations.

You can also choose data type casting that is minimal or explicit.

For more information, see Control Cast Expressions in Generated Code.

Support Package for AUTOSAR Standard
Beginning in R2014b, Embedded Coder software provides add-on support for the AUTOSAR standard
via the Embedded Coder Support Package for AUTOSAR Standard. With the support package
installed, you can create and modify an AUTOSAR configuration for a model, model AUTOSAR
elements, and generate ARXML and AUTOSAR-compatible C code from a model.

To download and install the support package,

1 On the MATLAB Toolstrip, click Add-Ons > Get Hardware Support Packages.
2 Select Install from Internet and click Next.
3 From the list of available support packages, select AUTOSAR Standard.
4 To complete the installation, follow the instructions provided by Support Package Installer.

For more information, see Support Package Installation.

R2014b

19-10

https://www.mathworks.com/help/releases/R2014b/ecoder/ug/customizing-traceability-reports.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/control-code-style.html#buim0yx-68
https://www.mathworks.com/help/releases/R2014b/matlab/matlab_external/support-package-installation.html

Compatibility Considerations
AUTOSAR models and scripts that worked without a support package before R2014b now require
Embedded Coder Support Package for AUTOSAR Standard. Install the support package before
working with AUTOSAR models and scripts.

AUTOSAR help navigation enhancements
To make it easier to find AUTOSAR topics within MATLAB documentation, R2014b introduces the
following AUTOSAR documentation enhancements:

• New AUTOSAR landing page in MATLAB Help — Encapsulates the entire Embedded Coder
AUTOSAR workflow.

• New Embedded Coder AUTOSAR book in PDF format — Collects AUTOSAR concepts, examples,
how-to topics, and reference material in a PDF file to help Simulink users learn how to model
AUTOSAR components.

Support for AUTOSAR Release 4.1
AUTOSAR 4.1 ARXML and C code generation

The software now supports AUTOSAR Release 4.1 (schema version 4.1.1) for import and export of
arxml files and generation of AUTOSAR-compatible C code.

If you import schema version 4.1.1 arxml code into Simulink, the arxml importer detects and uses
the schema version, and sets the schema version parameter in the model to 4.1.

For information on specifying an AUTOSAR schema version for code generation, see Select an
AUTOSAR Schema.

 Code Generation

19-11

https://www.mathworks.com/help/releases/R2014b/ecoder/autosar-software-components.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/generating-autosar-code-and-description-files.html#brsz5z2-1
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/generating-autosar-code-and-description-files.html#brsz5z2-1

AUTOSAR 4.1 InitEvent support

Beginning in R2014b, you can model AUTOSAR initialization events (InitEvents), as defined in
AUTOSAR schema version 4.1. You can use an InitEvent to designate an AUTOSAR runnable as an
initialization runnable, and then map an initialization function to the runnable.

In previous releases, you could use AUTOSAR mode management to set up software component
initialization. For example, you could define a ModeDeclarationGroup with a mode for setting up
and initializing a software component. InitEvent provides a potentially lighter-weight alternative to
the mode-based approach.

If you import arxml code that describes a runnable with an InitEvent, the arxml importer
configures the runnable in Simulink as an initialization runnable.

Alternatively, you can configure a runnable to be the initialization runnable in Simulink. For more
information, see Configure AUTOSAR Initialization Runnable.

AUTOSAR 4.1 provide-require port support

Beginning in R2014b, you can model AUTOSAR provide-require ports (PRPorts), as defined in
AUTOSAR schema version 4.1. PRPorts are a third type of port, in addition to provide ports (PPorts)
and require ports (RPorts), that can be associated with an AUTOSAR sender-receiver interface. For
example, you can:

• Map a Simulink inport/outport pair to a data element of an AUTOSAR provide require port.
Generated code complies with Simulink and AUTOSAR semantics.

• Import AUTOSAR provide-require ports for sender-receiver interfaces from ARXML files.
• Export AUTOSAR provide-require ports to ARXML files.

For more information, see Configure AUTOSAR Provide-Require Port.

Multi-instance AUTOSAR atomic software components
In previous releases, AUTOSAR software components (SWCs) modeled in Simulink were single-
instance. Beginning in R2014b, you can model multi-instance AUTOSAR SWCs in Simulink. For
example, you can:

• Map and configure a Simulink model as a multi-instance AUTOSAR SWC, and validate the
configuration.

• Generate C code with reentrant runnable functions and multi-instance RTE API calls.
• Verify AUTOSAR multi-instance C code with SIL and PIL simulations.
• Import and export multi-instance AUTOSAR SWC description XML files.

For more information and limitations, see Multi-Instance Atomic Software Components.

AUTOSAR arxml import and export
AUTOSAR R4.x compliant data type support
AUTOSAR data types workflow improvements

R2014b provides enhanced AUTOSAR Release 4.x compliant data type support.

R2014b

19-12

https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-initialization-runnable.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-provide-require-port.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar-software-components.html#bukv7c6-1

• For round-trip workflows involving AUTOSAR components originated outside MATLAB, the arxml
importer and exporter preserve data type information and mapping for each imported AUTOSAR
data type.

• For AUTOSAR components originated in Simulink, the software generates AUTOSAR application,
implementation, and base types to preserve the information contained within Simulink data types.

For more information, see Release 4.x Data Types.
Application data type export control

For AUTOSAR data types created in Simulink, by default, the software generates application base
types only for fixed-point data types and enumerated date types with storage types.

Beginning in R2014b, if you want to override the default behavior for generating application types,
you can configure the arxml exporter to generate an application type, along with the implementation
type and base type, for each exported AUTOSAR data type. For more information, see Control
Application Data Type Generation.
DataTypeMappingSet package and name control

In previous releases, for AUTOSAR software components created in Simulink, users did not have
control over the AUTOSAR package and short name exported for AUTOSAR data type mapping sets.
The arxml exporter generated the short name DataTypeMappingSet for every data type mapping
set. The exporter used a rule-based package path that was not configurable in Simulink.

Beginning in R2014b, you can control the package and short-name for data type mapping sets. To
configure the data type mapping set package for export, set the XMLOptions property
DataTypeMappingPackage using the Configure AUTOSAR Interface dialog box or the AUTOSAR
property set function. For example:

The exported arxml uses the specified package. The default mapping set short-name is the
component name ASWC prefixed to DataTypeMappingsSet. You can specify a short name for a data
type mapping set using the AUTOSAR property function addPackageableElement.

For more information, see Configure DataTypeMappingSet Package and Name.
Data initialization with ApplicationValueSpecification

AUTOSAR Release 4.0 introduced application data types and implementation data types, which
represent the application-level physical attributes and implementation-level attributes of AUTOSAR
data types. To initialize AUTOSAR data objects typed by application data type, R4.1 requires
AUTOSAR application value specifications (ApplicationValueSpecifications).

Beginning in R2014b, for AUTOSAR data initialization with ApplicationValueSpecification,
Embedded Coder provides the following support:

• The arxml importer uses ApplicationValueSpecifications found in imported arxml files to
initialize the corresponding data objects in the Simulink model.

 Code Generation

19-13

https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/data-types.html#btc1dbl
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-release-4-x-data-types.html#buduq1n
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-release-4-x-data-types.html#buduq1n
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar.api.getautosarproperties.addpackageableelement.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-release-4-x-data-types.html#buduri5-1

• If you select AUTOSAR schema 4.0 or later for a model that contains AUTOSAR data typed by
application data type, code generation exports arxml code that uses
ApplicationValueSpecifications to specify initial values for AUTOSAR data.

AUTOSAR CompuMethod control
CompuMethod direction for linear functions

In previous releases, Embedded Coder software imported AUTOSAR computational methods
(CompuMethods) described in arxml code and preserved them across round-trips between an
AUTOSAR authoring tool (AAT) and Simulink. For designs originated in Simulink, the arxml exporter
created schema-compliant CompuMethods, but did not allow users control over CompuMethod
attributes, including the direction of CompuMethod conversion between internal and physical
representations of a value. For CompuMethods originated in Simulink, the exporter generated only
the forward, internal-to-physical direction.

Beginning in R2014b, you can control how conversion direction is described in exported
CompuMethods. Using either the Configure AUTOSAR Interface dialog box or the AUTOSAR property
set function, you can specify one of the following CompuMethod direction values:

• InternalToPhys (default) — Generate CompuMethod sections for conversion of internal values
into their physical representations.

• PhysToInternal — Generate CompuMethod sections for conversion of physical values into their
internal representations.

• Bidirectional — Generate CompuMethod sections for both internal-to-physical and physical-to-
internal conversion directions.

For more information, see CompuMethod Direction for Linear Functions.
CompuMethod generated for each ApplicationDataType

In previous releases, the arxml exporter preserved AUTOSAR computational methods
(CompuMethods) that you imported into Simulink, but for designs originated in Simulink, generated
CompuMethods only for fixed point application types.

Beginning in R2014b, the exporter generates CompuMethods for every primitive application type.
Measurement and calibration tools can monitor and interact with more application data. For more
information, see CompuMethod Categories for Data Types.
Unit reference generated for each CompuMethod

In previous releases, exported CompuMethods did not contain unit references. Beginning in R2014b:

• The arxml importer preserves unit and physical dimension information found in imported
CompuMethods. The software preserves CompuMethod unit and physical dimension information
across round-trips between an AUTOSAR authoring tool (AAT) and Simulink.

• For designs originated in Simulink, the exporter generates a unit reference for each
CompuMethod.

Providing a unit for each exported CompuMethod helps support measurement and calibration tool use
of exported AUTOSAR data. For more information, see CompuMethod Unit References.
Rational function CompuMethod for dual-scaled parameter

R2014b provides greater control over the AUTOSAR CompuMethods generated for AUTOSAR dual-
scaled parameters. For an AUTOSAR dual-scaled parameter, which stores two scaled values of the

R2014b

19-14

https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-compumethods.html#budurr8
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/data-types.html#bua1enf-1
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-compumethods.html#bueb74p-1

same physical value, the software generates the CompuMethod category RAT_FUNC. The computation
method can be a first-order rational function. For more information, see Rational Function
CompuMethod for Dual-Scaled Parameter.

Improved AUTOSAR package configuration

In previous releases, the arxml exporter generated a fixed file and package structure for packaging
AUTOSAR elements. Beginning in R2014b, Embedded Coder software provides more flexible
configuration and management of AUTOSAR packages. For example:

• AUTOSAR packages and their elements now are fully preserved across round-trips between an
AUTOSAR authoring tool (AAT) and Simulink.

• AUTOSAR XML options in Simulink include ten new packaging parameters (XmlOptions
properties). You can now easily group AUTOSAR elements of the following categories into
packages:

• Application data types (schema 4.x)
• Software base types (schema 4.x)
• Data type mapping sets (schema 4.x)
• Constants and values
• Physical data constraints (referenced by application data types or data prototypes)
• System constants (schema 4.x)
• Software address methods
• Mode declaration groups
• Computational methods
• Units and unit groups (schema 4.x)

For more information, see Configure AUTOSAR Package Structure.

AUTOSAR calibration component export

In previous releases, the software exported an AUTOSAR calibration component
(ParameterSwComponent) only if it had been created in an AUTOSAR authoring tool (AAT) and
imported into Simulink from an arxml file.

Beginning in R2014b, the software can export an AUTOSAR calibration component originated in
Simulink. To configure AUTOSAR parameters for export in a calibration component, use the custom
storage class (CSC) CalPrm with AUTOSAR.Parameter data objects. For more information, see
Model AUTOSAR Calibration Parameters and Configure AUTOSAR Calibration Component.

Simulink Min and Max mapping to AUTOSAR physical data constraints

Beginning in R2014b, in models configured for AUTOSAR, the software maps minimum and maximum
values for Simulink data to the corresponding physical constraint values for AUTOSAR application
data types. Specifically:

• If you import ARXML files, PhysConstr values on ApplicationDataTypes in the ARXML files
are imported to Min and Max values on the corresponding Simulink data objects and root-level I/O
signals.

 Code Generation

19-15

https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-compumethods.html#budurwb-1
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-compumethods.html#budurwb-1
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-packages.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar.parameter.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/calibration-parameters.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/configure-autosar-parameter-software-component.html

• When you export ARXML from a model, the Min and Max values specified on Simulink data objects
and root-level I/O signals are exported to the corresponding ApplicationDataType
PhysConstrs in the ARXML files.

AUTOSAR addPackageableElement replaces add*Interface functions
R2014b introduces a new AUTOSAR property function, addPackageableElement, for adding
packaged elements to the AUTOSAR configuration of a model. The function syntax is:

addPackageableElement(arProps,category,package,name)
addPackageableElement(arProps,category,package,name,property,value)

See the addPackageableElement reference page. For an example of using
addPackageableElement as part of configuring a DataTypeMappingSet element for an AUTOSAR
model, see “DataTypeMappingSet package and name control” on page 19-13.

Compatibility Considerations
Using the function addPackageableElement with element categories ModeSwitchInterface or
SenderReceiverInterface replaces the following equivalent AUTOSAR property functions:

• addMSInterface(arProps,qName,property,value)
• addSRInterface(arProps,qName,property,value)

If an existing script calls addMSInterface or addSRInterface, replace the call with an equivalent
call to addPackageableElement. For example, consider the addSRInterface call in the following
code:
open_system('rtwdemo_autosar_multirunnables');
arProps=autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables');
addSRInterface(arProps,'/pkg/if/Interface3','IsService',true);
ifPaths=find(arProps,[],'SenderReceiverInterface',...
 'IsService',true,'PathType','FullyQualified')

Replace the addSRInterface call with an equivalent addPackageableElement call. For example:
open_system('rtwdemo_autosar_multirunnables');
arProps=autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables');
addPackageableElement(arProps,'SenderReceiverInterface','/pkg/if','Interface3',...
 'IsService',true);
ifPaths=find(arProps,[],'SenderReceiverInterface',...
 'IsService',true,'PathType','FullyQualified')

Code generation report with enhanced navigation and integrated
access to code metrics data
In R2014b, the following enhancements improve navigation and access to code metrics in the code
generation report:

• Model-to-code navigation toolbar at the top of the code window with buttons to navigate forward
and backward through the highlighted code for a model block.

• Lines in a navigation sidebar show the locations of the highlighted code in the current file.
Hovering your cursor over a line shows you the code line number. Clicking the line takes you
directly to the code.

R2014b

19-16

https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar.api.getautosarproperties.addpackageableelement.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/autosar.api.getautosarproperties.addpackageableelement.html

• Code inspect window provides code metrics and links to definitions when you click linked
variables or functions in the code.

• Hovering your cursor over global variables and functions in the code window opens a window with
code metrics data.

For more information, see Trace Model Objects to Generated Code and View Code Metrics and
Definitions in the Generated Code.

Updated license requirements for viewing code generation report
In 2014b, if you open a code generation report from a MATLAB menu, the software checks out the
same licenses that were required when you created the report at the time of code generation. You can
view the HTML report in a Web browser, but the following code generation report features are not
available:

• Traceability between the code and the model.
• Code metrics data when you hover over global variables and functions in the code window.

Compatibility Considerations
Previously, you did not need a license to view the code generation report from a MATLAB menu.

Option for doxygen style comments in generated code
You can now specify doxygen style comments in a code generation template (CGT) file. The style
attribute options for these comments are doxygen, doxygen_cpp, doxygen_qt, and
doxygen_qt_cpp.

doxygen with C style comments

/**
 * multiple line comments
 * second line
 */

doxygen_cpp with C++ style comments

///
/// multiple line comments
/// second line
///

doxygen_qt with C style comments

/*!
 * multiple line comments
 * second line
 */

doxygen_qt_cpp with C++ style comments

//!
//! multiple line comments

 Code Generation

19-17

https://www.mathworks.com/help/releases/R2014b/ecoder/ug/tracing-model-objects-to-generated-code.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/view-code-metrics-and-definitions-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/view-code-metrics-and-definitions-in-the-generated-code.html

//! second line
//!

For more information on using code generation template files to customize file and function banners,
see Generate Custom File and Function Banners.

Dynamic memory allocation parameters renamed
On the Code Generation > Interface pane, two dynamic memory allocation parameters are
renamed.

Code Generation > Interface pane Command line (unchanged)
R2014b R2014a
Use dynamic memory allocation
for model initialization

Generate function to allocate
model data

GenerateAllocFcn

Use dynamic memory allocation
for model block instantiation

Use operator new for referenced
model object registration

UseOperatorNewForModelRefRe
gistration

The command line names are unchanged.

Template makefile compatibility with execution time profiling
Consider a custom target that requires a template makefile (TMF) where the SHARED_OBJS definition
is based on SHARED_SRC. If you specify code execution profiling for your model, you might observe a
failure when you try to build the model. The failure occurs because the folder that contains the
shared utility object files is different from the folder that contains the corresponding source code.
How you fix this issue depends on how SHARED_OBJS is defined in your TMF. For example, you must
replace:

SHARED_OBJS = $(SHARED_SRC:.c=.obj)

with:

SHARED_OBJS = $(SHARED_BIN_DIR)*.obj

For more information, see Customize Build to Use Shared Utility Code.

Intel Performance Primitives (IPP) platform-specific code replacement
libraries for cross-platform code generation
In R2014b, you can select an Intel Performance Primitive (IPP) code replacement library for a specific
platform. You can generate code for a platform that is different from the host platform that you use
for code generation. The new code replacement libraries are:

• Intel IPP for x86-64 (Windows)
• Intel IPP/SSE with GNU99 extensions for x86-64 (Windows)
• Intel IPP for x86/Pentium (Windows)
• Intel IPP/SSE with GNU99 extensions for x86/Pentium (Windows)
• Intel IPP for x86-64 (Linux)

R2014b

19-18

https://www.mathworks.com/help/releases/R2014b/ecoder/ug/generate-custom-file-and-function-banners.html
https://www.mathworks.com/help/releases/R2014b/rtw/ug/shared-utility-code.html

• Intel IPP/SSE with GNU99 extensions for x86-64 (Linux)

For a model that you create in R2014b, you cannot select these libraries:

• Intel IPP
• Intel IPP/SSE with GNU99 extensions

If, however, you open a model from a previous release that specifies Intel IPP or Intel IPP/SSE with
GNU99 extensions, the library selection is preserved and that library appears in the selection list.

See Choose a Code Replacement Library.

 Code Generation

19-19

https://www.mathworks.com/help/releases/R2014b/ecoder/ug/choose-a-code-replacement-library-sc.html

Deployment

Embedded Coder support packages for AUTOSAR, TI Concerto, and
Freescale FRDM-KL25Z
R2014b adds the following Embedded Coder support packages:

• Embedded Coder Support Package for AUTOSAR Standard — You can create and modify an
AUTOSAR configuration for a model, model AUTOSAR elements, and generate ARXML and
AUTOSAR-compatible C code from a model. For more information, see Support Package for
AUTOSAR Standard.

• Embedded Coder Support Package for Texas Instruments C2000 F28M3x Concerto Processors —
You can generate, build, and deploy code on Texas Instruments C2000 F28M35x/ F28M36x
Concerto processors. For more information, see Support for Texas Instruments C2000 F28M3x
Concerto Processors.

• Embedded Coder Support Package for Freescale FRDM-KL25Z Board — You can generate, build,
and deploy a control algorithm on Freescale FRDM-KL25Z boards. For more information, see
Support package for Freescale FRDM-KL25Z Board.

Relational operator replacement
You can now include code replacement mappings for basic relational operators (<, <=, >, >=, ==,
and !=) in custom code replacement libraries. You can apply relational operator mappings to scalar,
vector, or matrix data.

For more information, see Scalar Operator Code Replacement and Small Matrix Operation to
Processor Code Replacement.

Code replacement involving vector and matrix data
• “Trigonometry function replacement” on page 19-20
• “Replacement of shift and cast operations involving vector and matrix operands” on page 19-21

Trigonometry function replacement

In R2014b, the C/C++ code generator supports code replacement of the following trigonometry
functions for scalar, vector, and matrix input and for output arguments in code generated from:

• MATLAB functions
• MATLAB Function block
• MATLAB action language in Stateflow charts

Supported base types include floating point, complex, and noncomplex.

acos asec atand cscd sech
acosd asecd cos csch sin
acot asech cosd hypot sind
acotd asin cosh log sinh

R2014b

19-20

https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/support-package-for-autosar-standard.html
https://www.mathworks.com/help/releases/R2014b/ecoder/autosar/support-package-for-autosar-standard.html
https://www.mathworks.com/help/releases/R2014b/supportpkg/texasinstrumentsc2000concerto/release-notes.html#buc55o3-2
https://www.mathworks.com/help/releases/R2014b/supportpkg/texasinstrumentsc2000concerto/release-notes.html#buc55o3-2
https://www.mathworks.com/help/releases/R2014b/supportpkg/freedomboard/release-notes.html#buc55o3-2
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/scalar-operator-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/small-matrix-operation-to-processor-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/small-matrix-operation-to-processor-code-replacement-sc.html

acoth asind cot log10 tan
acsc atan cotd log2 tand
acscd atan2 coth sec tanh
acsch atan2d csc secd

For more information, see Map Math Functions to Application-Specific Implementations.

Replacement of shift and cast operations involving vector and matrix operands

In R2014b, you can specify code replacements for these vector and matrix operations:

• Cast (data type conversion), RTW_OP_CAST
• Shift Left, RTW_OP_SL
• Shift Right Arithmetic, RTW_OP_SRA
• Shift Right Logical, RTW_OP_SRL

For more information, see Small Matrix Operation to Processor Code Replacement.

Algorithm specification for addition and subtraction operator
replacement
Starting with R2014b, you can specify the algorithm—cast-before-operation (default) or cast-after-
operation—for addition and subtraction operations that must be matched for operator replacement to
occur.

For more information, see Addition and Subtraction Operator Code Replacement.

Compatibility Considerations
By default, the code generator attempts to replace addition and subtraction operations as cast-before-
operation algorithms. This replacement matches the behavior in R2013a through R2014a. If the code
generator cannot classify an operation strictly as a cast-before-operation, some replacements for non-
binary-point operations do not occur. For more information, see Addition and Subtraction Operator
Code Replacement.

If you are using a code replacement library developed with an earlier release, verify code
replacements for addition and subtraction operators. For information, see Review and Test Code
Replacements.

Improved code replacement with output type cast absorption
Starting in R2014b, the code generator includes downcasts on the output of addition, subtraction,
multiplication, and division operations involving real, scalar, and fixed-point data for code
replacements.

For example, consider a case where u1 and u2 are of type integer. y1 is of type short and the
operation being replaced is y = (short) (u1*u2). In previous releases, the multiplication
operation was replaced without including the output cast.

y = (short) (my_mul_output_integer(u1, u2));

 Deployment

19-21

https://www.mathworks.com/help/releases/R2014a/ecoder/ug/create-code-replacement-tables.html#brc_paf-1
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/small-matrix-operation-to-processor-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/addition-and-subtraction-operator-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/addition-and-subtraction-operator-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/addition-and-subtraction-operator-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/review-and-test-code-replacements-sc.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/review-and-test-code-replacements-sc.html

In R2014b, you can register an additional table replacement entry to get the following replacement:

y = my_mul_output_short(u1, u2);

The code generator does not handle intermediate casts for code replacement.

Lookup table function code replacement extended to 30 dimensions
R2014b introduces functions interpND and lookupND. You can specify these functions to increase
the dimension support of code replaced for the Interpolation Using Prelookup and n-D Lookup Table
blocks to 30. The conceptual signature that you specify for the code replacement table entry depends
on the number of dimensions that you want the function to support.

For more information, see Lookup Table Function Code Replacement

Rounding mode support for lookup table function replacement
As of R2014b, the code generator supports use of algorithm parameters Integer rounding mode
(RndMeth) and Saturate on integer overflow (SaturateOnIntegerOverflow) in code
replacement specifications for lookup table functions.

For more information, see Lookup Table Function Code Replacement.

Algorithm parameter value sets in code replacement table entries
Prior to R2014b, code replacement table entries could specify multiple values for an algorithm
parameter. However, you had to specify them in separate code replacement table entries. For
example, to specify that a lookup table function with a linear or binary index search trigger a match
for code replacement, you specified the following calls to addAlgorithmProperty in two separate
table entries:

Entry 1:

addAlgorithmProperty('IndexSearchMethod','Linear search');

Entry 2:

addAlgorithmProperty('IndexSearchMethod','Binary search');

As of this release, you can specify multiple values in a single call to addAlgorithmProperty in one
entry. Specify the value part of the parameter name-value pair as a set of string values. This
specification reduces the lines of code required for more complex, conceptual specifications. For
example:

addAlgorithmProperty('IndexSearchMethod', {'Linear search', ...
 'Binary search'});

For more information, see addAlgorithmProperty and Lookup Table Function Code Replacement.

R2014b

19-22

https://www.mathworks.com/help/releases/R2014b/ecoder/ug/lookup-table-function-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/lookup-table-function-code-replacement-sc.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ref/addalgorithmproperty.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/lookup-table-function-code-replacement-sc.html

coder.replace support for functions specified with varargin input
variable
As of R2014b, the coder.replace function supports MATLAB functions that specify a variable-
length input argument list by using a varargin input variable.

For more information, see coder.replace.

Documentation installation with hardware support package
Starting in R2014b, each hardware support package has its own documentation. For a list of
Embedded Coder support packages, see Embedded Coder Supported Hardware.

Support package for Altera SoC platform
You can use the Embedded Coder Support Package for Intel SoC Devices to generate, build, and
deploy code to the Altera® Cyclone V SoC development kit or to the Arrow SoCKit development
board. The executable runs in the Linux environment on the ARM Cortex-A9 processor on the Altera
SoC platform.

See Install Support for Altera SoC Platform.

For more information, see Embedded Coder Support Package for Altera SoC Platform.

Support package for BeagleBone Black hardware
You can use the Embedded Coder Support Package for BeagleBone Black Hardware to generate,
build, and deploy code to the BeagleBone Black board.

See Install Support for BeagleBone Black Hardware.

For more information, see Embedded Coder Support Package for BeagleBone Black Hardware.

Support for Eclipse IDE has been removed
Embedded Coder support for Eclipse™ IDE has been removed.

You can no longer use Embedded Coder with Eclipse IDE to build and run an executable on
BeagleBoard hardware or ARM processors.

Compatibility Considerations
To replace some of the capabilities provided by Eclipse IDE, consider using:

• Embedded Coder Support Package for ARM Cortex-A Processors
• Simulink Support Package for BeagleBoard® Hardware

To install support packages, see supportPackageInstaller.

 Deployment

19-23

https://www.mathworks.com/help/releases/R2014b/ecoder/ref/coder.replace.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/varargin.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ref/coder.replace.html
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/embedded-coder-supported-hardware.html
https://www.mathworks.com/help/releases/R2014b/supportpkg/alterasoc/ug/installation-and-setup.html
https://www.mathworks.com/help/releases/R2014b/supportpkg/alterasoc/index.html
https://www.mathworks.com/help/releases/R2014b/supportpkg/beaglebone/ug/install-target-for-beaglebone-black-hardware.html
https://www.mathworks.com/help/releases/R2014b/supportpkg/beaglebone/index.html
https://www.mathworks.com/help/releases/R2014b/matlab/ref/supportpackageinstaller.html

Support for Green Hills MULTI IDE has been removed
Embedded Coder support for Green Hills® MULTI® IDE has been discontinued for R2014b.

Compatibility Considerations
If you are using the Embedded Coder Support Package for Green Hills MULTI IDE, the support
package is available for use with previous releases for an unspecified length of time.

Support for Texas Instruments C5000 DSPs will be removed
Support for Texas Instruments C5000® DSPs will be removed in a future release.

R2014b

19-24

Performance

Reduced RAM and faster execution for modeling patterns including
select-assign-iterate blocks, subsystem interfaces, and model
references
• “Example Model” on page 19-25
• “In-place assignments for select-assign-iterate pattern” on page 19-26
• “Subsystem signal information” on page 19-28
• “Variable reuse around call site” on page 19-28

Code generation produces code with more optimizations, reducing RAM/ROM consumption and
improving execution speed. The ability of the code generator to perform more optimizations is due to
the following efficiency enhancements.

Example Model

Consider the model example_subsys1, that contains the subsystem and models used for the
examples for each optimization:

 Performance

19-25

In-place assignments for select-assign-iterate pattern

The code generator generates in-place assignments for the select-assign-iterate modeling pattern for
the three subsystem function packaging options.

Example subsystem SS_InPlaceSCAssign:

R2014b

19-26

The code generator produces this code for version R2014a:

/* Output and update for atomic system '<S4>/Subsystem1'*/
void example_subsys1_Subsystem(int32_T rtu_In1)
{
 int32_T i;

 /* Assignment: '<S6>/Assignment'incorporates:
 * DataStoreRead:'<S6>/Data Store Read'
 */
 if (example_subsys1_Dwork.ForIterator_IterationMarker<2){
 example_subsys1_Dwork.ForIterator_IterationMarker=2U;
 for(i=0;i<30;i++){
 example_subsys1_B.Assignment[i]=example_subsys1_DWork.B[i];
 }
 }

 example_subsys1_B.Assignment[rtu_In1]=rtu_In1;

 /* End of Assignment:'<S6>/Assignment'*/

 /* DataStoreWrite:'<S6>/DataStoreWrite'*/
 for(i=0;i<30;i++){
 example_subsys1_DWork.B[i]=example_subsys1_B.Assignment[i];
 }

 /* End of DataStoreWrite:'<S6>/DataStoreWrite'*/
}

The code generator produces this code for version R2014b:

/* Output and update for atomic system: '<S3>/Subsystem1' */
void example_subsys1_Subsystem1(int32_T rtu_In1)
{
 /* Assignment: '<S5>/Assignment' */
 if (example_subsys1_DWork.ForIterator_IterationMarker < 2) {
 example_subsys1_DWork.ForIterator_IterationMarker = 2U;
 }

 example_subsys1_DWork.B[rtu_In1] = rtu_In1;

 /* End of Assignment: '<S5>/Assignment' */
}

 Performance

19-27

The code generator produces less code, does not use iteration loops, and uses fewer variable
references.

Subsystem signal information

The code generator has more information about signals passing through the subsystem boundary. It
uses that information to generate more fully optimized code.

The code generator generates less code for this model:

The code generator produces this code for version R2014a:

BigBus rtb_Delay1;
/* Delay: '<Root>/Delay1' */
rtb_Delay1 = example_subsys1_DWork.Delay1_DSTATE;

/* Outputs for Atomic SubSystem: '<Root>/SS_BusExplosion' */
example_subsys1_SS_BusExplosion(rtb_Delay1.extra);

/* End of Outputs for SubSystem: '<Root>/SS_BusExplosion'*/

The code generator produces this code for version R2014b:

/* Delay: '<Root>/Delay1' */
 example_subsys1_SS_BusExplosion(example_subsys1_DWork.Delay1_DSTATE.extra);

 /* End of Outputs for SubSystem: '<Root>/SS_BusExplosion' */

The generated code requires fewer variables and fewer statements.

Variable reuse around call site

The code generator reuses variables around subsystem function call sites.

Example model:

R2014b

19-28

The code generator produces this code for version R2014a:

 /* Delay: '<Root>/Delay2'*/
 for (i=0;i<12;i++){
 rtb_Delay2[i] = example_subsys1_DWork.Delay2_DSTATE[i];
 }

 /* End of Delay: '<Root>/Delay2'*/

 for (i=0;i<12;i++){
 /*Product '<Root>/Product' incorporates:
 *Inport:'<Root>/In1'
 */
 rtb_Delay2_i=example_subsys1_U.In1[i]*rtb_Delay2[i];

 /*Outport:'<Root>/Out2'*/
 example_subsys1_Y.Out2[i]=rtb_Delay2_i;

 /* Product '<Root>/Product'*/
 rtb_Delay2[i]=rtb_Delay2_i;
 }

 /*Update for Delay:'<Root>/Delay2'*/
 for (i=0;i<12;i++){
 example_subsys1_DWork.Delay2_DSTATE[i] = rtb_Delay2[i];
 }

 /*End of Update for Delay:'<Root>/Delay2'*/

The code generator produces this code for version R2014b:

 /* Product: '<Root>/Product' incorporates:
 * Delay: '<Root>/Delay2'
 * Inport: '<Root>/In1'
 */
 for (rtb_DataTypeConversion = 0; rtb_DataTypeConversion < 12;
 rtb_DataTypeConversion++) {
 example_subsys1_Y.Out2[rtb_DataTypeConversion] *=
 example_subsys1_U.In1[rtb_DataTypeConversion];
 }

 Performance

19-29

 /* End of Product: '<Root>/Product' */

The code generator produces much less code, including one iteration loop instead of three iteration
loops. It produces fewer variable references with the same functionality.

Global variable localization optimizations
When you generate code for a model, the code generator optimizes variable references by replacing
global variables with local variables. This replacement improves execution speed and reduces RAM/
ROM.

Consider this model, named exlocal:

Observe the following lines of code generated for R2014a in the exlocal_ert_rtw folder, in the
exlocal.c file, in the Model step function.

 exlocal_B.Gain[0] = 2.0 * exlocal_U.In1[0];
 exlocal_B.Gain[1] = 2.0 * exlocal_U.In1[1];
 exlocal_B.Gain[2] = 2.0 * exlocal_U.In1[2];
 exlocal_B.Gain[3] = 2.0 * exlocal_U.In1[3];

and

 exlocal_Subsystem_03(exlocal_U.In3, exlocal_B.Gain, &exlocal_Y.Out1);

Compare the same lines of code generated for R2014b.

 Gain[0] = 2.0 * exlocal_U.In1[0];
 Gain[1] = 2.0 * exlocal_U.In1[1];
 Gain[2] = 2.0 * exlocal_U.In1[2];
 Gain[3] = 2.0 * exlocal_U.In1[3];

 exlocal_Subsystem_03(Gain, exlocal_U.In3, &exlocal_Y.Out1);

R2014b

19-30

For more information, see Specify Global Variable Localization.

 Performance

19-31

https://www.mathworks.com/help/releases/R2014b/ecoder/ug/specify-global-variable-localization.html

Verification

Top-model code testing with Model block SIL and PIL
You can run Model block software-in-the-loop (SIL) and processor-in-the-loop (PIL) simulations to test
code that is generated from a top model. This feature enables you to use a model-based test harness
to verify code for a deployable top-level component. You can create test cases, switch easily between
simulation modes, and analyze numerical results.

If you set the Model block parameter, Simulation mode (SimulationMode), to Software-in-
the-loop (SIL) or Processor-in-the-loop (PIL), the software provides a new parameter
Code under test (CodeUnderTest) with the following options:

• Top model — Code generated from top model, with the standalone code interface. Previously,
this code was tested by running a top-model SIL or PIL simulation or by creating a SIL or PIL
block.

• Model reference (default) — Code generated from referenced model as part of a model
reference hierarchy, which was previously the only behavior available for Model block SIL and
PIL.

For more information, see Referenced Model Simulation Using SIL or PIL.

SIL/PIL support for Simulink Function and Function Caller blocks
Use top-model and Model block SIL or PIL simulations to verify code generated from models that
have Simulink Function and Function Caller blocks.

The software does not support SIL or PIL block verification for these blocks. Use the Model block
SIL/PIL approach, with the Code under test block parameter set to Top model.

For more information, see:

• Simulink Functions: Create and call functions across Simulink and Stateflow
• Choose a SIL or PIL Approach

SIL debugging support for Linux
On a Linux system, you can use the GNU Data Display Debugger (DDD) to observe code behavior
during a SIL simulation.

R2014b

19-32

https://www.mathworks.com/help/releases/R2014b/ecoder/ug/referenced-model-simulation-using-sil-or-pil.html
https://www.mathworks.com/help/releases/R2014b/simulink/release-notes.html#buf3l_k-3
https://www.mathworks.com/help/releases/R2014b/ecoder/ug/choosing-a-sil-or-pil-approach.html

Previously, SIL debugging was available only for a Windows system.

For more information, see Debug Code During SIL Simulations.

PIL support for test hardware approach
You can run processor-in-the-loop (PIL) simulations when the Configuration Parameters >
Hardware Implementation > Test hardware is the same as production hardware check box is
not selected.

SIL/PIL support for model initialization dynamic memory allocation
You can run SIL/PIL simulations with models that dynamically allocate memory for model data
structures.

 Verification

19-33

https://www.mathworks.com/help/releases/R2014b/ecoder/ug/debug-code-during-sil-simulations.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2014b

19-34

https://www.mathworks.com/support/bugreports/

R2014a

Version: 6.6

New Features

Bug Fixes

Compatibility Considerations

20

Code Generation from MATLAB Code

Template to customize code generation output for MATLAB Coder
You can use the coder.MATLABCodeTemplate class to customize code generation output for
MATLAB Coder. Using a default or custom template, you can set token values to customize file
banners, function banners, and file trailers.

For more information, see Generate Custom File and Function Banners for C and C++ Code.

Compatibility Considerations
Beginning in R2014a, the code generator adds file and function banners to generated code by default.
If you do not specify a code generation template (CGT) file to customize the banners, the code
generator uses the default template file, matlabcoder_default_template.cgt, in the
matlabroot/toolbox/coder/matlabcoder/templates/ folder.

In-place function replacement with coder.replace in MATLAB
In R2014a, you can create code replacement table entries that specify in-place function replacement
if you are generating C or C++ code from MATLAB code directly or from a MATLAB Function block.
In-place code replacement is an optimization technique that uses a single buffer, that is, the same
memory, to store function input and output data, as in x=foo(x).

For more information, see Specify In-Place Code Replacement and coder.replace.

Single-line (//) comment style available for generated code
In earlier releases, C and C++ code generation always used a multi-line (/*...*/) comment style.
Beginning in R2014a, you can select a single-line (//...) comment style for generated code.

Set the comment style in one of the following ways:

• In a project, in the Project Settings dialog box Code Appearance tab, set Comment Style to one
of the following values.

Value Description
Auto(Use standard comment style of
the target language)

For C, generate multi-line comments. For C++,
generate single-line comments. (default)

Single-line (Use C++-style
comments)

Generate single-line comments preceded by //.

Multi-line (Use C-style comments) Generate single or multi-line comments
delimited by /* and */.

• At the command prompt, create a code generation configuration object. Set the CommentStyle
parameter to one of the following values.

R2014a

20-2

https://www.mathworks.com/help/releases/R2014a/ecoder/ref/coder.matlabcodetemplate-class.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/generate-custom-file-and-function-banners-for-matlab-code-generation.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/replace-matlab-function-with-custom-code.html#bt8zvwk
https://www.mathworks.com/help/releases/R2014a/ecoder/ref/coder.replace.html

Value Description
'Auto' For C, generate multi-line comments. For C++, generate single-line

comments. (default)
'Single-line' Generate single-line comments preceded by //.
'Multi-line' Generate single or multi-line comments delimited by /* and */.

For example, the following code sets the comment style to single-line comments:

cfg = coder.config('lib');
cfg.CommentStyle='Single-line';

Here is an example of generated code that uses single-line comments:
//
// mcadd.c
//
// Code generation for function 'mcadd'
//

Software-in-the-loop verification for MATLAB Coder
The following table summarizes software-in-the-loop (SIL) execution improvements.

Feature R2014a support Previous support

Output type Dynamic
library

Yes No

Interface types

Constant
inputs

Yes Yes. If values passed through
the SIL interface differ from
the values used by the build
process, the SIL execution uses
the build values. The execution
does not generate an error or
warning.

Constant
global data

Yes. If values passed through
the SIL interface differ from
the values used by the build
process, the SIL execution uses
the build values. The execution
does not generate an error or
warning.

Not applicable.

Data types

Fixed-point
data

Yes Yes, with limitations.

Multiword
fixed-point
data

Yes No

Empty values Yes No

 Code Generation from MATLAB Code

20-3

Feature R2014a support Previous support

Size

Static variable-
size arrays

Variable-size function
arguments are not supported.
For function arguments that
are fixed-size structures,
variable-size fields are
supported.

No

For more information, see SIL Execution Support and Limitations.

Change of default value for MATLABFcnDesc
Previously, the MATLABFcnDesc parameter of a coder.EmbeddedCodeConfig code generation
configuration object had a default value of false. In R2014a, the default value of the
MATLABFcnDesc parameter is true. When the value of the MATLABFcnDesc parameter is true, the
MATLAB function help text is included in a function banner in generated code.

R2014a

20-4

https://www.mathworks.com/help/releases/R2014a/ecoder/ug/sil-execution-support-and-limitations.html
https://www.mathworks.com/help/releases/R2014a/coder/ref/coder.embeddedcodeconfig-class.html

Model Architecture and Design

Capability to merge AUTOSAR authoring tool changes into Simulink
models as part of round-trip iterations
To help support the round trip of AUTOSAR components between an AUTOSAR authoring tool (AAT)
and the Simulink design environment, R2014a adds update and merge capabilities to the arxml
importer.

Given a Simulink model into which you have imported arxml code or from which you have exported
arxml code, suppose that changes have been made to the arxml information in an AAT. Using the
arxml.importer method updateModel, you can import the changed arxml information and
request that the changes be merged into the model. The update/merge generates a report that details
the updates applied to the model, and required changes that were not made automatically.

Here is an example of a generated AUTOSAR update report. For more information, see Merge
AUTOSAR Authoring Tool Changes Into a Model.

 Model Architecture and Design

20-5

https://www.mathworks.com/help/releases/R2014a/ecoder/ug/importing-an-autosar-software-component.html#buax917-1
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/importing-an-autosar-software-component.html#buax917-1

R2014a

20-6

AUTOSAR 4.0 static and constant memory, AUTOSAR-typed per-
instance memory, and VariationPointProxy
Static and constant memory

Beginning in R2014a, from a Simulink model, you can import and export AUTOSAR Static Memory
and Constant Memory data, as defined by AUTOSAR schema version 4.0. Static Memory corresponds
to Simulink internal global signals. Constant Memory corresponds to Simulink internal global
parameters. When exported in arxml, Static Memory and Constant Memory allow the use of
measurement and calibration tools to monitor the internal memory data.

For more information, see Model AUTOSAR Static and Constant Memory and Configure AUTOSAR
Static or Constant Memory

AUTOSAR-typed per-instance memory

Beginning in R2014a, you can model AUTOSAR-typed per-instance memory
(arTypedPerInstanceMemory) in Simulink models. This class of per-instance memory was
introduced in AUTOSAR schema version 4.0. You describe arTypedPerInstanceMemory using
standard AUTOSAR data types (rather than C types). When exported in arxml,
arTypedPerInstanceMemory allows the use of measurement and calibration tools to monitor the
global variable corresponding to per-instance memory.

For more information, see Model AUTOSAR Per-Instance Memory, Configure AUTOSAR Per-Instance
Memory, and the example model rtwdemo_autosar_PIM, which has been updated to use
arTypedPerInstanceMemory.

Variation point proxy

Beginning in R2014a, you can model an AUTOSAR VariationPointProxy, as defined in AUTOSAR
schema 4.0. The Simulink elements include:

• Variant Subsystem or Model Variant block to model a VariationPointProxy inside an
AUTOSAR runnable.

• AUTOSAR.Parameter data objects to model AUTOSAR System Constants, representing the
conditional values associated with the variant condition logic.

• Simulink.Variant data objects in the base workspace to define the variant condition logic.

For more information, see Configure AUTOSAR Variation Point Proxies.

Specify AUTOSAR runnable symbol name distinct from short-name
In previous releases, Embedded Coder derived the symbol name of an AUTOSAR runnable from the
user-specified short-name. Beginning in R2014a, you can specify an AUTOSAR runnable symbol name
that is distinct from the runnable short-name. The runnable symbol-name can be specified using the
Configure AUTOSAR Interface dialog box or by using the AUTOSAR property functions. The specified
AUTOSAR runnable symbol-name is exported in arxml and C code. Also, you can import a runnable
symbol name using the arxml importer.

For example, suppose that you open the example model rtwdemo_autosar_multirunnables, open
the Configure AUTOSAR Interface dialog box, and use the Runnables view of the AUTOSAR
Properties Explorer to change the symbol-name of Runnable1 from Runnable1 to test_symbol.

 Model Architecture and Design

20-7

https://www.mathworks.com/help/releases/R2014a/ecoder/ug/static-and-constant-memory.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-autosar-static-or-constant-memory.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-autosar-static-or-constant-memory.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/per-instance-memory.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/use-data-store-memory-blocks-to-specify-per-instance-memory.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/use-data-store-memory-blocks-to-specify-per-instance-memory.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-autosar-variation-point-proxies.html

When you export code from the model, the symbol-name test_symbol appears in the exported
arxml and C code as shown below.

Example 20.1. rtwdemo_autosar_multirunnables.arxml
<RUNNABLE-ENTITY UUID="65432c3e-34c7-5e82-4229-f6d04927eb78">
 <SHORT-NAME>Runnable1</SHORT-NAME>
...
 <SYMBOL>test_symbol</SYMBOL>
...
</RUNNABLE-ENTITY>

Example 20.2. rtwdemo_autosar_multirunnables.c
/* Output function for RootInportFunctionCallGenerator:
 '<Root>/RootFcnCall_InsertedFor_Runnable1_at_outport_1' */
void test_symbol(void)
{
...
}

For more information, see

• Configure AUTOSAR Component Using AUTOSAR Properties Explorer, step 8
• API example Set Runnable Symbol Name

Improved AUTOSAR arxml support for measurement and calibration
Embedded Coder now supports arxml import and export of the following AUTOSAR software data
definition properties (SwDataDefProps):

• Software calibration access (SwCalibrationAccess) — Specifies measurement and calibration
tool access to a data object.

• Software address method (swAddrMethod) — Specifies a method to access a data object (for
example, a measurement or calibration parameter) according to a given address.

• Software alignment (swAlignment) — Specifies the intended alignment of a data object within a
memory section.

• Software implementation policy (swImplPolicy) — Specifies the implementation policy for a data
object, with respect to consistency mechanisms of variables.

In the Simulink environment, you can directly modify the SwCalibrationAccess, swAddrMethod,
and swAlignment properties for some forms of AUTOSAR data. (You cannot modify the
swImplPolicy property.) For more information, see Configure AUTOSAR Data for Measurement and
Calibration.

AUTOSAR data dictionary support
Beginning in R2014a, you can use a Simulink data dictionary in AUTOSAR workflows. For example,
you can:

• Import AUTOSAR data and parameter objects into a data dictionary, instead of into the MATLAB
base workspace.

• Leverage Simulink data dictionary object properties as you edit AUTOSAR data objects.
• Export arxml and C code reflecting the data dictionary object properties configured for the

model.

R2014a

20-8

https://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-the-autosar-interface.html#btvq81a
https://www.mathworks.com/help/releases/R2014a/ecoder/ref/autosar.api.getautosarproperties.set.html#bua8erl-1
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-autosar-data-for-measurement-and-calibration.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-autosar-data-for-measurement-and-calibration.html

For more information about importing data and parameter objects into a data dictionary, see the
DataDictionary property for methods arxml.importer.createComponentAsModel and
arxml.importer.createCalibrationComponentObjects.

Configure AUTOSAR Interface button removed from AUTOSAR Code
Generation Options
The Configure AUTOSAR Interface button has been removed from the AUTOSAR Code
Generation Options pane of the Simulink Configuration Parameters dialog box. The remaining
content of the pane pertains directly to configuring AUTOSAR arxml and C code generation.

To configure an AUTOSAR interface for a model, open the model, check that the AUTOSAR target
(autosar.tlc) is selected for the model, and do either of the following:

• In the Simulink Editor window, select Code > C/C++ Code > Configure Model as AUTOSAR
Component.

• In the MATLAB command window, enter the command autosar_ui_launch(model).

If your model is already configured for AUTOSAR, this action opens the Configure AUTOSAR
Interface dialog box. If your model is not configured for AUTOSAR, dialog boxes first help you create
an AUTOSAR interface, then open the Configure AUTOSAR Interface dialog box with the initial
configuration displayed.

Subsystem methods of AUTOSAR arxml.importer class removed
Two subsystem-related methods of the arxml.importer class have been removed from the
software:

• arxml.importer.createComponentAsSubsystem — Create AUTOSAR atomic software
component as Simulink atomic subsystem.

• arxml.importer.createOperationAsConfigurableSubsystems — Create configurable
Simulink subsystem library for client-server operation.

You now can model AUTOSAR multi-runnables as function-call subsystems at the top level of a model,
rather than as function-call subsystems within a wrapper subsystem that represents the AUTOSAR
software component.

Compatibility Considerations
If you are using createComponentAsSubsystem or
createOperationAsConfigurableSubsystems, migrate to using the top-model-oriented
approach described in Configure AUTOSAR Multiple Runnables.

 Model Architecture and Design

20-9

https://www.mathworks.com/help/releases/R2014a/ecoder/ref/arxml.importer.createcomponentasmodel.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ref/arxml.importer.createcalibrationcomponentobjects.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ref/arxml.importer-class.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importer.createcomponentassubsystem.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importer.createoperationasconfigurablesubsystems.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/configure-multiple-runnables.html

Data, Function, and File Definition

Custom storage class and optimized class declarations for C++ class
code generation
Custom storage class support for C++ class code generation

In previous releases, custom storage classes (CSCs) were not supported for C++ class code
generation. Selecting C++ (Encapsulated) for a model forced on the model option Ignore custom
storage classes.

Beginning in R2014a, you can use CSCs with C++ class code generation. The configuration
requirements for using CSCs with C++ class code generation include the following Configuration
Parameters dialog box settings:

• Code Generation > Interface pane:

• Set Code interface packaging to C++ class.
• Set Multi-instance code error diagnostic to a value other than Error.

• Code Generation pane: Clear the option Ignore custom storage classes.

For more information and limitations, see Specify Custom Storage Class for C++ Class Code
Generation.

Improved code for C++ model class declarations

R2014a enhances generated C++ model class declarations in the following ways:

• Automatically adds a copy constructor and an assignment operator to C++ class declarations
when required to securely handle pointer members.

• Removes an unnecessary rtModel pointer declaration from C++ class declarations.

For more information, see Model Class Copy Constructor and Assignment Operator.

Constant sample time limitations for root-level Outport blocks
In R2014a, the sample time of root-level Outport blocks is checked in the following ways:

• For models using Function Prototype Control or a C++ class interface, the validation check
reports an error if a root-level Outport block has a constant sample time.

• For models using the AUTOSAR target, the compiler reports a warning if a root-level Outport
block is configured to inherit a constant sample time from its sources. The compiler then sets the
sample time of the root-level Outport block to the fundamental rate of the model. This warning will
become an error in a future release.

• When importing an AUTOSAR model from an XML description of a single runnable, the import
tool sets the sample time of root-level Outport blocks to the fundamental rate of the model.

• The Upgrade Advisor adds a check identifying root-level Outport blocks with a constant sample
time. If a model uses the AUTOSAR target, Function Prototype Control, or a C++ class interface,
the check lists the Outport blocks with a constant sample time. The check also includes possible
actions to fix the blocks.

R2014a

20-10

https://www.mathworks.com/help/releases/R2014a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#buant3e-1
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#buant3e-1
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#bual7q2-1

Example model rtwdemo_cppencap renamed to rtwdemo_cppclass
As part of the C++ class code interface packaging changes described in Simulink Coder release note
Improved control of C and C++ code interface packaging, C++ class example model
rtwdemo_cppencap has been renamed to rtwdemo_cppclass.

Unit Delay block optimization
In R2014a, when you specify a nonzero initial value or a global storage class, global block output
reuse might eliminate the Unit Delay state in the generated code. Eliminating the Unit Delay state
reduces data copies.

 Data, Function, and File Definition

20-11

https://www.mathworks.com/help/releases/R2014a/rtw/release-notes.html#bt7nd3g
matlab:rtwdemo_cppclass

Code Generation
In-place function replacement with coder.replace in MATLAB and
lookup table code replacement for Simulink
In-place function replacement with coder.replace in MATLAB

In R2014a, you can create code replacement table entries that specify in-place function replacement
if you are generating C or C++ code from MATLAB code directly or from a MATLAB Function block.
In-place code replacement is an optimization technique that uses a single buffer, that is, the same
memory, to store function input and output data, as in x=foo(x).

For more information, see Specify In-Place Code Replacement and coder.replace.

Lookup table code replacement for Simulink

In R2014a, you can replace these lookup table functions during code generation for Simulink models.

interp1D interp4D lookup2D lookup5D
interp2D interp5D lookup3D lookupND_Direct
interp3D lookup1D lookup4D prelookup

When you create a replacement table entry for one these functions, you must specify a set of
algorithm properties in addition to the usual code replacement function key, conceptual arguments,
and other applicable math mode information. Specify the algorithm properties by using new
algorithm property fields in the code replacement tool or the new addAlgorithmProperty function.
Conceptual arguments and algorithm parameters must match for replacement to occur.

For more information, see Map Lookup Table Functions to Application Implementations.

Global variable usage available in the static code metrics report
The static code metrics report displays maximum reads and writes within a function and total reads
and writes for each global variable and each member in a global variable data structure.

This information helps you to analyze the benefits of different global variable optimization choices.
You can also compare the generated code across different versions.

For more information, see Generate Static Code Metrics Report for Simulink Model.

Single-line (//) comment style available for generated code
In earlier releases, C and C++ code generation used a multi-line (/*...*/) comment style.
Beginning in R2014a, you can select a single-line (//...) comment style for generated code using
the command-line parameter CommentStyle. For example, the following command sets the comment
style to single-line comments:
>> set_param('rtwdemo_counter','CommentStyle','Single-line')

Here is an example of code generated using the single-line comment style:
// Sum: '<Root>/Sum' incorporates:
// Constant: '<Root>/INC'

R2014a

20-12

https://www.mathworks.com/help/releases/R2014a/ecoder/ug/replace-matlab-function-with-custom-code.html#bt8zvwk
https://www.mathworks.com/help/releases/R2014a/ecoder/ref/coder.replace.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/create-code-replacement-tables.html#bt81ikc
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/generate-a-static-code-metrics-report.html

// UnitDelay: '<Root>/X'

rtb_sum_out = (uint8_T)(1U + rtwdemo_counter_DW.X);

Note

• Single-line style comments and the CommentStyle parameter are supported only for ERT-based
targets. Comment style for GRT targets is unchanged in R2014a.

• For C, select single-line comments only if your compiler supports them.

For more information, see Specify Comment Style.

Code indentation support for namespace declarations in generated
code
Previously, when specifying a namespace for a model class, the generated namespace code might be
incorrectly indented if you selected K&R for the Indent style on the Code Generation > Code Style
pane. In R2014a, the generated namespace code follows coding standards when you select the K&R
style.

AUTOSAR C code generation enhancements
R2014a provides enhancements to AUTOSAR C code generation for AUTOSAR RTE-level data access
APIs that improve efficiency and traceability of the generated C code. The changes include:

• Optimized generation of conditionally executed AUTOSAR explicit writes. A runnable can control
whether an explicit RTE API call sends data element values.

• Additional traceability information in comments.
• More efficient expression folding and buffer reuse.

For example, in the following model, a constant value controls whether the software executes an
explicit write.

In the C code generated for the step function, an explicit send (shown in bold) now appears inside
conditional statements.

 Code Generation

20-13

https://www.mathworks.com/help/releases/R2014a/ecoder/ug/specify-comment-style2.html

void Runnable_Step(void)
{
 if (mRelease_Conditional_P.Constant_Value > 0.0)
 {
 mRelease_Conditional_B.In1 =
 *Rte_IRead_Runnable_Step_RPorts_iIn1();

 Rte_Write_PPorts_eOut2(
 Rte_IRead_Runnable_Step_RPorts_iIn1());
 }
 /* Outport: '<Root>/Implicit_Write' */
 Rte_IWrite_Runnable_Step_PPorts_iOut1(
 &mRelease_Conditional_B.In1);
}

Static main program module for C++ class code generation
Beginning in R2014a, code generation supports use of a static main program module with C++ class
code generated from a model. Previously, with ERT-based C++ encapsulation, code generation
created an example main program and did not support use of a static main program.

In most cases, the easiest strategy for deploying generated C++ class code as a standalone program
is to use the Generate an example main program option to generate the ert_main.cpp module.
However, if you turn the Generate an example main program option off, you can use the module
matlabroot/rtw/c/src/common/rt_cppclass_main.cpp as an example or template for
developing your embedded applications. The module is not part of the generated code; it is provided
as a basis for your custom modifications, and for use in simulation. For more information about using
a static main program, see Static Main Program Module.

Error message for data type replacement and classic call interface
conflict
The model configuration options Replace data type names in the generated code
(EnableUserReplacementTypes) and Classic call interface (GRTInterface) are mutually
incompatible. Beginning in R2014a, if both model options are set to on, the model build generates an
error message identifying the conflict. You must turn off one of the options.

In previous releases, if both options were set in a model reference hierarchy, build error messages did
not precisely identify the conflict. The model build flagged a conflict between top and referenced
models, without identifying the mutually incompatible options as the cause.

Compatibility Considerations
Beginning in R2014a, a conflict between Replace data type names in the generated code and
Classic call interface is flagged with an error. You must turn off one of the options. If you have a
model reference hierarchy and your intention is to use data type replacement, turn off Classic call
interface. Make sure data type replacement settings match throughout the hierarchy.

R2014a

20-14

https://www.mathworks.com/help/releases/R2014a/ecoder/ref/code-generation-pane-templates.html#bq26g63-1
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/standalone-programs-no-operating-system.html#f13018
https://www.mathworks.com/help/releases/R2014a/ecoder/ref/code-generation-pane-data-type-replacement.html#bq26hbf-1
https://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bq9i70c-1

Deployment
ARM Cortex-A optimized code generation using Ne10 library
You can replace generic code with Ne10-optimized code based on the ARM Neon general-purpose
SIMD engine.

To use this code replacement library with the QEMU emulator for ARM Cortex-A processors, or with
the Xilinx Zynq-7000 platform:

1 Install the Embedded Coder Support Package for ARM Cortex-A Processors, as described in
Install Support for ARM Cortex-A Processors.

2 Enable the code replacement library, as described in Optimize Code for ARM Cortex-A
Processors.

For more information, see:

• Support Package for ARM Cortex-A Processors
• Support Package for Xilinx Zynq-7000 Platform

Lookup table code replacement for Simulink
In R2014a, you can replace these lookup table functions during code generation for Simulink models.

interp1D interp4D lookup2D lookup5D
interp2D interp5D lookup3D lookupND_Direct
interp3D lookup1D lookup4D prelookup

When you create a replacement table entry for one these functions, you must specify a set of
algorithm properties in addition to the usual code replacement function key, conceptual arguments,
and other applicable math mode information. Specify the algorithm properties by using new
algorithm property fields in the code replacement tool or the new addAlgorithmProperty function.
Conceptual arguments and algorithm parameters must match for replacement to occur.

For more information, see Map Lookup Table Functions to Application Implementations.

Replacement of functions that take vector and matrix arguments
In R2014a, for Simulink Coder, you can specify code replacement conceptual arguments as vectors or
matrices for these functions if the functions are generated from corresponding Simulink blocks.

abs atanh log rSqrt sincos
acosh cos log10 saturate sinh
asinh cosh mod sign sqrt
atan exp pow signPow tan
atan2 hypot rem sin tanh

When creating table entries for these functions, consider specifying mapping information, such as
algorithm parameters and implementation attributes (for example, saturation and rounding). The

 Deployment

20-15

https://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-arm-cortex-m-processors_bt73026-3.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/use-cmsis-code-replacement-libary-for-arm-cortex-m-processors_bt73026-20.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/use-cmsis-code-replacement-libary-for-arm-cortex-m-processors_bt73026-20.html
https://www.mathworks.com/help/releases/R2014a/ecoder/working-with-arm-cortex-a-processors.html
https://www.mathworks.com/help/releases/R2014a/ecoder/working-with-xilinx-zynq-7000-platform.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/create-code-replacement-tables.html#bt81ikc

additional detail helps drive expected replacement behavior. For example, data types that you observe
in a model might not match what the code generator uses as intermediate data types in an operation.
To verify expected function replacement, inspect the generated code.

For more information, see Map Math Functions to Application-Specific Implementations.

Logical data type support for arguments of replaced functions
In R2014a, when creating function arguments for inclusion in code replacement table entries, you
can specify logical for the argument data type, which is equivalent to specifying boolean.

For more information, see Manage Code Replacement Tables with the Code Replacement Tool and the
getTflArgFromString function.

Code replacement data alignment for complex types
The code generator now supports code replacement data alignment of complex types.

For more information, see Configure Data Alignment for Function Implementations and
addComplexTypeAlignment.

Intel IPP (ANSI) and Intel IPP (ISO) code replacement libraries are
combined
Code replacement library selections Intel IPP (ANSI) and Intel IPP (ISO) are replaced with
a single library option, Intel IPP.

For information about setting the code replacement library, see Code replacement library.

Compatibility Considerations
To specify either ANSI or ISO, use the new Standard math library (TargetLangStandard) parameter.

See Standard math library.

Support for Eclipse IDE will be removed
Embedded Coder support for Eclipse IDE will be removed in a future release.

Currently, you can use Embedded Coder support for Eclipse IDE to:

• Build an executable from generated code on the host computer, and then run it on Linux using
BeagleBoard hardware or an ARM processor.

• Build an executable from generated code on Linux using the BeagleBoard hardware
(remoteBuild).

• Tune parameters on, and monitor data from, an executable running on the target hardware
(External mode).

• Perform numeric verification using processor-in-the-loop (PIL) simulation.
• Generate IDE projects and use the Automation Interface API.

R2014a

20-16

https://www.mathworks.com/help/releases/R2014a/ecoder/ug/create-code-replacement-tables.html#brc_paf-1
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/manage-crts-with-the-code-replacement-tool.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ref/gettflargfromstring.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/create-code-replacement-tables.html#bs6isrc-1
https://www.mathworks.com/help/releases/R2014a/ecoder/ref/addcomplextypealignment.html
https://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bq26cja-1
https://www.mathworks.com/help/releases/R2014a/rtw/ref/code-generation-pane-interface.html#bt7bn_r-1
https://www.mathworks.com/help/releases/R2014a/ecoder/ref/remotebuild.html

• Generate makefile projects using the gcc_target configuration in XMakefile.
• Use Linux Task block.

Compatibility Considerations
For BeagleBoard, you can run supportPackageInstaller and install Simulink Support Package
for BeagleBoard Hardware. For more information, see BeagleBoard Hardware.

Support for Green Hills MULTI IDE will be removed
Embedded Coder Support Package for Green Hills MULTI IDE will be removed in a future release.

Support package for ARM Cortex-A processors
You can use the Embedded Coder Support Package for ARM Cortex-A Processors to:

• Run executables on Linux using a QEMU emulator for ARM Cortex-A9 processors.
• Generate Ne10-optimized code based on the ARM Neon general-purpose SIMD engine.
• Tune parameters on, and monitor data from, an executable running on the QEMU (External

mode).
• Verify numeric accuracy and profile execution times using processor-in-the-loop (PIL) on the

QEMU.

To download and install this feature, perform the steps described in Install Support for ARM Cortex-A
Processors.

For more information, see:

• Support Package for ARM Cortex-A Processors
• Support Package for Xilinx Zynq-7000 Platform

Support package for Texas Instruments C6000 processors
You can automatically generate code from Simulink models and execute it on TI’s C6000 processors.

This feature includes the Embedded Coder Support Package for Texas Instruments C6000 Processors
block library, which contains the following block libraries:

• Avnet S3ADSP DM6437 (avnet_s3adsp_dm6437)
• C6416 DSK (c6416dsklib)
• C6455 EVM (c6455evmlib)
• C6713 DSK (c6713dsklib)
• C6747 EVM (c6747evmlib)
• DM642 EVM (dm642evmlib)
• DM6437 EVM (dm6437evmlib)
• DM648 EVM (dm648evmlib)
• DSP/BIOS (dspbioslib)

 Deployment

20-17

https://www.mathworks.com/help/releases/R2014a/ecoder/ref/linuxtask.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ref/supportpackageinstaller.html
https://www.mathworks.com/help/releases/R2014a/simulink/beagleboard.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-arm-cortex-m-processors_bt73026-3.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-arm-cortex-m-processors_bt73026-3.html
https://www.mathworks.com/help/releases/R2014a/ecoder/working-with-arm-cortex-a-processors.html
https://www.mathworks.com/help/releases/R2014a/ecoder/working-with-xilinx-zynq-7000-platform.html
https://www.mathworks.com/help/releases/R2014a/ecoder/avnet-s3adsp-dm6437-avnet-s3adsp-dm6437.html
https://www.mathworks.com/help/releases/R2014a/ecoder/c6416-dsk-c6416dsklib.html
https://www.mathworks.com/help/releases/R2014a/ecoder/c6455-evm-c6455evmlib.html
https://www.mathworks.com/help/releases/R2014a/ecoder/c6713-dsk-c6713dsklib.html
https://www.mathworks.com/help/releases/R2014a/ecoder/c6747-evm-c6747evmlib.html
https://www.mathworks.com/help/releases/R2014a/ecoder/dm642-evm-dm642evmlib.html
https://www.mathworks.com/help/releases/R2014a/ecoder/dm6437-evm-dm6437evmlib.html
https://www.mathworks.com/help/releases/R2014a/ecoder/dm648-evm-dm648evmlib.html
https://www.mathworks.com/help/releases/R2014a/ecoder/dsp-bios-dspbioslib.html

• Optimization — C28x DMC (c28xdmclib)
• Optimization — C64x DSP Library (tic64dsplib)
• Scheduling (c6000dspcorelib)
• Target Communication (targetcommlib)

To install this support package, perform the steps described in Install Support for C6000 DSPs.

For more information, see Support Package for Texas Instruments C6000 DSPs.

Compatibility Considerations
Previous versions of Embedded Coder software had built-in support for C6000 processors. The
current version of Embedded Coder does not have built-in support for C6000 processors.

To get support for C6000 processors, install Embedded Coder Support Package for Texas Instruments
C6000 Processors, as described in the preceding section.

Updates to support package for Texas Instruments C2000 processors
The updated Embedded Coder Support Package for Texas Instruments C2000 Processors:

• Adds support for Texas Instruments Piccolo F2805x processors.
• Adds an example that shows how to use Control Law Accelerator (CLA).

To install or update this support package, perform the steps described in Install Support for C2000
Processors.

For more information, see Support Package for Texas Instruments C2000 Processors

Updates to support package for Xilinx Zynq-7000 platform
The updated Embedded Coder Support Package for Xilinx Zynq-7000 Platform:

• Adds support for Xilinx Zynq-7000 All Programmable SoC ZC706 Evaluation Kit.
• Installs the Embedded Coder Support Package for ARM Cortex-A Processors.
• Enables use of the ert.tlc system target file.

To install or update this support package, perform the steps described in Install Support for Xilinx
Zynq-7000 Platform.

For more information, see:

• Support Package for Xilinx Zynq-7000 Platform
• Support Package for ARM Cortex-A Processors

Updates to support package for STMicroelectronics STM32F4
Discovery board
The updated Embedded Coder Support Package for STMicroelectronics STM32F4-Discovery Board:

R2014a

20-18

https://www.mathworks.com/help/releases/R2014a/ecoder/optimization--c28x-dmc-c28xdmclib.html
https://www.mathworks.com/help/releases/R2014a/ecoder/optimization--c64x-dsp-library-tic64dsplib.html
https://www.mathworks.com/help/releases/R2014a/ecoder/scheduling-c6000dspcorelib.html
https://www.mathworks.com/help/releases/R2014a/ecoder/target-communication-targetcommlib.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/getting-started-4.html
https://www.mathworks.com/help/releases/R2014a/ecoder/working-with-texas-instruments-c6000-processors.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-c2000-processors.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-c2000-processors.html
https://www.mathworks.com/help/releases/R2014a/ecoder/working-with-texas-intruments-c2000-processors.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-target-for-xilinx-zynq-hardware.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-target-for-xilinx-zynq-hardware.html
https://www.mathworks.com/help/releases/R2014a/ecoder/working-with-xilinx-zynq-7000-platform.html
https://www.mathworks.com/help/releases/R2014a/ecoder/working-with-arm-cortex-a-processors.html

• Adds Memory Copy block, which enables you to read from and write to memory locations on the
Discovery board.

• Adds a Mic in block, which enables you to read audio data from the MEMS microphone on the
Discovery board.

• Adds a Audio out block, which sends the processed audio samples to the audio output connector
on the Discovery board.

• Adds support for multitasking. This means that sub-rates can finish executing after the next base
rate period begins. For example, by giving sub-rates more execution time, multitasking enables
audio algorithms to process larger audio buffers.

To install or update this support package, perform the steps described in Install Support for
STMicroelectronics STM32F4 Discovery Board.

For more information, see Support Package for STMicroelectronics STM32F4 Discovery Board

Wind River Tornado (VxWorks 5.x) example main program option to be
removed in future release
Using the Templates pane of the Configuration Parameters dialog box, you can configure an ERT-
based model to generate an example main program for the Wind River Tornado® (VxWorks 5.x) RTOS.
This capability will be removed from Embedded Coder software in a future release. If you generate
code with the Templates pane parameter Target operating system set to VxWorksExample, the
software displays a warning about future removal of the VxWorks 5.x example option.

Compatibility Considerations
In place of VxWorks 5.x support, consider using the Wind River VxWorks support package. The
support package allows you to use the XMakefiles feature to automatically generate and integrate
code with VxWorks 6.7, VxWorks 6.8, and VxWorks 6.9. For more information, see Support Package
for Wind River VxWorks RTOS.

 Deployment

20-19

https://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-discovery-board-processors.html
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/install-support-for-discovery-board-processors.html
https://www.mathworks.com/help/releases/R2014a/ecoder/stm32f4-discovery-board.html
https://www.mathworks.com/help/releases/R2014a/ecoder/working-with-wind-river-vxworks-rtos.html
https://www.mathworks.com/help/releases/R2014a/ecoder/working-with-wind-river-vxworks-rtos.html

Performance

Additional options for reuse of global variables
In R2014a, on the Optimization pane, under Signals and Parameters, when you select Reuse
global block outputs, the code generator reuses global variables for block outputs.

For more information, see Reuse Block Outputs in the Generated Code.

Enhanced global variable optimization options
In R2014a, you can choose a global variable reference optimization for the generated code.

In the Configuration Parameters dialog box, on the Optimization > Signals and Parameters pane,
the Optimize global data access drop-down list provides the following options:

• None

Use default optimizations.
• Use global to hold temporary results

Maximize use of global variables.
• Minimize global data access

Minimize use of global variables by using local variables to hold intermediate values.

With an Embedded Coder license, if you select an embedded target such as ert.tlc, the software
replaces the Minimize data copies between local and global variables check box with the
Optimize global data access list. When Minimize data copies between local and global
variables is selected, Optimize global data access is set to Use global to hold temporary
results.

For more information, see Optimize Global Variable Usage.

for loops used to initialize arrays to zero
For signals with custom storage, code generation creates a for loop to initialize an array with
matching values, such as all zeroes or ones. This initialization method reduces code size, especially
for larger arrays. Previously, the generated code initialized each element individually on a separate
line.

R2014a

20-20

https://www.mathworks.com/help/releases/R2014a/simulink/gui/optimization-pane-signals-and-parameters.html#bt89tbh
https://www.mathworks.com/help/releases/R2014a/simulink/gui/optimization-pane-signals-and-parameters.html#bt89tbh
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/reuse-block-outputs.html
https://www.mathworks.com/help/releases/R2014a/simulink/gui/optimization-pane-signals-and-parameters.html#bro1teh-1
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/optimize-global-variable-usage.html

Verification

Software-in-the-loop simulation for physical models
You can run software-in-the-loop (SIL) simulations of models that use Simscape™ blocks.

SIL verification for subsystem code generation
You can use the SIL block approach to verify code generated from top-models and subsystems. In
R2014a, SIL block verification supports the following features:

• Profiling of task and function execution times.
• Source-level debugging with the Microsoft Visual C++® debugger.

Compatibility Considerations
The table describes SIL block verification features that differ from the previous release. If you want
to revert to previous SIL block behavior, in the Command Window, run:

silblocktype('legacy');

To restore R2014a SIL block behavior, run:

silblocktype('unified');

Feature R2014a Details
Validation checks The software performs, with reference to your host computer architecture,

stricter checks on active Hardware Implementation settings. If the
software detects mismatches, the software generates errors.

For example, if your host computer is a 64-bit Linux machine, you cannot
specify the following combination of settings:

• Device vendor: Generic
• Device type: 32-bit x86 compatible

To resolve the mismatch errors, do one of the following:

• In the Configuration Parameters > Code Generation > Verification
pane, select the Enable portable word sizes check box.

• In the Configuration Parameters > Hardware Implementation
pane, through the Production hardware or Test hardware section,
specify settings that correspond to your host computer architecture.

The software generates an error if:

• The generated code for the component under test has been updated
since the creation of the SIL block.

• The MATLAB version has changed since the creation of the SIL block.

 Verification

20-21

Feature R2014a Details
GenerateErtSFuncti
on parameter

The GenerateErtSFunction parameter has the following command-line
behavior:

• set_param(model, 'GenerateErtSFunction', 'on') generates
a warning that the parameter will be removed in a future release. As a
replacement, use the command set_param(model,
'CreateSILPILBlock', 'SIL').

• set_param(model, 'GenerateErtSFunction', 'off') does not
change the parameter. As a replacement, use the command
set_param(model, 'CreateSILPILBlock', 'None').

• get_param(model, 'GenerateErtSFunction') returns the value
off. As a replacement, use the command get_param(model,
'CreateSILPILBlock').

Parameter tuning During a SIL block simulation, the software does not support the tuning of
block dialog box parameters. Through the SIL block dialog box, you can
view the list of tunable global parameters
The software does not support SIL block creation if all of the following
apply:

• Code Generation > Interface > Code interface packaging is set to
Reusable function.

• Optimization > Signals and Parameters > Inline parameters is not
selected.

• The model contains parameters with storage class Auto or
SimulinkGlobal.

Data definition and
initialization

In the SIL test harness, for signals that are internal with respect to the SIL
block or models referenced by the SIL block, the software does not
automatically define and initialize signals with imported storage classes.
The software does not support automatic data definition and data transfer
for local data stores in the SIL block.

C++ class code
(previously called C++
encapsulated code)

For C++ class code:

• You must set External I/O access parameter to None.
• Parameters are not tunable if Block parameter visibility is private

and Block parameter access is either Method or Inlined method.

You can specify these settings through the Code Generation > Interface
pane.

Code generation report The code generation report does not display test harness files for your SIL
block.

Multiword fixed-point
data

At the SIL block interface, the software does not support multiword fixed-
point data types. The software supports:

• At the block interface, single word data types that are wider than 32
bits.

• Within the SIL block, multiword fixed-point data types.

R2014a

20-22

Feature R2014a Details
Boolean data type
replacement

At the SIL block boundary, the software does not support the replacement
of the boolean data type by integers.

GetSet custom storage
class

At the SIL block boundary, the software does not support vectors with the
GetSet custom storage class.

Asynchronous sample
times

SIL block verification does not support asynchronous sample times.

Variable-size signals At the SIL block boundary, the software does not support variable-size
signals.

AUTOSAR server
operation

SIL block verification does not support AUTOSAR server operation
components.

SIL and PIL support for fixed-point data type override
At the SIL or PIL component boundary, the software supports signals with data types that are
overridden by the Fixed-Point Tool Data type override parameter.

SIL and PIL support for Invoke AUTOSAR Server Operation block
You can perform SIL and PIL verification of code generated from models that have Invoke AUTOSAR
Server Operation blocks.

SIL and PIL support for structure parameters with storage class
SimulinkGlobal
The software supports the tuning of structure parameters with the SimulinkGlobal storage class
for the following types of simulation:

• Top-model SIL and PIL
• SIL and PIL block

Previously, this feature was supported for only Model block SIL and PIL.

Model block SIL and PIL with export-function and asynchronous
function-call models
In R2014a, you can use Model block SIL and PIL simulations to verify code generated from:

• Export-function models.
• Models with asynchronous function-call inputs, that is, models that use Asynchronous Task
Specification blocks.

In addition to verification, you can:

• Perform source-level debugging.
• Generate execution time profiles.
• Observe code coverage.

 Verification

20-23

Model block SIL and PIL does not support models with Asynchronous Task Specification blocks if the
models also have blocks that use absolute time.

Model block SIL and PIL with disabled inline parameters
Model block SIL and PIL verification supports R2014a behavior of the InlineParams parameter
with value off. For more information, see Simplified tuning of all parameters in referenced models.

Compatibility Considerations
Consider the following simulation settings for a top model with a Model block (referenced model):

• Top-model Simulation > Mode: Normal
• Model block Simulation mode: Software-in-the-loop (SIL) or Processor-in-the-loop

(PIL)
• Referenced model Optimization > Signals and Parameters > Inline parameters

(InlineParams): Not selected (off)

Previously, when executing the Model block in SIL or PIL mode, the software overrode the off value
of InlineParams and used the on value. The override action does not occur in R2014a. As a result,
the tuning behavior for parameters with the Auto storage class is the same as the tuning behavior for
parameters with the SimulinkGlobal storage class. For more information, see Tunable Parameters
and SIL/PIL.

To revert to previous behavior, you must manually set InlineParams to on.

SIL and PIL block improvements
In Accelerator mode, you can run a simulation with a top model that has SIL or PIL blocks. Therefore,
you can speed up simulation of your model components that are not SIL or PIL blocks.

The following features are supported for PIL block verification:

• Use of Goto and From blocks across the PIL block boundary.
• Use of virtual buses without bus objects across the PIL block boundary.
• Export of functions from triggered subsystems.

Previously, these features were supported for only SIL block verification.

R2014a

20-24

https://www.mathworks.com/help/releases/R2014a/simulink/release-notes.html#bt8kmid-1
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/sil-and-pil-simulation-support-and-limitations.html#brydbkh
https://www.mathworks.com/help/releases/R2014a/ecoder/ug/sil-and-pil-simulation-support-and-limitations.html#brydbkh

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

20-25

https://www.mathworks.com/support/bugreports/

R2013b

Version: 6.5

New Features

Bug Fixes

Compatibility Considerations

21

Code Generation from MATLAB Code

Software-in-the-loop verification for MATLAB Coder
Use software-in-the-loop (SIL) execution to verify production-ready source code. SIL execution
involves compiling and running static library code on your host computer. Through SIL execution, you
can reuse test vectors developed for your MATLAB functions to verify the numerical behavior of static
library code.

Previously, verification was restricted to code generated for execution only within MATLAB. Now, in
MATLAB, you can compile and run standalone code on the host computer through a MATLAB SIL
interface.

You can run a SIL execution:

• Using the MATLAB Coder project interface. See Software-in-the-Loop (SIL) Execution Through the
Project Interface.

• From the command line. See Software-in-the-Loop (SIL) Execution From the Command Line.

Custom generated identifiers for emxArray utility functions
You can customize generated identifiers for emxArray (embeddable mxArray) utility functions.
When you generate code that uses variable-size data, the code generation software exports utility
functions to interact with emxArray data structures. Customize utility function identifiers to avoid
name collisions when a function that uses variable-size data calls a library function that uses variable-
size data.

To customize generated identifiers for emxArray utility functions:

• In a project

On the Project Settings dialog box Code Appearance tab, under Identifier Format, in the EMX
Array Utility Functions field, enter the identifier format. For example, 'myemxMN'.

• At the command line

Create a code generation configuration object and set the CustomSymbolStrEMXArrayFcn
parameter to the identifier format. For example:

cfg = coder.config('lib');
cfg.CustomSymbolStrEMXArrayFcn='myemxMN';

For details about the identifier format, see coder.EmbeddedCodeConfig.

R2013b

21-2

https://www.mathworks.com/help/releases/R2013b/ecoder/ug/software-in-the-loop-sil-execution-using-the-project-interface.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/software-in-the-loop-sil-execution-using-the-project-interface.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/software-in-the-loop-sil-execution-from-the-command-line.html
https://www.mathworks.com/help/releases/R2013b/coder/ref/coder.embeddedcodeconfigclass.html

Model Architecture and Design
Enhanced modeling of AUTOSAR runnables and modes, and improved
ARXML import of internal behavior
R2013b enhances AUTOSAR modeling, component import, and programmatic control. See also
“Support for AUTOSAR release 4.0.3 XML and generated code” on page 21-10.

Enhanced modeling and simulation of AUTOSAR multiple runnables

In previous releases, AUTOSAR multi-runnables were modeled as function-call subsystems within a
wrapper subsystem in a Simulink model. To generate code, you right-clicked the wrapper subsystem
and exported functions.

Beginning in R2013b, you can model AUTOSAR multi-runnables as function-call subsystems at the
top level of a model, without having to use a wrapper subsystem. When you generate code for the
model, each function-call subsystem representing a runnable appears in the model C code as a
callable model entry-point function.

You can simulate multiple runnables in an AUTOSAR software component in multiple simulation
modes. For example:

• For a periodic runnable, you can edit the properties of the function-call subsystem inport to set
the sample time for a periodic event simulation.

• For a non-periodic runnable, you can edit the Data Import/Export pane of the Configuration
Parameters dialog box to set up data loading for an asynchronous event simulation.

For more information, see Configure Multiple Runnables.

Enhanced ARXML import of AUTOSAR software component internal behavior

The AUTOSAR software component importer tool can automatically import the internal behavior of a
multi-runnable AUTOSAR software component into a Simulink model. You can use the
createComponentAsModel method of the class arxml.importer to specify that internal behavior
be imported. For example:
>> obj = arxml.importer('mySWC.arxml');
>> obj.createComponentAsModel('/pkg/swc', 'CreateInternalBehavior', true)

The importer:

• Adds subsystem blocks in the model and maps them to corresponding runnables imported from
the AUTOSAR software component.

• Adds signal lines in the model and maps them to corresponding inter-runnable variables (IRVs)
imported from the AUTOSAR software component.

Ability to model AUTOSAR mode receiver ports and events

R2013b provides the ability to model AUTOSAR mode receiver ports and mode-switch events in
Simulink. Specifically, you can:

• Model the mode receiver port for an AUTOSAR software component using a Simulink inport.
• Specify a mode-switch event to trigger an initialize function runnable or an exported function-call

subsystem runnable.

 Model Architecture and Design

21-3

https://www.mathworks.com/help/releases/R2013b/ecoder/ug/configure-multiple-runnables.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importer.html

For more information, see Configure AUTOSAR Mode Receiver Ports and Events.

AUTOSAR dual-scaled parameter

The new AUTOSAR.DualScaledParameter class extends the capabilities of the
AUTOSAR.Parameter class. You can define a parameter object that stores two scaled values of the
same physical value. Suppose you want to store temperature measurements as Fahrenheit or Celsius
values. You can define a parameter that stores the temperature in either measurement scale with a
computational method to convert between the dual-scaled values.

You can use AUTOSAR.DualScaledParameter objects in your model for both simulation and code
generation. The parameter computes the internal value before simulation or code generation via a
computational method, which can be a first-order rational function. This offline computation results in
leaner generated code.

Embedded Coder also generates an XML file for use by a calibration tool. This file contains the dual-
scaled values and the corresponding computational method.

For more information, see AUTOSAR.DualScaledParameter.

Programmatic interface for configuring AUTOSAR properties and Simulink-AUTOSAR
mapping

R2013b provides a programmatic interface for configuring AUTOSAR properties and Simulink
mapping information using MATLAB functions. You can programmatically get, set, add, and remove
the same component properties and mapping information displayed in the AUTOSAR Properties
Explorer and Simulink-AUTOSAR Mapping Explorer views of the Configure AUTOSAR Interface
dialog box.

In the function syntax, you can use fully or partially qualified names to locate properties. For
example, the following code sets the IsService property for the sender-receiver interface located at
path Interface1 in the example model rtwdemo_autosar_multirunnables to true. In this case,
specifying the name Interface1 is enough to locate the property.
>> propObj = autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables');
>> set(propObj, 'Interface1', 'IsService', true);

If you added a sender-receiver interface to the component, you would specify a fully qualified path,
for example:
>> propObj = autosar.api.getAUTOSARProperties('rtwdemo_autosar_multirunnables');
>> addSRInterface(propObj, '/pkg/if/Interface3', 'IsService', true);

R2013b

21-4

https://www.mathworks.com/help/releases/R2013b/ecoder/ug/configure-autosar-mode-receiver-ports-and-events.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/autosar.dualscaledparameterclass.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/autosar.dualscaledparameterclass.html

The new AUTOSAR configuration functions also validate syntax and semantics for requested
AUTOSAR property and mapping changes.

Reorganization of Model Advisor Embedded Coder checks
Checks previously provided with Simulink in the Model Advisor Embedded Coder folder are now
available with either Simulink Coder or Embedded Coder. For a list of checks available with each
product, see:

• Simulink Coder Checks
• Embedded Coder Checks

Model Advisor fixed-point checks with additional coverage and
optimization awareness
The Model Advisor fixed-point checks now cover blocks in base Simulink and System Toolboxes, the
MATLAB Function block, System objects, Stateflow, and fi objects. These improved checks take into
consideration model settings such as hardware configuration and code generation settings. These
updated checks also avoid false negative results.

For more information, see:

• Identify blocks that generate expensive rounding code
• Identify questionable fixed-point operations
• Identify blocks that generate expensive fixed-point and saturation code

Protected model Web view
In R2013b, a read-only Web view of protected models is now available.

To include the Web view in the protected model, right-click the model reference block, and then
select Subsystem & Model Reference > Create Protected Model for Selected Model Block.
Select the Open read-only view of model check box and click Create.

To enter a password, right-click the protected model shield icon and select Authorize. Enter the
password and click OK. To show the Web view for a protected model, right-click the shield icon of the
protected model and select Show Web view.

RTW.AutosarInterface class to be removed in a future release
In R2013b, a new programmatic interface for configuring AUTOSAR properties and mapping
information for a Simulink model has replaced the RTW.AutosarInterface class used in earlier
releases. The RTW.AutosarInterface class will be removed in a future release.

Compatibility Considerations
If you are using the RTW.AutosarInterface class and methods to programmatically control and
validate the AUTOSAR configuration of a model, you should migrate to using the new AUTOSAR
property and mapping functions listed in AUTOSAR Component Development. The new functions are
designed to work with the component properties and mapping information displayed in the

 Model Architecture and Design

21-5

https://www.mathworks.com/help/releases/R2013b/rtw/ref/embedded-codersimulink-coder-checks.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-21
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#braj1_6-23
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/embedded-codersimulink-coder-checks.html#btzunno-1
https://www.mathworks.com/help/releases/R2013b/ecoder/autosar-component-development.html

AUTOSAR Properties Explorer and Simulink-AUTOSAR Mapping Explorer views of the Configure
AUTOSAR Interface dialog box.

Subsystem methods of arxml.importer class to be removed in a future
release
Beginning in R2013b, you can model AUTOSAR multi-runnables as function-call subsystems at the
top level of a model, rather than as function-call subsystems within a wrapper subsystem that
represents the AUTOSAR software component. The following methods of the arxml.importer class
will be removed in a future release:

• arxml.importer.createComponentAsSubsystem — Create AUTOSAR atomic software
component as Simulink atomic subsystem

• arxml.importer.createOperationAsConfigurableSubsystems — Create configurable
Simulink subsystem library for client-server operation

Compatibility Considerations
If you are using createComponentAsSubsystem or
createOperationAsConfigurableSubsystems, you should migrate to using the top model
oriented approach described in Configure Multiple Runnables.

R2013b

21-6

https://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importerclass.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importer.createcomponentassubsystem.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/arxml.importer.createoperationasconfigurablesubsystems.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/configure-multiple-runnables.html

Data, Function, and File Definition

Simplified global types file rtwtypes.h with invariant content
Previously, during rebuilds of a model hierarchy, the code generation process might have updated the
content of the shared header file rtwtypes.h. If a model in the hierarchy changed, or the code
generator detected a new model in the hierarchy, rtwtypes.h could be overwritten. When
rtwtypes.h changes, you must recompile the code.

In R2013b, the code generator separates some of the rtwtypes.h content into separate header files
that are generated only when certain model settings or components are present. Separate header
files are generated, however, rtwtypes.h is unchanged. When certain model settings or components
are present, the code generator creates the following new header files.

Model setting or component Content generated to header file
Multiword data types multiword_types.h
Model reference target model_reference_types.h
Model reference blocks model_reference_types.h
MAT-file logging is selected builtin_typeid_types.h

multiword_types.h
C API builtin_typeid_types.h
Interface is set to External mode multiword_types.h

For more information on files created during code generation, see Files Created During the Build
Process.

C++ encapsulation support for name space control and template-
based file customization
Name space control for scoping C++ encapsulated model classes

R2013b adds name space control for scoping model classes generated using C++ encapsulation. You
can use the Namespace parameter in the Configure C++ Encapsulation Interface dialog box to
specify a name space for a model class. If specified, the name space is emitted in the generated code
for the model class. To scope the C++ encapsulated model classes in a model reference hierarchy,
you can specify a different name space for each referenced model. For more information, see Use
Name Spaces to Scope C++ Encapsulated Model Classes.

For more information on configuring C++ encapsulated model classes, see Configure C++
Encapsulation Interfaces Using Graphical Interfaces.

Template-based customization of encapsulated C++ header and source files

Embedded Coder now supports the Code Generation > Templates pane of the Configuration
Parameters dialog box for models that use C++ encapsulation. You can use the code and data
templates to control the appearance of C++ code in generated model header and source files. For
example, you can customize file and function banners to meet organization standards.

 Data, Function, and File Definition

21-7

https://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-interface.html#bq9khar-1
https://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-interface.html#bq26gyk-1
https://www.mathworks.com/help/releases/R2013b/rtw/ug/files-and-folders-created-by-the-build-process.html#brufp8r-17
https://www.mathworks.com/help/releases/R2013b/rtw/ug/files-and-folders-created-by-the-build-process.html#brufp8r-17
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#bt3qmd5-1
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#bt3qmd5-1
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#brr1mb6-1
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/c-encapsulation-interface-control_brre9ro-1.html#brr1mb6-1

However, the following template file features that are supported for other language selections are not
supported for C++ encapsulation:

• Free-form text outside template sections
• Custom tokens
• TLC commands (<! > tokens)

Shared utility naming control
You can customize a shared utility name. On the Code Generation > Symbols pane enter text and
formatting characters in the Shared utilities box.

The default token string is NC.

Token Description
$N The code generator inserts the shared utility

function name.
$C When the combined text and utility name exceed

the maximum identifier length, the code
generator inserts an eight-character conditional
checksum. This checksum ensures that the name
is unique.

If the shared utility identifier exceeds the maximum length, characters are deleted from $N and the
eight-character conditional checksum is inserted.

For more information see

• Shared utilities
• Identifier Format Control
• Exceptions to Identifier Formatting Conventions

Expanded support for identifier names
When specifying temporary local variables, you can now use $A to insert the data type acronym into
your variable name. This capability provides you with a more consistent naming scheme.

• You can include $A in naming for local temporary variables where previously it was supported only
for local block output variables and field names of global types. For more information, see
Identifier Format Control, Local temporary variables and Field name of global types.

• You can customize identifier names by specifying $A which maps to the data type replacement
setting. Previously the generated code changed the types, but not the identifier names. For more
information, see Data Type Replacement.

Terminate function setting honored for subsystems and referenced
models
In previous releases, model builds did not uniformly honor the setting of the model option Terminate
function required when generating code for subsystems or referenced models. A model build could

R2013b

21-8

https://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-symbols.html#btzzwi5-1
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/specify-identifier-formats.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/exceptions-to-identifier-formatting-conventions.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/specify-identifier-formats.html
https://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-symbols.html#bq9i3s4-1
https://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-symbols.html#bq9i3lh-1
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/data-type-replacement.html

generate termination code for a subsystem or referenced model when Terminate function required
was cleared.

Beginning in R2013b, model builds honor the setting of Terminate function required for
subsystems and referenced models. When Terminate function required is cleared, the build
suppresses subsystem and referenced model termination code.

Compatibility Considerations
If an existing model relies on subsystem or referenced model termination code being generated
despite the model option Terminate function required being cleared, consider turning on the
Terminate function required option.

 Data, Function, and File Definition

21-9

Code Generation

Support for AUTOSAR release 4.0.3 XML and generated code
R2013b adds AUTOSAR release 4.0.3 support, as follows:

• ARXML import and export support AUTOSAR release 4.0.3 XML files.
• The AUTOSAR target generates AUTOSAR release 4.0.3 compliant C code.
• Selecting the value 4.0 for the AUTOSAR model parameter Generate XML file from schema

version now selects schema revision 4.0.3, rather than 4.0.2. Also, the parameter now defaults to
value 4.0, rather than 3.0 or an earlier version.

See also “Enhanced modeling of AUTOSAR runnables and modes, and improved ARXML import of
internal behavior” on page 21-3.

Indent style and size control for code generation
R2013b adds options for customizing code appearance. The following new parameters are located in
the Configuration Parameters dialog box, on the Code Generation > Code Style pane.

• Indent style: Specify K&R or Allman style for the placement of braces.
• Indent size: Specify the number of characters per indent level. Choose from 2–8 characters.

For more information on configuring code style parameters, see Control Code Style.

Subsystem functions return value in generated code
In the Subsystem Block Parameters dialog box, on the Code Generation tab, if you set

• The Function packaging parameter for your subsystem to Nonreusable function
• The Function interface parameter to Allow arguments

The code generator might generate a subsystem function that returns a scalar output value.
Previously, subsystem functions returned void.

Model reference step function void input and output arguments
Since R2010a, when a reusable subsystem fed the outport, code generation might create output
arguments for model reference step functions.

In R2013b, code generation produces model reference step functions with void input and void output
when the model reference block:

• Is a single instance.
• Has exported globals on its input and output ports.

R2013b

21-10

https://www.mathworks.com/help/releases/R2013b/ecoder/ref/code-generation-pane-autosar-code-generation-options.html#brju4q8-2
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/code-generation-pane-autosar-code-generation-options.html#brju4q8-2
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/control-code-style.html

Deployment

ARM Cortex-M optimized code with STM32F4-Discovery board example
Build ARM Cortex-M optimized executables from Simulink models. Automatically run executables on
STMicroelectronics STM32F4-Discovery boards.

Note In addition to the basic math optimizations provided by Embedded Coder Support Package for
ARM Cortex-M Processors, you can obtain advanced optimizations for ARM DSP filters using the DSP
System Toolbox Support Package for ARM Cortex Processors. For more information, see the DSP
System Toolbox release notes for R2013b.

Support package for ARM Cortex processors

Use the Embedded Coder Support Package for ARM Cortex-M Processors to:

• Build and run CMSIS-optimized executables on ARM Cortex-M QEMU emulator.
• Use the capabilities and features described in Supported Features for ARM Cortex-M Processors

To download and install this feature, perform the steps described in Install Support for ARM Cortex-
M Processors.

For more information, see the Support Package for ARM Cortex-M Processors topic.

Support package for STMicroelectronics STM32F4-Discovery Board

Use the Embedded Coder Support Package for STMicroelectronics STM32F4-Discovery Board to
automatically build (makefile-based), download, and run an executable on Discovery board
processors.

Use blocks from the Embedded Coder Support Package for STMicroelectronics STM32F4-Discovery
Board block library:

• ADC — Convert analog signal to digital signal.
• GPIO Read — Configure input pin to read pin status.
• GPIO Write — Configure output pin to output pin status.

This support package automatically installs the following third-party software:

• STM32F4DISCOVERY peripheral firmware examples http://www.st.com/internet/evalboard/
product/252419.jsp

• OpenOCD http://www.freddiechopin.pl/en/download/category/4-openocd
• GNU Tools for ARM Embedded Processors https://launchpad.net/gcc-arm-embedded
• QEMU http://lassauge.free.fr/qemu/
• CMSIS http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-software-

interface-standard.php

To download and install this support package, perform the steps described in Install Support for
STMicroelectronics STM32F4 Discovery Board.

 Deployment

21-11

https://www.mathworks.com/help/releases/R2013b/dsp/release-notes.html#btw0g6x
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/supported-features-for-arm-cortex-m-processors.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/install-support-for-arm-cortex-m-processors.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/install-support-for-arm-cortex-m-processors.html
https://www.mathworks.com/help/releases/R2013b/ecoder/working-with-arm-cortex-m-processors.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/install-support-for-discovery-board-processors.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/install-support-for-discovery-board-processors.html

For more information, see the Support Package for STMicroelectronics STM32F4 Discovery Board
topic.

Wind River VxWorks 6.9 support
You can automatically generate code from Simulink models and execute it on VxWorks 6.9 RTOS.

To use this feature, install the corresponding support package:

1 In a MATLAB Command Window, enter supportPackageInstaller.
2 Use Support Package Installer to install the Embedded Coder Support Package for Wind River

VxWorks RTOS.

This feature includes the Embedded Coder Support Package for Wind River VxWorks RTOS block
library, which contains the following blocks:

• UDP Send and UDP Receive — Enable UDP communication with networked devices using an
Ethernet port.

• VxWorks Task — Spawn task function as a separate VxWorks thread.

For more information , see the Support Package for Wind River VxWorks RTOS topic.

Compatibility Considerations

Previous versions of Embedded Coder software had built-in support for the VxWorks 6.7 and 6.8. The
current version of Embedded Coder does not have built-in support for VxWorks 6.7 and 6.8. To get
support for VxWorks 6.7, 6.8, and 6.9, install the Embedded Coder Support Package for Wind River
VxWorks RTOS.

Support package for Texas Instruments C2000 processors
You can automatically generate code from Simulink models and execute it on Texas Instruments
C2000 processors.

To use this feature, install the corresponding support package:

1 In a MATLAB Command Window, enter supportPackageInstaller.
2 Use Support Package Installer to install Embedded Coder Support Package for Texas Instruments

C2000 Processors.

This feature includes the Embedded Coder Support Package for Texas Instruments C2000 Processors
block library, which contains:

• C2802x (c2802xlib) block library
• C2803x (c2803xlib) block library
• C2806x (c2806xlib) block library
• C280x (c280xlib) block library
• C281x (c281xlib) block library
• C2834x (c2834xlib) block library
• C28x3x (c2833xlib) block library

R2013b

21-12

https://www.mathworks.com/help/releases/R2013b/ecoder/stm32f4-discovery-board.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/udpsend.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/udpreceive.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/vxworkstask.html
https://www.mathworks.com/help/releases/R2013b/ecoder/working-with-wind-river-vxworks-rtos.html
https://www.mathworks.com/help/releases/R2013b/ecoder/c2802x-c2802xlib.html
https://www.mathworks.com/help/releases/R2013b/ecoder/c2803x-c2803xlib.html
https://www.mathworks.com/help/releases/R2013b/ecoder/c2806x-c2806xlib.html
https://www.mathworks.com/help/releases/R2013b/ecoder/c280x-c280xlib.html
https://www.mathworks.com/help/releases/R2013b/ecoder/c281x-c281xlib.html
https://www.mathworks.com/help/releases/R2013b/ecoder/c2834x-c2834xlib.html
https://www.mathworks.com/help/releases/R2013b/ecoder/c28x3x-c2833xlib.html

• Memory Operations block library
• Optimization — C28x DMC (c28xdmclib) block library
• Optimization — C28x IQmath (tiiqmathlib) block library
• RTDX Instrumentation (rtdxBlocks) block library
• Scheduling block library
• Target Communication block library

For more information about this feature, see the Support Package for Texas Instruments C2000
Processors topic.

Compatibility Considerations

Previous versions of Embedded Coder software had built-in support for C2000 processors. The
current version of Embedded Coder does not have built-in support for C2000 processors.

To get support for C2000 processors, install Embedded Coder Support Package for Texas Instruments
C2000 Processors, as described in the preceding section.

Coder Target pane in Configuration Parameters dialog box
You can use the Coder Target pane to configure target hardware settings for your model.

This Coder Target pane has a the same name as the Code Generation > Coder Target sub-pane that
appears when the System target file parameter is idelink_ert.tlc or idelink_grt.tlc.

To use the Coder Target pane:

 Deployment

21-13

https://www.mathworks.com/help/releases/R2013b/ecoder/memory-operations-4.html
https://www.mathworks.com/help/releases/R2013b/ecoder/optimization--c28x-dmc-c28xdmclib.html
https://www.mathworks.com/help/releases/R2013b/ecoder/optimization--c28x-iqmath-tiiqmathlib.html
https://www.mathworks.com/help/releases/R2013b/ecoder/rtdx-instrumentation-rtdxblocks.html
https://www.mathworks.com/help/releases/R2013b/ecoder/scheduling-6.html
https://www.mathworks.com/help/releases/R2013b/ecoder/target-communication.html
https://www.mathworks.com/help/releases/R2013b/ecoder/working-with-texas-intruments-c2000-processors.html
https://www.mathworks.com/help/releases/R2013b/ecoder/working-with-texas-intruments-c2000-processors.html

1 Open Configuration Parameter dialog box by entering Ctrl+E.
2 Select the Code Generation pane.
3 Set the System target file parameter to ert.tlc. Click Apply.
4 Set the Target hardware parameter to match your target hardware.

The Configuration Parameters dialog box displays the Coder Target pane with parameters for the
specified target hardware.

ZedBoard hardware support
You can automatically generate code from Simulink models and execute it on ZedBoard™ hardware.
Specifically, you can execute the code in the Linux environment on the ZedBoard’s ARM Cortex-A9
processor.

To use this feature, install the corresponding support package:

1 In a MATLAB Command Window, enter supportPackageInstaller.
2 Use Support Package Installer to install Embedded Coder Support Package for Xilinx Zynq-7000

Platform.

This feature includes the Embedded Coder Support Package for Xilinx Zynq-7000 Platform block
library, which contains:

• UDP Send and UDP Receive — Enable UDP communication with networked devices using an
Ethernet port.

• Linux Task — Spawns task function as separate Linux thread.

For more information, see the Support Package for Xilinx Zynq-7000 Platform topic.

Note For more information about using HDL Coder™ software with the FPGA on the Avnet®

ZedBoard hardware, see IP core integration into Xilinx EDK project for ZC702 and ZedBoard

Simplified multi-instance code interface and dynamic memory
allocation for ERT targets
Embedded Coder now provides a simplified multi-instance code interface, with a dynamic memory
allocation option, for ERT-based models. The new capabilities support easier integration of multi-
instance code into applications. The new interface to generated model code features:

• Use of a single model entry-point function argument for instance data such as signals, states,
parameters, and optionally root-level input and output.

• Configurable argument list for model root-level input and output.
• Option to generate a function that dynamically allocates memory for model instance data.

For more information, see model option Generate reusable code, Entry-Point Functions and
Scheduling, and Generate Reentrant Code from a Top-Level Model.

For an example of an ERT-based model configured to generate reusable, reentrant code, see the
example model rtwdemo_reusable.

R2013b

21-14

https://www.mathworks.com/help/releases/R2013b/ecoder/ref/udpsend.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/udpreceive.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/linuxtask.html
https://www.mathworks.com/help/releases/R2013b/ecoder/working-with-xilinx-zynq-7000-platform.html
https://www.mathworks.com/help/releases/R2013b/hdlcoder/release-notes.html#bt0ijp2-1
https://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-interface.html#bq9kdp4-1
https://www.mathworks.com/help/releases/R2013b/rtw/ug/entry-point-functions-and-scheduling.html
https://www.mathworks.com/help/releases/R2013b/rtw/ug/entry-point-functions-and-scheduling.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ug/generate-reusable-code-for-a-top-level-model.html
matlab:rtwdemo_reusable

Compatibility Considerations
Beginning in R2013b, when you select Generate reusable code for an ERT-based model, model data
structures, such as Block I/O, DWork, and Parameters, are packaged into the real-time model data
structure. The real-time model data structure is passed in a single argument to the model entry-point
functions model_initialize, model_step, and model_terminate.

In earlier releases, when you selected Generate reusable code for an ERT-based model, model data
structures were passed in separately as arguments to the model entry-point functions. The number of
generated arguments varied, depending on the data requirements of the model.

If you have code that calls reusable code generated from ERT-based models, you should update the
model entry-point function calls to use the new, simplified interface.

For example, consider model entry-point functions previously called as follows:

/* Step the model */
rtwdemo_reusable_step(&rtP, &rtDWork, rtU_In1, rtU_In2, &rtY_Out1);

/* Initialize model */
rtwdemo_reusable_initialize();

In R2013b or later, the corresponding calls might be as follows:

/* Step the model */
rtwdemo_reusable_step(rtM, rtU_In1, rtU_In2, &rtY_Out1);

/* Initialize model */
rtwdemo_reusable_initialize(rtM);

Beginning in R2013b, after selecting Generate reusable code, you also can select the model option
Generate function to allocate model data, which generates a function to dynamically allocate
memory (using malloc) for model data structures. If you do not select this option, the model instance
data must be allocated either statically or dynamically by the calling code. For this case, an additional
requirement beginning in R2013b is that pointers to the individual data structures (such as Block IO,
DWork, and Parameters) must be set up in the top-level real-time model data structure.

Addition and Subtraction Operator Code Replacement Assumes Cast-
Before-Operation Behavior
The type of algorithm that addition and subtraction operators apply for a given math library can be
characterized as cast-before-operation (CBO) or cast-after-operation (CAO). In the CBO case, prior to
performing the operation, the algorithm type casts input values to the output type. If the output data
type cannot exactly represent the input values, losses can occur as a result of the cast to the output
type. Additional loss can occur when the result of the operation is cast to the final output type.

In the CAO case, the algorithm computes the ideal result of the operation on the inputs and then type
casts the result to the output data type. Loss occurs during the type cast. This algorithm behaves
similarly to the C language except when the signedness of the operands does not match. For example,
when you add a signed long operand to an unsigned long operand, standard C language rules convert
the signed long operand to an unsigned long operand. The result is a value that is not ideal.

Starting in R2013b, the code generator assumes CBO behavior for replacement code defined for
addition and subtraction operators.

 Deployment

21-15

https://www.mathworks.com/help/releases/R2013b/rtw/ref/model_initialize.html
https://www.mathworks.com/help/releases/R2013b/rtw/ref/model_step.html
https://www.mathworks.com/help/releases/R2013b/rtw/ref/model_terminate.html
https://www.mathworks.com/help/releases/R2013b/rtw/ref/code-generation-pane-interface.html#btyv0ty-1

Compatibility Considerations
In previous releases, the code replacement software did not take the Sum block configuration into
account when making a replacement. Starting in R2013b, the code replacement software considers
the Sum block for replacement if the block meets the CBO constraint. To meet that constraint, the
block must be configured in one of the following ways:

• Input and output are the same type and the size of the accumulator type is equal to or greater
than the size of that type

• Input and output types differ, but the size of the accumulator type is equal to the size of the output
type

If the Sum block does not meet the CBO constraint, a replacement that occurred in a previous release
might not loccur.

Addition functions in libraries that implement full-precision addition, such as the ANSI C library, are
not suitable as replacement functions.

When using code replacements, validate that the numerical results of the generated code match the
results of a processor-in-the-loop (PIL) simulation.

R2013b

21-16

Performance

Reusable custom storage class to reduce root I/O memory
In R2013b, if a pair of root-level model input and output signals uses the same storage class
specification, code generation can reuse the root I/O signals in the generated code. The storage class
specifications are the new custom storage class Reusable(Custom) or a custom storage class
created from Reusable(Custom). Reusing code for root input and output signals allows for further
optimizations that reduce data copies, global variables, and ROM/RAM size. For more information,
see Signal Reuse for Root-Level Model Inputs and Outputs.

Subsystem functions reused independently of output connection
Previously, code generation used different criteria to determine when to reuse code.

• Code generation used the connection status to help determine the number of subsystem functions
to generate.

• Code generation reused subsystem functions with varied connection status only when the outputs
were passed by structure reference.

Code generation can now reuse subsystem functions regardless of:

• The connection state of the outputs. You can specify multiple outputs as unconnected or
terminated across subsystems.

• Whether the reusable system outputs are passed as Structure reference or Individual
arguments.

 Performance

21-17

https://www.mathworks.com/help/releases/R2013b/ecoder/ug/signal-reuse-for-root-level-model-inputs-and-outputs.html

Verification

SIL and PIL support fixed-point data types wider than 32 bits
Use software-in-the loop (SIL) and processor-in-the-loop (PIL) simulations to verify generated code
that contains fixed-point data types wider than 32 bits.

A number of host and target platforms support 64-bit native data types. On these platforms,
implementing a fixed-point data type wider than 32 bits as a single word is more efficient than the
multiword fixed-point approach. Previously, data types wider than 32 bits, including multiword fixed-
point, were supported internally within a SIL or PIL component. However, the data types were not
supported in the communication between the MATLAB and Simulink host and the SIL or PIL
component on the target. Now, the software supports 33-bit to 64-bit single word, fixed-point data
types in host-target communication.

Data types that SIL and PIL support include the following:

• 64-bit long and long long
• 64-bit execution profiling timer data type — Previously, the target returned only the 32 least
significant bits to the MATLAB host, with the possibility of timer wrapping.

• int64 and uint64 — Used in MATLAB Coder SIL execution.

The following constraints apply:

• For 64-bit data type support, the data type must be representable as long or long long on the
MATLAB host and the target. Otherwise, the software uses the multiword fixed-point approach,
which SIL and PIL do not support.

• 32-bit Windows does not support 64-bit long or long long data types. In this case, the software
uses the multiword fixed-point approach which SIL and PIL do not support.

• The software does not support the 40-bit long data type of the TI’s C6000 target.

Through the Configuration > Hardware Implementation pane, you can enable support for the
64-bit long long data type. However, for data types with widths between 33 and 40 bits
(inclusive), the software implements the data types using the 40-bit long data type which SIL and
PIL do not support.

SIL and PIL protected model support
Software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation modes are now supported for
protected models. You can run models that contain protected models in SIL and PIL simulation modes
if the protected models support code generation. In previous releases, the only supported simulation
modes were Normal and Accelerator.

Code execution profiling improvements
Standalone code generation with function profiling

You can generate executable code (Ctrl+B) for your model even if function profiling is enabled. The
software produces the following warning message:

R2013b

21-18

Warning: Code profiling instrumentation is not supported for standalone
builds (Ctrl+B). You can run the executable, but no profiling data will be
collected.

Previously, if function profiling was enabled for a SIL or PIL simulation, building your model produced
an error message. For example:

Code profiling instrumentation within the generated code is not supported
for top model standalone builds (Ctrl+B). You cannot build the top model
rtwdemo_sil_modelblock in standalone mode because rtwdemo_sil_modelblock
has code profiling instrumentation enabled. You must either simulate
rtwdemo_sil_modelblock in SIL or PIL mode or disable code profiling
instrumentation for rtwdemo_sil_modelblock. To disable code profiling
instrumentation, clear the check box Simulation > Configuration Parameters
> Code Generation > Verification > Measure function execution times.

For information about obtaining execution time profiles for generated code, see Code Execution
Profiling.

Display of code section invocations

You can display code section invocations over the execution timeline.

For more information, see timeline.

SampleOffset and SamplePeriod removed

The coder.profile.ExecutionTimeSection SampleOffset and SamplePeriod methods have
been removed.

 Verification

21-19

https://www.mathworks.com/help/releases/R2013b/ecoder/code-execution-profiling-2.html
https://www.mathworks.com/help/releases/R2013b/ecoder/code-execution-profiling-2.html
https://www.mathworks.com/help/releases/R2013b/ecoder/ref/timeline.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2013b

21-20

https://www.mathworks.com/support/bugreports/

R2013a

Version: 6.4

New Features

Bug Fixes

Compatibility Considerations

22

Code Generation from MATLAB Code

Improved code replacement traceability for MATLAB code generation
In the R2013a release, there is now improved code replacement traceability for standalone code
generated using MATLAB Coder. This capability is not available for generated MEX functions. When
you choose to include code replacements in the code generation report:

• The code generation report includes a link to the Code Replacements Report.
• Code replacement trace information is generated for viewing in the Trace Information tab of the

Code Replacement Viewer.
• The code replacement report lists replacement functions and their associated MATLAB code.

You can use the code replacement report to:

• Determine which replacement functions were used in the generated code.
• Trace each replacement instance back to the MATLAB code that triggered the replacement.

For more information, see Enable the Code Replacements Report and Viewing Code Replacements in
the Generated Code.

Static code metrics report for MATLAB Coder
When you generate standalone C code with MATLAB Coder, the HTML code generation report now
includes a static code metrics report. The static code metrics report is not available for generated
MEX functions.

The static code metrics include the:

• Number of source code files.
• Number of lines of code.
• List of global variables.
• Functions in a call tree format.
• Estimated stack size required for a function.

You can use the information in the static code metrics report to:

• Find the number of files and lines of code in each file.
• Estimate the number of lines of code and stack usage per function.
• Compare how many files, functions, variables, and lines of code are generated every time you

change the MATLAB algorithm.
• Determine a target platform and allocation of RAM to the stack, based on the size of global

variables plus the estimated stack size.
• Determine possible performance slow points, such as the largest global variables or the most

costly call path in terms of stack usage.
• View the cyclomatic complexity of a function, which counts the number of linearly independent

paths through a function.
• View the function call tree.

R2013a

22-2

https://www.mathworks.com/help/releases/R2013a/ecoder/ug/enable-the-code-replacements-report.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/viewing-code-replacements-in-the-generated-code.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/viewing-code-replacements-in-the-generated-code.html

• Determine the longest call path to estimate the worst-case execution timing.
• View how target functions, provided by the selected code replacement library, are used in the

generated code.

For more information, see Generate a Static Code Metrics Report for MATLAB Code and Static Code
Metrics.

 Code Generation from MATLAB Code

22-3

https://www.mathworks.com/help/releases/R2013a/ecoder/ug/generate-a-static-code-metrics-report-for-matlab-code.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html

Model Architecture and Design

AUTOSAR user interface and round trip ARXML file import and export
improvements
Improved graphical user interfaces for AUTOSAR configuration

Embedded Coder software provides graphical user interfaces that allow you to add AUTOSAR
elements to a Simulink model and map model components and interfaces to AUTOSAR components
and interfaces. R2013a provides several improvements to the graphical user interfaces for AUTOSAR
configuration:

• The Configure AUTOSAR Interface dialog box now provides separate Simulink-AUTOSAR
Mapping and AUTOSAR Properties Explorers, which clearly distinguish mapping and editing
activities.

• In both the Mapping and Properties Explorers:

• Parameters that previously required text entry now offer selectable values or attributes.
• Displays are more scalable (accommodating more elements) with fewer refresh issues.
• Graphical layout reflects logical relationships between entities.
• Filtering enhances element selection and modification.

• The Properties Explorer provides intuitive double-click and add/remove operations for configuring
AUTOSAR ports, interfaces, data elements, runnables, and events.

• New check and synchronization icons provide single-click access to AUTOSAR configuration
validation and Simulink model synchronization.

• A new AUTOSAR Component Builder dialog box allows you to interactively create a customized
AUTOSAR component.

To explore the Configure AUTOSAR Interface dialog box, open a model that is already configured for
AUTOSAR (such as the example model rtwdemo_autosar_counter). Select Code > C/C++ Code
> Configure Model as AUTOSAR Component to open the dialog box. From there, you can select
either the Simulink-AUTOSAR Mapping Explorer or the AUTOSAR Properties Explorer.

R2013a

22-4

To explore the AUTOSAR Component Builder dialog box, open a model that is not already configured
for AUTOSAR (such as the example model rtwdemo_counter). Select the AUTOSAR target
(autosar.tlc) for the model, and then select Code > C/C++ Code > Configure Model as
AUTOSAR Component. This action opens a dialog box that allows you to select between creating a
default AUTOSAR component or interactively creating an AUTOSAR component. To open the
AUTOSAR Component Builder dialog box, click Create Component Interactively.

 Model Architecture and Design

22-5

Round-trip preservation of AUTOSAR elements and UUIDs

To help support the round trip of AUTOSAR elements between an AUTOSAR authoring tool (AAT) and
the Simulink model-based design environment, Embedded Coder now preserves AUTOSAR elements
and their UUIDs across arxml import and export, as follows:

• When arxml files created by an AAT are imported into a Simulink model, AUTOSAR element
information is preserved, including UUIDs (for Identifiables), properties, and reference packages.

• When arxml files are exported from a Simulink model, the elements are generated back into
arxml with their UUIDs and other information preserved.

As a result, the arxml files exported from Simulink can more easily be merged back into the AAT
environment. Existing elements retain their UUIDs, while new elements created in Simulink get new
UUIDs.

Code generation for variable-size scalar signals
Previously, a model that used a variable-size scalar signal (width equals 1) would cause an error
during a model update. This limitation has been removed and the model now simulates and generates
code for a variable-size scalar signal.

R2013a

22-6

Data, Function, and File Definition

Shortened system-generated identifier names
In R2013a, you have the option to shorten the system-generated identifier names to allow more space
for user names. This option also provides a more predictable and consistent naming system that uses
camel case, no underscores or plurals, and consistent abbreviations for both a type and a variable.

To use the new names, open the Configuration Parameters dialog box, and on the Code Generation
> Symbols pane, set the System-generated identifiers parameter to Shortened. When you open a
new model in R2013a, the default setting for System-generated identifiers is set to Shortened.
When you open an existing model in R2013a, System-generated identifiers is set as Classic. With
this setting, the system-generated identifiers use the names from previous releases.

For more information, see System-generated identifiers and Customize Generated Identifier Naming
Rules.

Improved data initialization with custom storage classes
Previously, Embedded Coder generated initialization code for these two cases, even though the
DataInitialization parameter was set to None or Static.

1 Initial output of an Enabled Subsystem configured to reset when it is enabled.
2 Fixed-point data with bias, which cannot have zero ground value

Now, Embedded Coder will not generate dynamic initialization code for data that uses a custom
storage class whose DataInitialization parameter is set to None or Static.

Default specification for global types
Previously, on the Configuration Parameters Symbol pane, the default for Global types was NR$M.
In R2013a, for new models, the default for Global types is NR$M_T. For existing models opened in
R2013a, Global types does not change.

Subsystem block parameter Function packaging option renamed
In the Subsystem block parameter dialog box, on the Code Generation tab, the Function packaging
option Function is renamed to Nonreusable function.

 Data, Function, and File Definition

22-7

https://www.mathworks.com/help/releases/R2013a/rtw/ref/code-generation-pane-symbols.html#btqlcrf-1
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/configure-generated-identifiers-in-embedded-system-code.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/configure-generated-identifiers-in-embedded-system-code.html
https://www.mathworks.com/help/releases/R2013a/simulink/slref/codereusesubsystem.html#brp1xt9-91

Code Generation

Model Advisor checks for code generation
The Model Advisor By Product folder contains the following checks to replace Identify
questionable blocks within the specified system:

• Check for blocks not supported by code generation
• Check for blocks not recommended for C/C++ production code deployment

To display the By Product folder, in the Model Advisor window select Settings > Preferences. In
the Model Advisor Preferences dialog box, select Show By Product Folder.

R2013a

22-8

https://www.mathworks.com/help/releases/R2013a/rtw/ref/embedded-codersimulink-coder-checks.html#btpdhno-1
https://www.mathworks.com/help/releases/R2013a/rtw/ref/embedded-codersimulink-coder-checks.html#btpdhq5-1

Deployment

Concurrent execution API to target embedded multicore platforms
Semaphore and mutex code replacement for multicore target environments

Embedded Coder software now provides Simulink code replacement support for the following
semaphore and mutex operations.
Mutex Destroy
Mutex Init
Mutex Lock
Mutex Unlock
Semaphore Destroy
Semaphore Init
Semaphore Post
Semaphore Wait

Semaphore and mutex code replacement is supported for:

• Simulink code generation for data transfer between tasks
• Code generation targets

Semaphore and mutex code replacement is not supported for:

• Stateflow charts, MATLAB Function blocks, and MATLAB functions
• Simulation targets

For more information, see Map Semaphore or Mutex Operations to Target-Specific Implementations.

Hardware timer function replacement

You can create a hardware-specific timer object for SIL and PIL simulations with your hardware
target. See Specification of hardware timer through the Code Replacement Tool in “Code execution
profiling improvements” on page 22-16.

Hardware configuration relocation from Target Preferences block to
Configuration Parameters dialog box
The contents of the Target Preferences block have been relocated to the new Target Hardware
Resources tab on the Coder Target pane in the Configuration Parameters dialog box.

 Deployment

22-9

https://www.mathworks.com/help/releases/R2013a/ecoder/ug/create-code-replacement-tables.html#bts61yy-1

The Target Preferences block has been removed from the Embedded Targets block library.

If you open a model that contains a Target Preferences block, a warning instructs you that the block
is optional and can be removed from your model.

Opening the Target Preferences block automatically displays the Target Hardware Resources tab.

For instructions on how to use Target Hardware Resources to build and run a model on target
hardware, see Model Setup.

For information about specific parameters and settings, see Code Generation: Coder Target Pane.

Downloadable support and blocks for Analog Devices DSPs
If you have an Embedded Coder license, you can install support for Analog Devices VisualDSP++ IDE
and DSPs as described in Install Support for Analog Devices DSPs. Support for Analog Devices
VisualDSP++ IDE and DSPs includes the same capabilities that were previously available.

R2013a

22-10

https://www.mathworks.com/help/releases/R2013a/ecoder/ug/model-setup.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ref/code-generation-pane-ide-link.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/install-support-for-analog-devices-dsps.html

Use the “Embedded Coder Support Package for Analog Devices DSPs” block library to manage
peripherals, scheduling, and memory on Blackfin®, SHARC®, and TigerSHARC™ DSPs.

To get these capabilities, in a MATLAB Command Window, enter supportPackageInstaller. Then,
use Support Package Installer to install the support package for Analog Devices DSPs. For more
information, see the Working with Analog Devices VisualDSP++ IDE topic.

After installing the support package, you can open the block library. In the MATLAB Command
Window, enter adivdsplib. The “Embedded Coder Support Package for Analog Devices DSPs” block
library is also available in the Simulink Library Browser.

Compatibility Considerations
Previously, installing Embedded Coder software automatically installed support and blocks for Analog
Devices DSPs. Effective this release, you must use Support Package Installer to install support before
using Embedded Coder with Analog Devices DSPs.

Texas Instruments C2000 Clocking Options
In the Configuration Parameters dialog box, on the Peripherals tab, the new Clocking options help
you to configure different timers that you use in the processor peripherals.

• The high-speed and low-speed clock settings help you to configure the baud rates for peripherals,
such as SCI and SPI.

• You can specify the oscillator clock frequency used in the processor to set the system clock out
parameter for the device. Based on the system clock out value, you can get feedback on the baud
rate and the time settings.

 Deployment

22-11

https://www.mathworks.com/help/releases/R2013a/ecoder/ref/supportpackageinstaller.html
https://www.mathworks.com/help/releases/R2013a/ecoder/working-with-analog-devices-visualdsp-ide.html

• Automatic setting of the prescalers is done based on user-defined baud rate for peripherals, such
as SCI and SPI.

• Based on the settings that you make in the Clocking peripheral, you can see the timing-related
feedback for the peripherals, such as eCAN, I2C, ADC, and Watchdog.

• The parameter relationship is shown at the prompts in some of the peripherals. For example, in
eCAN, at the baud rate parameter, you can see, CAN Module Clock/BRP/(TSEG1+TSEG2+1)) in
bits/sec.

Support for Texas Instruments C2802x and Texas Instruments C2803x
variants
You can now run models on the following variants of TI C2802x and TI C2803x processors:

• F28030
• F28031
• F28032
• F28033_cpu
• F28034
• F280200
• F28020
• F28021
• F28022
• F28026

You can use the following block libraries with these variants:

• C2802x (c2802xlib)
• C2803x (c2803xlib)

Downloadable support and blocks for Xilinx Zynq-7000 platform
Use the Embedded Coder Support Package for Xilinx Zynq-7000 Platform to automatically build
(makefile-based), download, and run an executable on the Xilinx Zynq-7000 SoC ZC702 Evaluation
Kit. The executable runs in the Linux environment on the ARM Cortex-A9 processor on the ZC702
Evaluation Kit.

Use blocks from the Embedded Coder Support Package for Xilinx Zynq-7000 Platform block library:

• The UDP Receive and UDP Send blocks enable communication with networked devices using an
Ethernet port.

• The Linux Task block spawns a task function as separate Linux thread.

To download and install this feature, click Add-Ons > Get Hardware Support Packages on the
MATLAB toolstrip. Then, use Support Package Installer to install the Embedded Coder Support
Package for Xilinx Zynq-7000 Platform. For more information, see the Working with the Xilinx
Zynq-7000 Platform topic.

R2013a

22-12

https://www.mathworks.com/help/releases/R2013a/ecoder/c2802x-c2802xlib.html
https://www.mathworks.com/help/releases/R2013a/ecoder/c2803x-c2803xlib.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ref/udpreceive.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ref/udpsend.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ref/linuxtask.html
https://www.mathworks.com/help/releases/R2013a/ecoder/working-with-xilinx-zynq-7000-platform.html
https://www.mathworks.com/help/releases/R2013a/ecoder/working-with-xilinx-zynq-7000-platform.html

Support ending for Eclipse IDE in a future release
Support for the Eclipse IDE will end in a future release of the Embedded Coder and Simulink Coder
products.

Support ending for remoteBuild method in a future release
Support for the remoteBuild method will end in a future release of the Embedded Coder products.

Compatibility Considerations
Use Support Package Installer to install the support package for BeagleBoard hardware, as described
in Install Support for BeagleBoard Hardware. Then, use the Simulink capability called “Run on Target
Hardware” instead of remoteBuild to build and run models on BeagleBoard hardware.

For more information about using Run on Target Hardware with BeagleBoard, see the BeagleBoard
topic.

 Deployment

22-13

https://www.mathworks.com/help/releases/R2013a/ecoder/ref/remotebuild.html
https://www.mathworks.com/help/releases/R2013a/simulink/ug/install-target-for-beagleboard-hardware.html
https://www.mathworks.com/help/releases/R2013a/simulink/beagleboard.html

Performance

Optimized function arguments for nonreusable subsystems
For nonreusable subsystems, you can specify the function interface in the generated code to use
arguments. This specification reduces global RAM. It might reduce code size and improve execution
speed, and allow the code generator to apply additional optimizations.

To optimize the function interface for a subsystem, in the Subsystem Block Parameter dialog box, on
the Code Generation tab, set the Function packaging parameter to Nonreusable function
(previously, named Function). The Function packaging parameter enables the Function
interface parameter. Set the Function interface parameter to Allow arguments.

For more information, see Function interface and Reduce Global Variables in Nonreusable Subsystem
Functions.

Reduced data copies for tunable parameter expressions
Previously, in the generated code, tunable parameter expressions were copied to a temporary
variable. In R2013a, the generated code removes this temporary variable. The removal of this
unnecessary data copy improves execution speed, reduces code size and global RAM, and allows for
additional code optimizations.

For example, for a tunable parameter, b, used in a Constant block, the code was:

/*Constant: '<Root>/Constant'*/
for (i=0; i<9; i++){
 tunable_expr_copy_B.Constant[i] = Param.b[i];
}
/*End of Constant: '<Root>/Constant'*/

/*S-Function(MySFun2D): '<Root>/S-Function Builder'*/
MySFun2D_Outputs_wrapper(tunable_expr_copy_B.Constant);

Now, the generated code is:

/*S-Function(MySFun2D): '<Root>/S-Function Builder'*/
MySFun2D_Outputs_wrapper(Param.b);

Removal of unused global variables
In R2013a, unused global variables generated from a For Each subsystem and bitfields are removed.
This code generation enhancement reduces global RAM.

R2013a

22-14

https://www.mathworks.com/help/releases/R2013a/simulink/slref/codereusesubsystem.html#btqa3p_-1
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/specify-function-arguments-to-reduce-memory-usage.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/specify-function-arguments-to-reduce-memory-usage.html

Verification

Debugging during SIL simulations
If you notice differences between the results of a Normal mode simulation and a SIL mode simulation,
you can select the Configuration Parameters > Verification > Enable source-level debugging
for SIL check box and rerun the SIL simulation. Then, from the Microsoft Visual Studio IDE, you can
insert break points in the generated source code and step through the code during the SIL
simulation. Observing code behavior in this way can help you to understand the differences in results.
For example, when you are trying to integrate legacy code with generated code and the integration
does not run as expected.

For more information, see Debugging During SIL Simulations.

Simulation of multiple SIL Model blocks in a top model
If you have a top model containing Model blocks, you can simulate the model with multiple Model
blocks in SIL mode. Previously, you could not simulate the top model with more than one Model block
in SIL mode. To verify the different Model blocks, you had to run multiple simulations. Before each
simulation, you had to specify the SIL mode for one Model block. The removal of this limitation
reduces verification time.

If you specify code coverage or code execution profiling, the software does not support this feature.

API for testing rtiostream communications
To run PIL or External mode simulations with custom hardware, you write your own rtiostream
implementations.

R2013a provides a test suite to debug and prove the behavior of custom rtiostream interface
implementations.

This new API has the following advantages:

• Reduces time for integrating custom hardware that does not have built-in rtiostream support.
• Reduces time for testing custom rtiostream drivers.
• Helps analyze the performance of custom rtiostream drivers.

This test suite has two parts. One part of the test suite runs on the target.

To launch this part, compile and link the following files, which are in matlabroot/toolbox/coder/
rtiostream/src/rtiostreamtest.

• rtiostreamtest.c
• rtiostreamtest.h
• rtiostream.h
• rtiostream implementation under investigation (e.g., rtiostream_tcpip.c)
• main.c

To run the second part of the test suite, invoke rtiostreamtest. The syntax is as follows:

 Verification

22-15

https://www.mathworks.com/help/releases/R2013a/ecoder/ug/debugging-during-sil-simulations.html

function rtiostreamtest(connection,param1,param2)

• connection is a string indicating the communication method. It can have values 'tcp' or
'serial'.

• param1 and param2 have different values depending on the value of connection.

• If connection is 'tcp': param1,param2 are hostname and port, respectively.
• If connection is 'serial': param1,param2 are COM port and baud rate, respectively.

For example, you can run the second part of the test suite as follows:

function rtiostreamtest('tcp','localhost','2345')

SIL and PIL support for targets with multicore processors
R2013a allows you to run SIL and PIL simulations of models that are configured for targets with
multicore processors:

• You can run SIL and PIL simulations of single-rate component models in a concurrent execution
model hierarchy, without modifying models or regenerating code.

• Previously, the configuration parameters, TargetOS and ConcurrentTasks, had to be the same
across a model hierarchy. This restriction has been removed.

Additional code annotation for justifying Polyspace checks
New Polyspace code annotations have been added to justify occurrences of << and + inside fixed-
point multiplication helper functions.

For more information, see Code Annotation for Justifying Polyspace Checks.

Code execution profiling improvements
Comprehensive measurement and reporting of function execution times

R2013a provides comprehensive measurement and reporting of function execution times:

• The software measures execution times for initialization, shared utility and math library functions.
• The software inserts instrumentation probes around a function call site so that the measured time

includes the time taken to call the function. Previously, the software inserted instrumentation
probes inside the function. As a result, the measured time represented the execution time for only
the function body.

• You can specify the time unit and numeric format for the time measurements in the code execution
profiling report. Previously, the software reported execution times only in clock ticks. For
information about the new default specifications for time unit and numeric format, see report.

• The code execution profiling report contains hyperlinks to function call sites in the SIL/PIL test
harness. Previously, the report provided hyperlinks to only source code files generated from the
model.

For more information, see Code Execution Profiling.

R2013a

22-16

https://www.mathworks.com/help/releases/R2013a/ecoder/ug/code-annotation-for-justifying-polyspace-checks-1.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ref/report.html
https://www.mathworks.com/help/releases/R2013a/ecoder/code-execution-profiling.html

Viewing and comparing execution time plots with the Simulation Data Inspector

You can use the Simulation Data Inspector to view and compare plots of function execution times. If
you select All measurement and analysis data from the Configuration Parameters > Code
Generation > Verification > Save options drop-down list, the software automatically imports SIL
simulation results into the Simulation Data Inspector. This feature allows you to plot execution times
and manage and compare plots from various simulations.

For more information, see Configure Code Execution Profiling and View and Compare Code Execution
Times.

Specification of hardware timer through the Code Replacement Tool

In SIL and PIL simulations, if your hardware target does not have built-in timer support, you must
create a timer object that provides details of the hardware-specific timer and associated source files.
In R2013a, you can specify this hardware-specific timer using either the graphical user interface of
the Code Replacement Tool or the corresponding command line API. The software stores the timer
information as a Code Replacement Library (CRL) table.

Previously, you could specify the timer using the MATLAB function coder.profile.Timer.
However, support for this function will cease in a future release.

For more information, see Specify Hardware Timer.

Code-to-model traceability links for reusable subsystems in libraries
Code-to-model traceability links are now available in the generated code for a reusable library
subsystem. Code-to-model traceability links for a reusable library subsystem appear in the comments
of the generated code in the code generation report. The traceability link is the name of the library.

 Verification

22-17

https://www.mathworks.com/help/releases/R2013a/ecoder/ug/configuring-code-execution-profiling.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/view-and-compare-code-execution-times.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/view-and-compare-code-execution-times.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/creating-a-connectivity-configuration-for-a-target.html#btsl_3g

To include traceability links in the generated code comments, see Traceability in Code Generation
Report.

R2013a

22-18

https://www.mathworks.com/help/releases/R2013a/ecoder/ug/generate-an-html-code-generation-report.html
https://www.mathworks.com/help/releases/R2013a/ecoder/ug/generate-an-html-code-generation-report.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

22-19

https://www.mathworks.com/support/bugreports/

R2012b

Version: 6.3

New Features

Bug Fixes

Compatibility Considerations

23

Cyclomatic complexity measurement in static code metrics report
In R2012b, the static code metrics report includes a cyclomatic complexity measurement for each
function. You can view the measurement in the Complexity column of the Function Information
table. For more information, see Analyze Static Code Metrics.

Custom code substitution for MATLAB functions using code
replacement libraries
The coder.replace function provides the ability to replace a specified MATLAB function with a
code replacement library (CRL) function in the generated code. You can use coder.replace both in
MATLAB code from which you want to generate C code using MATLAB Coder and in MATLAB code in
a MATLAB Function block. For more information, see coder.replace, Replace MATLAB Function
with Custom Code, and Replace MATLAB Function Block Code with Custom Code.

In addition, you can use the code replacement tool to create and register code replacement tables.
These tables provide the basis for replacing default math functions and operators in your generated
code with target-specific code. The ability to control function and operator replacements potentially
allows you to optimize target speed and memory and better integrate generated code with external
and legacy code.

Access the code replacement tool using one of these methods:

• At the MATLAB command line, enter:

crtool
• On the MATLAB Coder Project Settings dialog box Hardware tab, click the Custom link.

For more information, see Create Code Replacement Table for a Sample MATLAB Coder Project.

SIL and PIL support for signal logging, encapsulated C++, and
AUTOSAR calibration parameters
Beginning in R2012b, Embedded Coder software supports using Simulink signal logging,
encapsulated C++ code, and AUTOSAR calibration parameters in SIL and PIL mode simulations.

Signal logging for SIL and PIL simulations

In R2012b, Simulink signal logging is extended to the SIL and PIL simulation modes. This allows you
to:

• Collect signal logging outputs (e.g., logsout) during SIL and PIL simulations.
• Log the internal signals and the root-level outputs of a SIL or PIL component.
• Manage the SIL and PIL signal logging settings using the Simulink Signal Logging Selector.
• More easily compare logged signals between normal, SIL, and PIL simulations, for example, using

Simulation Data Inspector.

Signal logging is supported with the following forms of SIL and PIL simulation:

• Top-model SIL or PIL
• Model block (referenced model) SIL or PIL

R2012b

23-2

https://www.mathworks.com/help/releases/R2012b/ecoder/ug/analyze-static-code-metrics-of-the-generated-code.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/coder.replace.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ug/replace-matlab-function-with-custom-code.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ug/replace-matlab-function-with-custom-code.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ug/replace-matlab-function-block-code-with-custom-code.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ug/manage-crts-with-the-code-replacement-tool.html#btmad5b-1

SIL or PIL signal logging requires the following model configuration settings:

• On the Data Import/Export pane of the Configuration Parameters dialog box, set Signal logging
format to Dataset.

• On the Code Generation > Interface pane of the Configuration Parameters dialog box, set
Interface to C API.

Use SIL and PIL simulations to verify encapsulated C++ code

Previously, you could use SIL and PIL simulations to verify code generated with the model
configuration Language setting C or C++. Beginning with R2012b, you can also use the Language
setting C++ (Encapsulated).

Encapsulated C++ code is supported with the following forms of SIL and PIL simulation:

• SIL or PIL block
• Top-model SIL or PIL
• Model block (referenced model) SIL or PIL

Improved SIL and PIL verification for AUTOSAR-compliant code

The following forms of SIL and PIL simulation support AUTOSAR calibration parameters in generated
code:

• SIL or PIL block
• Top-model SIL or PIL

You can use the calibration parameter custom storage classes CalPrm and InternalCalPrm to
reference data.

AUTOSAR 4.0 nonscalar data support
R2012b extends Embedded Coder support for using nonscalar data in models from which AUTOSAR
4.0 compatible code is generated. Previously, you could use nonscalar data associated with port
elements, calibration parameters, and per-instance memory. Beginning in R2012b, you also can use
nonscalar inter-runnable variables (IRVs) in models configured for AUTOSAR.

For information about other AUTOSAR-related enhancements and changes, see “AUTOSAR software
component import and export enhancements” on page 23-7.

Code annotation for justifying Polyspace checks
You can apply Polyspace verification to generated code using the Polyspace Model Link™ SL product.
The software detects run-time errors in the generated code. It also helps you to locate and fix model
faults.

Because of the way Embedded Coder implements certain operations, Polyspace might indicate
potential overflows for operators or operations that are actually legitimate.

Previously, you manually justified the associated orange checks in the Polyspace verification
environment.

 Check bug reports for issues and fixes

23-3

Now, if you select the new check box, Configuration Parameters > Code Generation >
Comments > Auto generate comments > Operator annotations, the Embedded Coder software
annotates the generated code with comments for Polyspace. When you run a Polyspace verification,
the Polyspace software uses the comments to justify overflows associated with legitimate operations
and assigns the Not a Defect classification to the corresponding checks.

For more information, see Code Annotation for Justifying Polyspace Checks.

Texas Instruments Code Composer Studio IDE 5.1 support
This release adds support for version 5.1 of the Texas Instruments Code Composer Studio IDE (CCS)
to existing support for CCS versions 3.3 and 4.1.

Support for CCS version 5.1 includes the following capabilities:

• Automatic creation of makefile projects
• Support for DSP/BIOS™ version 5.41.xx
• Support for C6000 Compiler version 7.3.x

For more information, see Working with Texas Instruments Code Composer Studio IDE.

External mode support for ERT targets with static main
Previously, Embedded Coder software supported External mode for ERT targets only if the associated
main program was automatically generated by the model build process. Beginning in R2012b, the
software also supports External mode for ERT targets with a static main program. Specifically, the
static main file matlabroot/rtw/c/src/common/rt_main.c has been enhanced to support
External mode.

If you have authored a custom ERT-based target, you can support External mode with your custom
main program by updating your main program, using the code in rt_main.c as an example.

Downloadable support for Green Hills MULTI
If you have an Embedded Coder license, you can install support for Green Hills MULTI IDE (MULTI)
as described in Install Support for Green Hills MULTI IDE. Support for MULTI includes the same
capabilities that were previously available.

After installing support for MULTI, you can use the “Target for Use with Green Hills MULTI IDE”
block library, located in the Simulink Library Browser. You can open this block library by entering
idelinklib_ghsmulti in the MATLAB Command Window.

The block library contains blocks for:

• Analog Devices Blackfin processors

• Memory Allocate
• Memory Copy
• Blackfin Hardware Interrupt
• Idle Task

R2012b

23-4

https://www.mathworks.com/help/releases/R2012b/ecoder/ug/code-annotation-for-justifying-polyspace-checks-1.html
https://www.mathworks.com/help/releases/R2012b/ecoder/working-with-texas-instruments-code-composer-studio-ide.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ug/install-support-for-green-hills-multi-ide.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/memoryallocate.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/memorycopy.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/blackfinhardwareinterrupt.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/idletask.html

• Freescale MPC55xx and MPC74xx processors

• Memory Allocate
• Memory Copy
• Idle Task
• MPC5500 Interrupt
• MPC7400 Hardware Interrupt

Compatibility Considerations
Previously, Embedded Coder software included support for MULTI. Now, use Target Installer to install
support before using Embedded Coder with MULTI.

Support for Texas Instruments C2806x processors
This release adds support for Texas Instruments C2806x processors to Embedded Coder.

This support adds the C2806x (c2806xlib) block library to the Simulink Library Browser. The C2806x
block library includes the following blocks:

• C2802x/C2803x/C2806x ADC
• C2802x/C2803x/C2806x AnalogIO Input
• C2802x/C2803x/C2806x AnalogIO Output
• C28x CAN Calibration Protocol
• C2802x/C2803x/C2806x COMP
• C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO Digital Input
• C280x/C2802x/C2803x/C2806x/C28x3x/c2834x GPIO Digital Output
• C28x I2C Receive
• C28x I2C Transmit
• C28x SCI Receive
• C28x SCI Transmit
• C28x SPI Receive
• C28x SPI Transmit
• C28x Software Interrupt Trigger
• C28x Watchdog
• C28x eCAN Receive
• C28x eCAN Transmit
• C28x eCAP
• C280x/C2802x/C2803x/C2806x/C28x3x/c2834x ePWM
• C28x eQEP

For more information, see C2806x (c2806xlib).

 Check bug reports for issues and fixes

23-5

https://www.mathworks.com/help/releases/R2012b/ecoder/ref/memoryallocate.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/memorycopy.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/idletask.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/mpc5500interrupt.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/mpc7400hardwareinterrupt.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xadc.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xanalogioinput.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xanalogiooutput.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xcancalibrationprotocol.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c2802xc2803xc2806xcomp.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c280xc2802xc2803xc2806xc28x3xc2834xgpiodigitalinput.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c280xc2802xc2803xc2806xc28x3xc2834xgpiodigitaloutput.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xi2creceive.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xi2ctransmit.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xscireceive.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xscitransmit.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xspireceive.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xspitransmit.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xsoftwareinterrupttrigger.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xwatchdog.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xecanreceive.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xecantransmit.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xecap.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c280xc2802xc2803xc2806xc28x3xc2834xepwm.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/c28xeqep.html
https://www.mathworks.com/help/releases/R2012b/ecoder/c2806x-c2806xlib.html

Performance enhancement of Simulink data objects
In R2012b, Simulink can create and load subclasses of Simulink data classes more efficiently. To take
advantage of this enhancement, use the setupCoderInfo method to configure the CoderInfo
object of your class. The setupCoderInfo method is called once during object construction.

Consider the example of the ECoderDemos.Parameter class. Previously, this class was defined as
follows. Notice how the CoderInfo object is configured in the class constructor.
classdef Parameter < Simulink.Parameter
% ECoderDemos.Parameter Class definition.

 methods
 function h = Parameter(optionalValue)
 % Use custom storage classes from this package
 useLocalCustomStorageClasses(h, 'ECoderDemos');

 % Set up object to use custom storage classes by default
 h.CoderInfo.StorageClass = 'Custom';

 % Initialize Value property
 switch nargin
 case 0,
 % No action
 case 1,
 h.Value = optionalValue;
 end
 end
 end % methods
end % classdef

In this release, the ECoderDemos.Parameter class is defined as follows. Notice the use of the
setupCoderInfo method to configure the CoderInfo object. The rest of the constructor method is
unchanged.

Note You can access this class definition at matlabroot/toolbox/rtw/targets/ecoder/
ecoderdemos/dataclasses/+ECoderDemos/@Parameter/Parameter.m.

classdef Parameter < Simulink.Parameter
% ECoderDemos.Parameter Class definition

 methods
 function setupCoderInfo(h)
 % Use custom storage classes from this package
 useLocalCustomStorageClasses(h, 'ECoderDemos');

 % Set up object to use custom storage classes by default
 h.CoderInfo.StorageClass = 'Custom';
 end

 function h = Parameter(optionalValue)
 % Initialize Value property
 switch nargin
 case 0,
 % No action
 case 1,
 h.Value = optionalValue;
 end
 end
 end % methods
end % classdef

R2012b

23-6

AUTOSAR software component import and export enhancements
R2012b adds AUTOSAR workflow improvements, including import validation and faster import and
export of arxml files. See also “AUTOSAR 4.0 nonscalar data support” on page 23-3.

Import validation

Beginning in R2012b, the AUTOSAR software component importer validates the XML in the imported
arxml files. If XML validation fails for a file, the importer displays errors. For example:

Error
The IsService attribute is undefined for interface /mtest_pkg/mtest_if/In1
in file hArxmlFileErrorMissingIsService_SR_3p2.arxml:48.
Specify the IsService attribute to be either true or false

In this example message, the file name is a hyperlink, and you can click the hyperlink to see the
location of the error in the arxml file.

Faster import and export of arxml files

Beginning in R2012b, Embedded Coder software provides up to 20 times faster import and export of
AUTOSAR software component descriptions.

Explicit access mode for AUTOSAR Sender and Receiver ports

Previously, the AUTOSAR software component importer did not support explicit data access modes
for AUTOSAR component Sender and Receiver ports. It issued a warning for an explicit data access
mode and set the port data access mode to implicit. Beginning in R2012b, the importer analyzes the
AUTOSAR software component to determine whether the data access mode for a port is implicit or
explicit. The importer honors an explicit access mode setting. However, if conflicting data access
modes are detected, the importer issues a warning and sets the data access mode to implicit.

Import port-based calibration parameters

The AUTOSAR software component importer has been enhanced to import any port-based calibration
parameters referenced in the AUTOSAR software component. For each imported parameter, the
importer creates a data object in the MATLAB base workspace.

Highlight virtual blocks in model Web view of code generation report
In the model Web view of the code generation report, when tracing between the model and the code,
if you click a virtual block and no code is highlighted in the generated code pane, the virtual block is
highlighted yellow.

Code Execution Profiling Improvements
Updated Code Execution Profiling API

The existing code execution profiling APIs, rtw.pil.ExecutionProfile and
rtw.pil.ExecutionProfileSection, have been replaced with coder.profile.ExecutionTime and
coder.profile.ExecutionTimeSection respectively.

 Check bug reports for issues and fixes

23-7

Compatibility Considerations
The old class names and methods forward to the corresponding new class names and methods. A
warning is not issued. The old method names are hidden and no longer documented.

New Properties and Methods

The following new methods and properties have been added:

Interface Method or Property
coder.profile.Timer coder.profile.Timer
coder.profile.ExecutionTime display

Sections
TimerTicksPerSecond
report

coder.profile.ExecutionTimeSection ExecutionTimeInTicks
 MaximumExecutionTimeCallNum
 MaximumExecutionTimeInTicks
 MaximumSelfTimeCallNum
 MaximumSelfTimeInTicks
 Name
 Number
 NumCalls
 SampleOffset
 SamplePeriod
 SelfTimeInTicks
 TotalExecutionTimeInTicks
 TotalSelfTimeInTicks

Functionality Being Removed or Changed

The following functionality is being removed or changed:

Functionality What Happens When You
Use This Functionality?

Use This Instead Compatibility
Considerations

rtw.connectivity.Timer Call is forwarded to
coder.profile.Timer without
warning message.

coder.profile.Timer All methods are the
same as
rtw.connectivity.Timer.

rtw.pil.ExecutionProfile.displ
ay

Call is forwarded to
coder.profile.Execution‐
Time.display without
warning message.

display None

R2012b

23-8

https://www.mathworks.com/help/releases/R2012b/ecoder/ref/coder.profile.timer.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/display.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/sections.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/timertickspersecond.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/report.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/executiontimeinticks.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimecallnum.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimeinticks.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumselftimecallnum.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumselftimeinticks.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/name.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/number.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/numcalls.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleoffset.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleperiod.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/selftimeinticks.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalexecutiontimeinticks.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalselftimeinticks.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/coder.profile.timer.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/display.html

Functionality What Happens When You
Use This Functionality?

Use This Instead Compatibility
Considerations

rtw.pil.ExecutionProfile.repo
rt

Call is forwarded to
coder.profile.Execution‐
Time.report without
warning message.

report None

rtw.pil.ExecutionProfile.getS
ectionProfile

rtw.pil.ExecutionProfile.getN
umSectionProfiles

Call is forwarded to
coder.profile.Execution‐
Time.Sections without
warning message.

Sections Uses property syntax

rtw.pil.ExecutionProfile.getTi
merTicksPerSecond

rtw.pil.ExecutionProfile.setTi
merTicksPerSecond

Calls are forwarded to
property
coder.profile.Execution‐
Time.TimerTicksPerSecond
without warning message.

TimerTicksPerSecond Uses property syntax

rtw.pil.ExecutionProfile‐
Section.getMaxTicks

Call is forwarded to
coder.profile.Execution‐
TimeSection.Maximum‐
ExecutionTimeInTicks
without warning message.

MaximumExecution‐
TimeInTicks

Uses property syntax

rtw.pil.ExecutionProfile‐
Section.getName

Call is forwarded to
coder.profile.Execution‐
TimeSection.Name without
warning message.

Name Uses property syntax

rtw.pil.ExecutionProfile‐
Section.getNumCalls

Call is forwarded to
coder.profile.Execution‐
TimeSection.NumCalls
without warning message.

NumCalls Uses property syntax

rtw.pil.ExecutionProfile.getS
ectionNumber

Call is forwarded to
coder.profile.Execution‐
Time.Number without
warning message.

Number Uses property syntax

rtw.pil.ExecutionProfile‐
Section.getTicks

Call is forwarded to
coder.profile.Execution‐
TimeSection.Execution‐
TimeInTicks without
warning message.

ExecutionTimeInTicks Uses property syntax

rtw.pil.ExecutionProfile.getTi
mes

Call is forwarded to the
legacy getTimes function
without warning message.

Calculate execution time
in seconds by the formula
ExecutionTimeInSecs =
ExecutionTimeInTicks /
TimerTicksPerSecond.

No equivalent to
getTimes in new
interface.

rtw.pil.ExecutionProfile‐
Section.getTotalTicks

Call is forwarded to
coder.profile.Execution‐
TimeSection.TotalExecution
TimeInTicks without
warning message.

TotalExecution‐
TimeInTicks

Uses property syntax

 Check bug reports for issues and fixes

23-9

https://www.mathworks.com/help/releases/R2012b/ecoder/ref/report.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/sections.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/timertickspersecond.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimeinticks.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/maximumexecutiontimeinticks.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/name.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/numcalls.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/number.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/executiontimeinticks.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalexecutiontimeinticks.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalexecutiontimeinticks.html

Functionality What Happens When You
Use This Functionality?

Use This Instead Compatibility
Considerations

rtw.pil.ExecutionProfile‐
Section.getSampleOffset

Call is forwarded to
coder.profile.Execution‐
TimeSection.SampleOffset
without warning message.

SampleOffset Uses property syntax

rtw.pil.ExecutionProfile‐
Section.getSamplePeriod

Call is forwarded to
coder.profile.Execution‐
TimeSection.SamplePeriod
without warning message.

SamplePeriod Uses property syntax

rtw.pil.ExecutionProfile‐
Section.getTotalSelfTicks

Call is forwarded to
coder.profile.Execution‐
TimeSection.TotalSelf‐
TimeInTicks without
warning message.

TotalSelfTimeInTicks Uses property syntax

Code Execution Profiling Supports Single Object Output

Code execution profiling during a SIL or PIL simulation honors the Save simulation output as a
single object setting.

If the Measure task execution time check box is selected in the Verification pane and the Save
simulation output as a single object check box is selected in the Data Import/Export pane, then
the Workspace variable defined in the Verification pane is saved in the single output object instead
of in the base workspace.

Incremental Compilation with Changes in Code Coverage Settings
If only code coverage settings have changed and the generated code is otherwise up to date, code is
not regenerated. Instead, the existing up-to-date code is recompiled using the new code coverage
settings.

R2012b

23-10

https://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleoffset.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/sampleperiod.html
https://www.mathworks.com/help/releases/R2012b/ecoder/ref/totalselftimeinticks.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

23-11

https://www.mathworks.com/support/bugreports/

R2012a

Version: 6.2

New Features

Bug Fixes

Compatibility Considerations

24

AUTOSAR Enhancements
AUTOSAR Release 4.0

R2012a supports AUTOSAR Release 4.0 (version 4.0.2), which includes:

• Import and export of AUTOSAR R4.0 XML files
• Generation of AUTOSAR R4.0 code
• Support for application and implementation data types and base types. For more information, see

Data Type Support for Release 4.0.
• Code replacement library (CRL) support for over 300 routines from the following AUTOSAR

libraries:

• Floating-Point Math (AUTOSAR_SWS_MFLLibrary)
• Fixed-Point Math (AUTOSAR_SWS_MFXLibrary)

Support for Schema 2.0 Removed

Support for AUTOSAR schema version 2.0 has been removed from R2012a. The software now
supports the following schema versions:

• 4.0 (4.0.2)
• 3.2 (3.2.1)
• 3.1 (3.1.4) — Default
• 3.0 (3.0.2)
• 2.1 (XSD rev 0017)

Code Efficiency Enhancements
For Each Subsystem Loop Bound Passed by Value

The generated code of the For Each subsystem includes a loop bound that was previously passed by a
pointer. In R2012a, the loop bound is passed by value which improves memory usage and execution
speed.

For example, if you have a For Each subsystem with a Function name, myFcnVectorized, the
generated code for the function prototype is:

void myFcnVectorized(int32_T NumIters, …) {
 for (ForEach_itr = 0;
 ForEach_itr < NumIters;
 ForEach_itr++) { ...

The argument NumIters is passed by value, instead of by pointer. The function is called as follows:

myFcnVectorized(3, ...

For more information, see For Each Subsystem.

Fully Inlined S-functions from Legacy Code Tool

The Legacy Code Tool now automatically generates fully inlined S-functions for legacy code.
Previously, the generated code included an unnecessary data copy for the function-call input. In

R2012a

24-2

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsa24_3-1.html#btc1dbl
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bq26cja-1
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/foreachsubsystem.html

R2012a, these temporary variables are no longer generated. This enhancement reduces memory
usage and improves execution speed, as well as enabling other optimizations and a consistent coding
style.

For example, temporary variables, tmp and tmp_0, were used for the generated function-call input:
int32_T i;
real_T tmp[6];
real_T tmp_0[6];
for (i = 0; i < 6; i++) {
/* S-Function (rtwdemo_sfun_ndarray_add):'<S1>/rtwdemo_sfun_ndarray_add' */

array3d_add(rtb_Output1,tmp,tmp_0,1,2,3);

Now, the generated code is:
int32_T i;

/* S-Function (rtwdemo_sfun_ndarray_add):'<S1>/rtwdemo_sfun_ndarray_add' */

array3d_add(rtb_Output1, rtwdemo_lct_ndarray_ConstP.Constant_Value,
 rtwdemo_lct_ndarray_ConstP.Constant1_Value, 1, 2, 3);

For more information, see Integrate External Code Using Legacy Code Tool.

Element-Wise Operations as Inputs to Intrinsic Functions

In previous releases, element-wise operations were performed in temporary variables before being
used as inputs in an intrinsic function call. In R2012a, element-wise operations are performed within
the intrinsic function call to improve memory usage and execution speed.

For example, in previous releases when you generated code for the following MATLAB code:

function y = matrixExpand(u1, u2)
eml.varsize('u1', [4, 8, 10]);
eml.varsize('u2', [4, 8, 10]);
y = isnan(u1 + u2);

element-wise operations were stored in a temporary variable, x_data, which became the input to the
generated intrinsic function, muDoubleScalarIsNan:

for (i = 0; i <= loop_ub; i++) {
 x_data[i] = u1_data[i] + u2_data[i];
}
...
for (i = 0; i <= loop_ub; i++) {
 y_data[i] = muDoubleScalarIsNaN(x_data[i]);
}

In R2012a, the temporary variable is eliminated in the generated code and the element-wise
operations occur in the function call input:

for (i = 0; i <= loop_ub; i++) {
 y_data[i] = muDoubleScalarIsNaN(u1_data[i] + u2_data[i]);
}

Enhancements to Custom Storage Classes in Simulink and mpt
Packages
In this release, enhancements have been made to the following custom storage classes (CSCs) in the
Simulink package.

 Check bug reports for issues and fixes

24-3

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bq4fyia.html

• Owner property added to Const, Volatile, ConstVolatile, ExportToFile
• Definition file property added to Const, Volatile, ConstVolatile, ExportToFile
• Header file property added to Const, Volatile, ConstVolatile, Define

The following enhancements have been made to CSCs in the mpt package

• Owner property has been added to ExportToFile
• Settings for the Owner and Definition file properties for Global, Custom, Volatile, and

ConstVolatile CSCs have been moved from the Other Attributes tab to the General tab of
the Custom Storage Class Designer.

Code Generation Report Includes Simulink Web View
R2012a supports integration of the Simulink Web view into the code generation report. You can view
the generated code and model in a single web browser window without MATLAB and Simulink
installed on your computer.

To generate a code generation report with the model Web view, on the Code Generation > Report
pane of the model configuration parameters, select:

• Create code generation report
• Generate model Web view
• Open report automatically (optional)

For navigation between the generated code and the model in the Web view, select

• Code-to-model
• Model-to-code

For more information, see Include Model Web View in HTML Code Generation Report. The model
Web view requires a Simulink Report Generator license.

LDRA Testbed Code Coverage Annotations in Code Generation Report
If you specify the LDRA Testbed code coverage tool for a SIL/PIL simulation, the code generation
report provides summary data and code annotations with LDRA Testbed coverage information. Each
code annotation is associated with a code feature and indicates the nature of the feature coverage
during code execution. See Code Coverage Summary and Annotations in Code Generation Report.

You should not use the code generation report alone to check that your coverage goals have been
achieved. You must refer to the LDRA Testbed Report. See View Code Coverage Information at the
End of SIL or PIL Simulations.

Generated Identifiers Enhancements
Simplified Identifiers for Model Reference Code

Previously, model reference identifiers were generated with the mr_ prefix. In R2012a, code
generation no longer includes the mr_ prefix to identifiers. This naming convention is now consistent
with the code generation of subsystem identifiers and other identifiers. For more information, see
Configuring Generated Identifiers.

R2012a

24-4

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/btcg4p4.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bslvigk.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bscjqhf.html#bta1320
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bscjqhf.html#bta1320
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br5qpiq.html#f1147684

Consistent Identifiers for Comparing Generated Code

To generate unique identifiers in the generated code, the code generation process inserts a mangling
string in an identifier name. Previously, the mangling string was generated using the full block path
name, which included the model name. In R2012a, the mangling string uses the Simulink Identifier
(SID), which is unique within the model. This mangling string allows for consistent identifiers for
similar or derived models, because the SID is persistent even if you change the name of the model. If
you create another model using Save As, the SID is preserved for each block. For blocks in a
subsystem, the SID is preserved whether you build the subsystem or build the model containing the
subsystem.

For example, you might want to make a structural change to a model and then see the impact of the
change on the generated code. You can save your model using Save As and make a change to the
saved model. To see only the change in the generated code due to the change in the model, you can
compare the generated code from the original and derived model. Before R2012a, the identifiers from
the derived model were different, because the mangling string included the different model names. It
was difficult to see only the difference in the generated code from the change in the model. Now,
when you compare the generated code for the two models, the difference is just the code resulting
from the change in the derived model.

If you have an Embedded Coder license, see Configure Generated Identifiers in Embedded System
Code for more information on customizing generated identifiers.

Code Replacement Enhancements
R2012a provides the following enhancements to code replacement library support.

Target Function Libraries Renamed to Code Replacement Libraries

In R2012a, target function libraries (TFLs) are renamed to code replacement libraries (CRLs). The
change is reflected in software, demos, and documentation. The changes include the following:

• The model configuration parameter Target function library (TargetFunctionLibrary) is
renamed to Code replacement library (CodeReplacementLibrary). The command line
parameter TargetFunctionLibrary is still supported, but when you save a model, the library
value is saved using the parameter CodeReplacementLibrary.

• The code replacement demo rtwdemo_tfl_script is renamed to rtwdemo_crl_script, and
the rtwdemo_tfl* models associated with the demo are renamed to rtwdemo_crl*. For
example, the model rtwdemo_tfladdsub is renamed to rtwdemo_crladdsub.

• The code replacement demo coderdemo_tfl is renamed to coderdemo_crl.
• The Target Function Library (TFL) Viewer is renamed to Code Replacement Viewer.

Code replacement related items that have not been renamed include code replacement classes,
functions, and commands. Examples include the RTW.TflCOperationEntry class, the
setTflCFunctionEntryParameters function, and the RTW.viewTfl command.

Enhanced Code Replacement Traceability

R2012a provides enhanced code replacement traceability, using the model option Summarize which
blocks triggered code replacements, which is located on the Code Generation > Report pane of
the Configuration Parameters dialog box. When you select Summarize which blocks triggered
code replacements:

 Check bug reports for issues and fixes

24-5

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/bso67hf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f1147684
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f1147684
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259j_-1.html#bq26cja-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/settflcfunctionentryparameters.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/brh9ygl-1.html#btaoq9q-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/brh9ygl-1.html#btaoq9q-1

• Code generation includes a code replacement report in the HTML code generation report for your
model.

• Code replacement trace information is generated for viewing in the Trace Information tab of the
Code Replacement Viewer.

The code replacement report lists replacement functions and their associated blocks. You can use the
report to:

• Determine which replacement functions were used in the generated code.
• Trace each replacement instance back to the Simulink block that triggered the replacement.

For more information, see Analyze Code Replacements in the Generated Code

The Trace Information tab of the Code Replacement Viewer lists Hit Source Locations and Miss
Source Locations. The Viewer provides links to each source location (the source block for which
code replacement was considered) and, for misses, lists a Miss Reason. For example, if a rounding
mode setting did not match between a CRL entry and a block, the Viewer displays a reason similar to
the following: “Mismatched rounding mode: actual 'RTW_ROUND_SIMPLEST', expected
'RTW_ROUND_CEILING'.” After generating code for your model, you can open the Code Replacement
Viewer for viewing hits and misses using the following commands:
>> crl=get_param('model','TargetFcnLibHandle')
>> RTW.viewTfl(crl)

When debugging a CRL entry, you can use code replacement report information together with hits
and misses information in the Code Replacement Viewer to determine why a replacement function
was not used in the generated code.

For more information, see Trace Code Replacements Generated Using Your Code Replacement
Library and Determine Why Code Replacement Functions Were Not Used.

Code Replacement Support for Simulink Matrix Division and Inversion Operators

Embedded Coder software now provides Simulink code replacement support for the following
nonscalar division and inversion operators:

Operator Key
Matrix right division (/) RTW_OP_RDIV
Matrix left division (\) RTW_OP_LDIV
Matrix inversion (inv) RTW_OP_INV

For more information, see Map Nonscalar Operators to Target-Specific Implementations.

Code Replacement Support for MATLAB Coder fix, hypot, round, and sign Functions

Embedded Coder software now provides MATLAB Coder code replacement support for fix, hypot,
round, and sign functions.

Integer Functions Now Return Real-World Values

The following functions now return real-world values instead of stored integer values: int8, int16,
int32, int64, uint8, uint16, uint32, and uint64.

R2012a

24-6

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/btd9an8-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bre1jn1-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bre1jn1-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bre1jow-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#br4x94h-1
https://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int8.html
https://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int16.html
https://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int32.html
https://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/int64.html
https://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint8.html
https://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint16.html
https://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint32.html
https://www.mathworks.com/help/releases/R2012a/toolbox/fixedpoint/ref/uint64.html

Compatibility Considerations
In code generation with MATLAB Coder or Simulink Coder, if you used a CRL to replace a cast in
your replacement function, silent incorrect numerical results may occur. The numerical results will
not change if the input fi object has binary-point scaling and zero fractional length. To optimize code
generation, these integer functions now use floor rounding, instead of nearest rounding, when the
input fraction length equals 0. You should reevaluate your integer cast replacement functions and
update their replacement tables.

SIL and PIL Enhancements
R2012a supports the following enhancements for software-in-the loop (SIL) and processor-in-the-loop
(PIL) simulations.

SIL and PIL Test Harness Files in Code Generation Report

For top-model and Model block SIL and PIL simulations, the software now displays test harness files
and the corresponding static code metrics in the code generation report.

 Check bug reports for issues and fixes

24-7

This feature helps you to:

• Understand and review the SIL and PIL verification process.
• See how your registered custom target connectivity files fit into the target application that runs

during a SIL or PIL simulation.

This feature is not available for simulations that you run with the PIL block. For more information,
see View Test Harness Files in Code Generation Report.

PIL Support for Code Coverage with LDRA Testbed

The target connectivity API supports code coverage with LDRA Testbed for the following types of PIL
simulation:

• Top-Model PIL
• Model block PIL

Previously, support for code coverage during a PIL simulation was only available in special cases,
where your PIL application could write directly to the host file system.

You can run PIL simulations on simulator or target hardware and collect code coverage metrics to
support high integrity workflows, for example, DO-178B and ISO 26262. For more information, see
Use a Code Coverage Tool in SIL and PIL Simulations.

Seamless Switching Between SIL and PIL for Top-Model and Model Block

If you select Configuration Parameters > SIL and PIL Verification > Enable portable word
sizes, you can switch between the SIL and PIL simulation modes without:

• Changing configuration parameters of your model
• Regenerating code (if your model is up-to-date)

This feature:

• Applies only to top-model and Model block SIL/PIL
• Requires that the code can be compiled by both the host computer and the target platform

If your target uses code that cannot be compiled on the host, then you see compilation errors when
you try to simulate the model in SIL mode. You might be able to work around this problem by adding
the source code files to the SkipForSil group in the build information object RTW.BuildInfo. The
SIL build on the host platform does not compile source files present in the SkipForSil group. See
Code that the Host Cannot Compile.

Enhanced Hardware Implementation Support
Host and Target Floating Point Data Type Sizes

The host and target floating point data type sizes must be the same. Previously, a mismatch would
produce undefined behaviour resulting in a simulation failure. Now, the software generates an error
with a clear message when the host and target data types are not:

• 32 bits for single
• 64 bits for double

For more information, seeHardware Implementation Support.

R2012a

24-8

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/btc09hd.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bscjqhf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html#btaed67
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__l-1

Word-Addressable Targets

Previously, the target connectivity API did not support word-addressable targets for PIL simulations
or SIL simulations with PortableWordSizes enabled. This limitation has been removed.

In addition, data type sizes that are smaller than the target word sizes are now supported. See
Hardware Implementation Support.

The software uses the MATLAB host byte order when sending words through the rtIOStream API.
For information about host byte ordering, see computer.

Top-Model Output Limitations Removed

Previously, in a top-model SIL/PIL simulation, not all signal and output logging fields matched the
fields produced by a Normal simulation. For example:

• With signal logging, the software would add the suffix _wrapper to the block path for signals in
logsout.

• With output logging, if the save format was Structure or Structure with time, the software
would add the suffix _wrapper to the block name for signals in yout.

These limitations are not present in R2012a, except if you do one of the following:

• Specify the signal logging format to be ModelDataLogs. In this case, yout will still contain
references to the wrapper model. You should use the Dataset signal logging format. See
Simulink.SimulationData.Dataset in the Simulink reference documentation.

• Run command line simulations using the sim command but without specifying the single-output
format. See Using the sim Command.

Model Block SIL/PIL Support for Absolute Time

Previously, you could not run a Model block in the SIL or PIL mode if the Model block contained
Simulink blocks that depended on absolute time. Now, Model block SIL/PIL supports absolute time
except for the following case: the Model block contains Simulink blocks that require absolute time
and the Model block is conditionally executed. See Configuration Parameters Support.

Changes for ERT and ERT-Based Targets
In R2012a, the simplified model call interface used by ERT targets has been further streamlined. (The
simplified call interface also is now available to GRT target users — see Simplified Call Interface for
Generated Code in the R2012a Simulink Coder Release Notes.) With the call interface enhancements
come some compatibility considerations for static ERT main program (ert_main.c) files created
before R2012a.

Compatibility Considerations
ERT Main Programs Now Include rtmodel.h Instead of autobuild.h

• In previous releases, GRT-based main programs such as grt_main.c and grt_malloc_main.c
included rtmodel.h (which includes model.h) to access model-specific data structures and entry
points. However, the static ERT main program ert_main.c included a different file,
autobuild.h.

 Check bug reports for issues and fixes

24-9

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__l-1
https://www.mathworks.com/help/releases/R2012a/techdoc/ref/computer.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/simulink.simulationdata.dataset.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f11-61836.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/rn/bs8t7oo-1.html#btbqw7s
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/rn/bs8t7oo-1.html#btbqw7s

• Beginning in R2012a, GRT and static ERT main programs include rtmodel.h. If you have a static
ERT main program created before R2012a that you want to use with R2012a generated code,
update the main program to include rtmodel.h instead of autobuild.h.

tid Argument to Model Step or Model Output/Update Function No Longer Generated As part
of streamlining the model call interface, code generation no longer generates the tid argument to
model_step or model_output/model_update functions in multirate, single-tasking models. If you
have a static ERT main program created before R2012a that you want to use with R2012a generated
code, update the main program to remove the tid argument in model function calls.

firstTime Argument to Model Initialize Function No Longer Generated As part of streamlining
the model call interface, code generation no longer generates the firstTime argument to the
model_initialize function. If you have a static ERT main program created before R2012a that you
want to use with R2012a generated code, update the main program to remove the firstTime
argument in model_initialize function calls.

Note The target configuration parameter ERTFirstTimeCompliant and the model configuration
parameter IncludeERTFirstTime will be removed from the Embedded Coder software in a future
release.

MAT-file Logging and External Mode Calls Moved from Model Code to Main Program As part
of streamlining the model call interface, some MAT-file logging and External mode calls have been
moved from the generated model code in model.c or .cpp to the main program code in
ert_main.c. MAT-file logging and External mode calls are not heavily used in production code
environments. However, if you have a static ERT main program created before R2012a that you want
to use with R2012a generated code, and if you do want to support MAT-file logging or External mode,
update the main program to add the MAT-file logging and External mode calls.

Changes for Embedded IDEs and Embedded Targets
• “Support Added for GCC 4.4 on Host Computers Running Linux with Eclipse IDE” on page 24-10
• “Support Added for Using Processor-in-the-Loop (PIL) with Serial Communication Interface (SCI)

for TI C2000 Processors” on page 24-10
• “Support Removed for Freescale MPC5xx” on page 24-11
• “Limitation: Parallel Builds Not Supported for Embedded Targets” on page 24-11

Support Added for GCC 4.4 on Host Computers Running Linux with Eclipse IDE

Embedded Coder software now supports version 4.4 of GCC on host computers running Linux with
Eclipse IDE. This support is on both 32-bit and 64-bit host Linux platforms.

If you were using an earlier version of GCC on Linux with Eclipse, upgrade to GCC 4.4.

Support Added for Using Processor-in-the-Loop (PIL) with Serial Communication Interface
(SCI) for TI C2000 Processors

You can now perform PIL simulation over a SCI interface with Texas Instruments C280x, C2802x,
C2803x, C28x3x, c2834x processors. Previously, this capability was supported only for TI C28035 and
C28335 processors.

R2012a

24-10

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/model_step.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/model_initialize.html

Support Removed for Freescale MPC5xx

This release removes support for the Freescale MPC5xx processor family from the Embedded Coder
product.

Attempting to generate code from models that contain blocks for Freescale MPC5xx hardware
produces an error message.

Limitation: Parallel Builds Not Supported for Embedded Targets

The Simulink Coder product provides an API for MATLAB Distributed Computing Server™ and
Parallel Computing Toolbox™ products. The API allows these products to perform parallel builds that
reduce build time for referenced models. However, the API does not support parallel builds for
models whose System target file parameter is set to idelink_ert.tlc or idelink_grt.tlc.
Thus, you cannot perform parallel builds for Embedded Targets.

New and Enhanced Demos
The following demos have been added in R2012a:

Demo... Shows How You Can...
rtwdemo_roll_axis Generate code for a roll axis autopilot control system. The

rtwdemo_roll model represents a basic roll axis autopilot
with two operating modes: roll attitude hold and heading
hold. rtwdemo_roll replaces rtwdemo_f14.

c28335_pmsmfoc_script Schedule a multi-rate controller for a permanent magnet
synchronous machine (PMSM) motor control application
that runs on a Texas Instruments F28335 processor. To get
this demo, use targetinstaller or
supportPackageInstaller to install the Embedded
Coder Support Package for Texas Instruments C2000
Processors.

The following demos have been enhanced in R2012a:

Demo... Now...
coderdemo_crl Reflects the renaming of target function libraries (TFLs) to

code replacement libraries (CRLs).
rtwdemo_crl_script • Reflects the renaming of target function libraries (TFLs)

to code replacement libraries (CRLs).
• Illustrates code replacement for Simulink matrix division

and inversion operators.
rtwdemo_pmsmfoc_script Added torque and position control modes to controller,

parameterized motor and sensor data, and added support
for specifying baud rate in example PIL implementation.

rtwdemo_radar Shows how to simulate and generate code for the model
rtwdemo_eml_aero_radar, which contains a MATLAB
script.

 Check bug reports for issues and fixes

24-11

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/bs61oev.html#br2mrkl-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnb76d-1.html#bssm_lo-1

Demo... Now...
rtwdemo_configuration_set Shows how to use the Code Generation Advisor and to

automate the process of configuring a model for simulation
and code generation.

R2012a

24-12

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

24-13

https://www.mathworks.com/support/bugreports/

R2011b

Version: 6.1

New Features

Bug Fixes

Compatibility Considerations

25

Static Code Metrics in Code Generation Report
The HTML code generation report now includes a static code metrics report. The static code metrics
include: number of source code files, number of lines of code, list of global variables, functions in a
call tree format, and the estimated stack size required for a function.

To generate the static code metrics report, on the Code Generation > Report pane of the
Configuration Parameters dialog box, select the Static code metrics parameter and build your
model. For more information, see Analyze Static Code Metrics of the Generated Code.

AUTOSAR Enhancements
Import and Export of AUTOSAR Sensor/Actuator Components

Embedded Coder now supports Sensor/Actuator Software Components. The key difference between a
sensor/actuator component and an application component is that a sensor/actuator component can
access the I/O hardware abstraction part within the ECU abstraction layer.

This support allows you to import sensor/actuator components, implement and test designs within
Simulink, and export sensor/actuator components. For more information, see Use the Configure
AUTOSAR Interface Dialog Box.

Improved Simulink Library Support for Multiple Runnables

Previously, Embedded Coder did not support the creation of multiple runnables from subsystems with
links to Simulink library blocks. For example, you had to disable and break links to library blocks in
order to configure and validate the subsystems as AUTOSAR runnables.

Now, the software supports the creation of multiple runnables when:

• The wrapper subsystem (containing function-call subsystems) is a link to a library block
• The function-call subsystems (within the wrapper subsystem) are links to library blocks

For more information, see Configure Multiple Runnables.

AUTOSAR Schema Version 3.2

The software now supports AUTOSAR schema version 3.2 (3.2.1). See Select an AUTOSAR Schema.

Export AUTOSAR XML as Single File

When you export an AUTOSAR Software Component, you can generate XML as either a set of files
(default) or a single file. The latter option is new. For more information, see Use the Configure
AUTOSAR Interface Dialog Box.

SIL and PIL Enhancements
R2011b supports the following enhancements for software-in-the loop (SIL) and processor-in-the-loop
(PIL) simulations.

Code Execution Profiling of Functions in Subsystems and Model Blocks

Previously, you could generate a profile of code execution times only for tasks within your generated
code (for example, the step function for a sample rate). Now, you can also produce a profile of code

R2011b

25-2

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bs43n80.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brh_0h_-3
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brh_0h_-3
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brrj__2-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnmasw.html#brsz5z2-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brh_0h_-3
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brh_0h_-3

execution times for functions generated from atomic subsystems and model reference hierarchies
within the top model. The software places instrumentation probes inside these functions and
calculates execution times during a SIL or PIL simulation. At the end of the simulation, you can view
an HTML report and analyze execution times within the MATLAB environment:

• The HTML report provides a summary of maximum and average execution times, which allows you
to identify code that requires optimization

• The supplied APIs allow you to carry out further analysis of time measurements.

For more information, see Code Execution Profiling.

Code Coverage with LDRA Testbed

You can measure code coverage using the LDRA Testbed from LDRA Software Technology. For more
information, see Code Coverage.

BitField and GetSet Custom Storage Classes

The software previously did not support the BitField and GetSet custom storage classes. Now, the
software supports these custom storage classes for all types of SIL and PIL simulations, with one
limitation. GetSet behavior for the SIL block is different from top-model SIL/PIL, Model block SIL/
PIL, and PIL block:

• SIL block — The C definitions of the Get and Set functions that you provide form part of the
algorithm under test.

• Other types of SIL/PIL — The SIL/PIL test harness automatically provides C definitions of the Get
and Set functions that are used during SIL/PIL simulations. In addition, the software supports
only scalar signals, parameters and global data stores.

For more information, see I/O Support and GetSet Custom Storage Class.

Model Blocks with Variable-Size Signals

You can run Model block SIL and PIL simulations where the Model block contains variable-size
signals. On the Simulation > Configuration Parameters > Model Referencing pane, in the
Propagate sizes of variable-size signals field, you must specify During execution. See I/O
Support.

Verification of Generated C++ Code

Previously, support for C++ was restricted to simulations with the SIL block. Now, you can verify
generated C++ code using all types of SIL and PIL:

• Top-model
• Model block
• SIL or PIL block

As before, only the SIL block supports C++ encapsulation. See Configuration Parameters Support.

 Check bug reports for issues and fixes

25-3

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bst4d2j.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsvxesb.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#bruv2ph-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1

Generate Multitasking Code for Concurrent Execution on Multicore
Processors
The Embedded Coder product extends the concurrent execution modeling capability of the Simulink
product. With Embedded Coder, you can generate multitasking code that uses POSIX threads
(Pthreads) for concurrent execution on multicore processors running Linux or VxWorks.

See Configuring Models for Targets with Multicore Processors.

Changes for Embedded IDEs and Embedded Targets
• “64-bit Version of Embedded Coder Supports Analog Devices VisualDSP++ and Texas Instruments

Code Composer Studio 3.3 and 4.0” on page 25-4
• “Support Added for Wind River VxWorks 6.8” on page 25-4
• “Support Added for Serial Communications Interface with Processor-in-the-loop (PIL) for Texas

Instruments™ C28035 and C28335” on page 25-5
• “New Target Function Library for Intel IPP/SSE (GNU)” on page 25-5
• “Support Added for Single Instruction Multiple Data (SIMD) with ARM Cortex-A8, ARM Cortex-

A9 , and Intel Processors” on page 25-5
• “Support Removed for Altium TASKING” on page 25-5
• “Support Removed for Infineon C166” on page 25-5
• “Support Ending for Green Hills MULTI in a Future Release” on page 25-6
• “Support Ending for Freescale MPC5xx in a Future Release” on page 25-6

64-bit Version of Embedded Coder Supports Analog Devices VisualDSP++ and Texas
Instruments Code Composer Studio 3.3 and 4.0

Installing MATLAB & Simulink on a 64-bit Windows computer automatically installs the 64-bit
versions of your MathWorks products, including Embedded Coder software. Now, you can use the 64-
bit version of Embedded Coder software with the following 32-bit IDEs/tool chains:

• Texas Instruments Code Composer Studio 3.3
• Texas Instruments Code Composer Studio 4.0
• Analog Devices VisualDSP++ 5.0 (update 8)

Previously, you had to install the 32-bit versions of your MathWorks products to use Embedded Coder
software with these IDEs.

For more information, see https://www.mathworks.com/hardware-support/texas-instruments.html and
https://www.mathworks.com/hardware-support/analog-devices.html.

Also, check the Texas Instruments and Analog Devices Web sites for support information about using
their tools on 64-bit Windows platforms.

Support Added for Wind River VxWorks 6.8

You can automatically generate and integrate code with the Wind River VxWorks 6.8 RTOS using
makefiles via the XMakefiles feature. For more information, see Choosing an XMakefile
Configurationand Working with Wind River VxWorks RTOS.

R2011b

25-4

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bs13l5v.html
https://www.mathworks.com/hardware-support/texas-instruments.html
https://www.mathworks.com/hardware-support/analog-devices.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv17x.html#bsyqvt1-5
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv17x.html#bsyqvt1-5
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bspewof.html

Support Added for Serial Communications Interface with Processor-in-the-loop (PIL) for
Texas Instruments™ C28035 and C28335

This release adds support for Serial Communication Interface (SCI) communications during
processor-in-the-loop (PIL) simulations with Texas Instruments™ C28035 and C28335
microcontrollers. Using SCI for PIL simulations is much faster than using an IDE debugger for PIL.

For more information, see Serial Communication Interface (SCI) for Texas Instruments C2000,
Example — Performing a Model Block PIL Simulation via SCI Using Makefiles, and the
fuelsys_pildemo.

New Target Function Library for Intel IPP/SSE (GNU)

This release adds a new Target Function Library (TFL), Intel IPP/SSE (GNU), for the GCC
compiler. This library includes the Intel Performance Primitives (IPP) and Streaming SIMD Extensions
(SSE) code replacements.

For more information, see Code Replacement Library (CRL) and Embedded TargetsDesktop Targets.

Support Added for Single Instruction Multiple Data (SIMD) with ARM Cortex-A8, ARM
Cortex-A9 , and Intel Processors

This release adds support for the Single Instruction Multiple Data (SIMD) capabilities of the ARM
Cortex-A8, ARM Cortex-A9 , and Intel processors. The use of SIMD instructions increases throughput
compared to traditional Single Instruction Single Data (SISD) processing.

The following TFLs (code replacement libraries) optimize generated code for SIMD:

• GCC ARM Cortex-A8 — The GCC compiler and the ARM Cortex-A8 embedded processor
• GCC ARM Cortex-A9 — The GCC compiler and the ARM Cortex-A9 embedded processor
• Intel IPP/SSE (GNU) — The GCC compiler and the Intel Performance Primitives (IPP) and

Streaming SIMD Extensions (SSE)

The performance of the SIMD-enabled executable depends on several factors, including:

• Processor architecture of the target
• Optimized library support for the target
• The type and number of TFL replacements in the generated algorithmic code

Evaluate the performance of your application before and after using the TFL.

To use SIMD capabilities, enable the corresponding TFLs as described in Code Replacement Library
(CRL) and Embedded TargetsDesktop Targets.

Support Removed for Altium TASKING

Support for the Altium® TASKING IDE has been removed from the Embedded Coder product.

Support Removed for Infineon C166

Support for the Infineon® C166® processor family has been removed from the Embedded Coder
product.

 Check bug reports for issues and fixes

25-5

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv2u0.html#bs1ol7w-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bswv2u0.html#bs24ayf-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyo0zz-1.html

Support Ending for Green Hills MULTI in a Future Release

Support for the Green Hills MULTI IDE will end in a future release of the Embedded Coder product.

Support Ending for Freescale MPC5xx in a Future Release

Support for the Freescale MPC5xx processor family will end in a future release of the Embedded
Coder product.

Saturation Control of Stateflow Data
A new property for Stateflow charts, Saturate on integer overflow, enables you to control the
behavior of data with signed integer types when overflow occurs. This check box appears in the Chart
properties dialog box.

Check Box When to Use This Setting Overflow Handling Example of a Result
Selected Overflow is possible for data

in your Stateflow chart and
you want explicit saturation
protection in the generated
code.

Overflows saturate to either
the minimum or maximum
value that the data type can
represent.

An overflow associated with a
signed 8-bit integer saturates
to –128 or +127.

Cleared You want to optimize
efficiency of the generated
code.

The behavior depends on the
C compiler you use for
generating code.

The number 130 does not fit
in a signed 8-bit integer and
wraps to –126.

Arithmetic operations in the chart for which you can enable saturation protection are:

• Unary minus: –a
• Binary operations: a + b, a – b, a * b, a / b, a ^ b
• Assignment operations: a += b, a –= b, a *= b, a /= b

For new charts, this check box is selected by default. When you open charts saved in previous
releases, the check box is cleared to maintain backward compatibility.

For more information, see Handling Integer Overflow for Chart Data in the Stateflow User's Guide.

Custom Storage Class Properties for Managing Data Ownership and
Definition
In R2011b, use the Owner and Definition File properties of custom storage classes to manage the
definition and ownership of mpt data objects in generated code.

Previously, you could include the data definitions in generated code but could not specify the model
that defined the data. Now, Embedded Coder creates the data definitions in the generated code
according to the Owner property.

The Owner property of a custom storage class specifies the model that owns and defines the data in
the generated code. The Definition File property specifies a name for the data definition file that
Embedded Coder generates.

R2011b

25-6

https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bs1ecin.html
https://www.mathworks.com/help/releases/R2012a/toolbox/stateflow/ug/bqb5oe5.html

Compatibility Considerations
• If your legacy code exports data definitions to generated code and you now specify the Owner

property, your generated code might have duplicate data definitions. This duplication causes a link
error. In this case, remove the data definitions from the legacy code.

• If your legacy code does not export data definitions to generated code and you now specify the
Owner property, your generated code might not contain data definitions. This mismatch causes a
link error. In this case, add the missing data definitions to your legacy code.

Export Data Declarations to Shared Header File for Code Generation
with Model Reference
When generating code with model reference, you can export shared data declarations to a specific
header file in a shared directory.

Specify a data declaration header file in the following ways:

• For a data object: In the Code generation options section of the data object dialog
• For a model: In the Code Generation > Code Placement section of the Configuration

Parameters dialog

Specify the option to use a Shared location in the field Shared code placement in Code
Generation > Interface section of the Configuration Parameters dialog.

Target Function Library Code Replacement Enhancements
R2011b provides the following enhancements to code replacement using target function libraries
(TFLs).

Code Replacement Tool for Creating and Managing TFL Tables

R2011b provides the Code Replacement Tool, which helps you create and manage the code
replacement tables that make up a TFL. You can:

• Create a new code replacement table or import existing tables.
• Add, modify, and delete table entries. Each table entry represents a potential code replacement for

a single function or operator. You can manage multiple tables together and copy and paste entries
between tables.

• Validate tables and table entries.
• Save code replacement tables as MATLAB files.
• Generate the customization file you use to register your code replacement tables with code

generation software.

Each code replacement table contains one or more table entries. Each table entry represents a
potential replacement, during code generation, of a single function or operator by a custom
implementation. For each table entry, you provide:

• Mapping Information, which relates a conceptual view of the function or operator (similar to the
Simulink block view of the function or operator) to a custom implementation of that function or
operator.

 Check bug reports for issues and fixes

25-7

• Build Information, which provides header, source, or link information required for building the
custom implementation.

You can open the Code Replacement Tool in the following ways:

• Go to the Interface pane of the Configuration Parameters dialog box and click the Custom
button, which is located to the right of the Target function library parameter.

• Use the MATLAB command crtool.

For more information about creating code replacement tables for TFLs, see Create and Manage Code
Replacement Tables Using the Code Replacement Tool.

Ability to Align Data Objects to TFL-Specified Boundaries to Boost Code Performance

R2011b provides the ability to align data objects passed into a TFL replacement function to a
specified boundary. This allows you to take advantage of target-specific function implementations that
require data to be aligned in order to optimize application performance. To configure data alignment
for a function implementation:

1 Specify the data alignment requirements in a TFL table entry. Alignment can be specified
separately for each implementation function argument or collectively for all function arguments.

2 Specify the data alignment capabilities and syntax for one or more compilers, and include the
alignment specifications in a TFL registry entry in an sl_customization.m or
rtwTargetInfo.m file.

For more information on specifying data alignment requirements and compiler alignment attributes,
see Configure Data Alignment for Function Implementations.

For additional examples of configuring data alignment for function implementations, see the demo
rtwdemo_tfl_script.

Support for Replacing Element-wise Matrix Multiply

TFLs support several nonscalar operators for replacement with custom library functions in generated
model code. R2011b adds support for replacing element-wise matrix multiplication operations (.*
operator in element-wise mode) with custom implementations. For more information, see Map
Nonscalar Operators to Target-Specific Implementations.

Code Generation Enhancements
Redundant Condition Checks

Multiple checks of the same condition are difficult to avoid in modeling. For example, a common
modeling pattern is Switch blocks sharing the same condition check. Previously, the generated code
for multiple Switch blocks produced multiple if statements.

if (cond) {
 true_statement1;
} else {
 false_statement1; }
if (cond) {
 true_statement2;
} else {
 false_statement2;
}

R2011b

25-8

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bs6lva2-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bs6lva2-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bs6isrc-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#br4x94h-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#br4x94h-1

In R2011b, the generated code combines these condition checks. For example, the generated code for
Switch blocks with a common condition combines these multiple if statements.

if (cond) {
 true_statement1;
 true_statement2;
}
else {
 false_statement1;
 false_statement2;
}

This optimization reduces code size and execution time. As a result, other optimizations for condition
expressions or merged branches are enabled which reduce data copies and RAM usage.

Loop Fusion

R2011b provides more precise data dependency analysis of the data and signals of a nested Simulink
bus. This enhancement enables more loop fusion in the generated code which reduces code execution
time and ROM, and improves code readability.

Invariant Condition Check Lifting

When a condition check is invariant to the enclosing loop and you specify loops to be unrolled, the
code generator lifts the check out of the loop. This enhancement reduces ROM, enables additional
optimizations, and improves execution speed and code readability. For more information on loop
unrolling, see Configure Loop Unrolling Threshold.

Parameter Pooling for Stateflow and Interpreted MATLAB Function Blocks

Parameter pooling now occurs for Simulink matrix constants used as Stateflow graphical function
arguments. This enhancement reduces RAM and ROM, and improves thread safety.

Readability Improvement for Reusable Subsystem Input and Output

The generated code for reusable subsystem input and output now eliminates redundant operators
and unnecessary parentheses. This enhancement improves code readability.

Enhanced Code Generation Optimization Using Minimum and
Maximum Values
The Optimize using specified minimum and maximum values code generation option now takes
into account the minimum and maximum values specified for Simulink.Parameter objects even if
the object is part of an expression. For example, consider a Gain block with a gain parameter
specified as an expression such as k1 + 5, where k1 is a Simulink.Parameter object with k1.min
= -10 and k1.max = 10. If minimum and maximum values of the parameter specified in the
parameter dialog box are 0 and 20, the range calculated for this parameter expression is 0 to 15.

For more information, see Optimize Generated Code Using Specified Minimum and Maximum Values.

 Check bug reports for issues and fixes

25-9

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/f1144193.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnwrhl.html

New Model Advisor Check for Code Efficiency of Logic Blocks
The Simulink Model Advisor includes the following new check for code efficiency of logic blocks:
Check output types of logic blocks. The following blocks in the Simulink Logic and Bit Operations
library can use boolean or another setting for the output data type:

• Compare To Constant
• Compare To Zero
• Detect Change
• Detect Decrease
• Detect Fall Negative
• Detect Fall Nonpositive
• Detect Increase
• Detect Rise Nonnegative
• Detect Rise Positive
• Interval Test
• Interval Test Dynamic
• Logical Operator
• Relational Operator

Running this Model Advisor check helps you identify logic blocks that do not use boolean for the
output data type.

For more information about the Model Advisor, see Consulting the Model Advisor.

Control of Default Case Generation for Switch Statements in
Generated Code for Stateflow Charts
You can specify whether or not to generate default cases for switch statements in the generated code
for Stateflow charts. This optimization works on a per-model basis and applies to the code generated
for a state that has multiple substates. Use the following check box on the Code Generation > Code
Style pane of the Configuration Parameters dialog box:

R2011b

25-10

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/braj1_6-1.html#bs1j4rp
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetoconstant.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/comparetozero.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectchange.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectdecrease.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectfallnegative.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectfallnonpositive.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectincrease.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectrisenonnegative.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/detectrisepositive.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/intervaltest.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/intervaltestdynamic.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/logicaloperator.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/relationaloperator.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html

Check Box When to Use This Setting Format of Switch Statements
Selected Provide better code coverage by

checking that every branch in
the generated code is falsifiable.

Exclude the default case when it
is unreachable.

Cleared Check for MISRA C compliance
and provide a fallback in case of
RAM corruption.

Include a default case.

For new models, this check box is cleared by default. When you open models saved in previous
releases, the check box is also cleared to maintain backward compatibility.

For more information, see Code Generation Pane: Code Style in the Embedded Coder Reference
documentation.

Improvement to Build Process for Conflicting Identifiers
Previously, if your model contained two referenced models with the same input (or output) port
names, the model might not build because of potentially conflicting identifiers. The failure to build
happens when the generated identifiers exceed the Maximum identifier length. In R2011b, the build
process is improved to handle more cases when two referenced models have the same input (or
output) port names. For more information, see Model Referencing Considerations.

Update to Code Generation Verification Class cgv.Config

Compatibility Considerations
The Connectivity cgv.Config parameter has the following updates:

• pil replaces the custom value. In R2011b, you can use custom without producing a warning or
error message.

• The tasking value is not available. Specifying tasking produces an error.

License Names Not Yet Updated for Coder Product Restructuring
The Simulink Coder and Embedded Coder license name strings stored in license.dat and returned
by the license ('inuse') function have not yet been updated for the R2011a coder product
restructuring. Specifically, the license ('inuse') function continues to return 'real-
time_workshop' for Simulink Coder and 'rtw_embedded_coder' for Embedded Coder, as shown
below:

>> license('inuse')
matlab
matlab_coder
real-time_workshop
rtw_embedded_coder
simulink
>>

The license name strings intentionally were not changed, in order to avoid license management
complications in situations where Release 2011a or higher is used alongside a preR2011a release in a
common operating environment. MathWorks plans to address this issue in a future release.

 Check bug reports for issues and fixes

25-11

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bq26g1r.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnoks2-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/bq259iv-1.html#bq26cbm-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f19476
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.configclass.html

For more information about using the function, see the license documentation.

New and Enhanced Demos
The following demos have been enhanced in R2011b:

Demo... Now...
rtwdemo_pmsmfoc_script Shows how you can perform system-level simulation and

algorithmic code generation using Field-Oriented Control
for a Permanent Magnet Synchronous Machine

rtwdemo_sil_pil_script Incorporates code execution profiling
rtwdemo_tfl_script Shows how you can align nonscalar data passed into a

target function library (TFL) code replacement function
fuelsys_pil Incorporates using serial communication interface to

communicate during PIL simulation

R2011b

25-12

https://www.mathworks.com/help/releases/R2012a/techdoc/ref/license.html

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

 Check bug reports for issues and fixes

25-13

https://www.mathworks.com/support/bugreports/

R2011a

Version: 6.0

New Features

Bug Fixes

Compatibility Considerations

26

Coder Product Restructuring
• “Product Restructuring Overview” on page 26-2
• “Resources for Upgrading from Real-Time Workshop Embedded Coder” on page 26-2
• “Migration of Embedded MATLAB Coder Features to MATLAB Coder” on page 26-3
• “Migration of Embedded IDE Link and Target Support Package Features to Simulink Coder and

Embedded Coder” on page 26-3
• “Interface Changes Related to Product Restructuring” on page 26-4
• “Simulink Graphical User Interface Changes” on page 26-4

Product Restructuring Overview

In R2011a, the Embedded Coder product replaces the Real-Time Workshop® Embedded Coder
product. Additionally,

• The Simulink Coder product combines and replaces the Real-Time Workshop and Stateflow Coder
products

• The Real-Time Workshop facility for converting MATLAB code to C/C++ code, formerly referred to
as Embedded MATLAB® Coder, has migrated to the new MATLAB Coder product.

• The previously existing Embedded IDE Link™ and Target Support Package™ products have been
integrated into the new Simulink Coder and Embedded Coder products.

The following figure shows the R2011a transitions for C/C++ code generation related products, from
the R2010b products to the new MATLAB Coder, Simulink Coder, and Embedded Coder products.

Resources for Upgrading from Real-Time Workshop Embedded Coder

If you are upgrading to Embedded Coder from Real-Time Workshop Embedded Coder, review
information about compatibility and upgrade issues at the following locations:

• Release Notes for Embedded Coder (latest release), “Compatibility Summary” section

R2011a

26-2

• On the MathWorks web site, in the Archived documentation, select R2010b, and view the
following tables, which are provided in the release notes for Real-Time Workshop Embedded
Coder: Compatibility Summary for Real-Time Workshop Embedded Coder Software:

This table provides compatibility information for releases up through R2010b.
• If you use the Embedded IDE Link or Target Support Package capabilities that now are integrated

into Simulink Coder and Embedded Coder, go to the Archived documentation and view the
corresponding tables for Embedded IDE Link or Target Support Package:

• Compatibility Summary for Embedded IDE Link (R2010b)
• Compatibility Summary for Target Support Package (R2010b)

You can also refer to the rest of the archived documentation, including release notes, for the Real-
Time Workshop, Stateflow Coder, Embedded IDE Link, and Target Support Package products.

Migration of Embedded MATLAB Coder Features to MATLAB Coder

In R2011a, the function codegen replaces the Real-Time Workshop function emlc. The emlc function
still works in R2011a but generates a warning, and will be removed in a future release. For more
information, see Generating C/C++ Code from MATLAB Code.

Migration of Embedded IDE Link and Target Support Package Features to Simulink Coder
and Embedded Coder

In R2011a, the capabilities formerly provided by the Embedded IDE Link and Target Support Package
products have been integrated into Simulink Coder and Embedded Coder. The following table
summarizes the transition of the Embedded IDE Link and Target Support Package supported
hardware and software into Coder products.

Former Product Supported Hardware and
Software

Simulink
Coder

Embedded
Coder

Embedded IDE Link Altium TASKING x
Analog Devices VisualDSP++ x
Eclipse IDE x x
Green Hills MULTI x
Texas Instruments Code
Composer Studio

 x

Target Support Package Analog Devices Blackfin x
ARM x
Freescale MPC5xx x
Infineon C166 x
Texas Instruments C2000 x
Texas Instruments C5000 x
Texas Instruments C6000 x
Linux OS x x
Windows OS x
VxWorks RTOS x

 Check bug reports for issues and fixes

26-3

https://www.mathworks.com/help/doc-archives.html
https://www.mathworks.com/help/doc-archives.html
https://www.mathworks.com/help/doc-archives.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ref/codegen.html
https://www.mathworks.com/help/releases/R2012a/toolbox/coder/ug/bq8j0_1.html

Interface Changes Related to Product Restructuring

You will see interface changes as part of restructuring the Coder products.

• In the Simulink Configuration Parameters dialog box, changes to code generation related elements
• In Simulink menus, changes to code generation related elements
• In Simulink blocks, including block parameters and dialog boxes, and block libraries, changes to

code generation related elements
• In error messages, tool tips, demos, and product documentation, references to Real-Time

Workshop Embedded Coder, Real-Time Workshop, and Stateflow Coder and related terms are
replaced with references to the latest software

Simulink Graphical User Interface Changes

Where... Previously... Now...
Configuration Parameters dialog
box

Real-Time Workshop pane Code Generation pane

Model diagram window Tools > Real-Time Workshop Tools > Code Generation
Subsystem context menu Real-Time Workshop Code Generation
Subsystem Parameter dialog
box

Following parameters on main
pane:

• Real-Time Workshop
system code

• Real-Time Workshop
function name options

• Real-Time Workshop
function name

• Real-Time Workshop file
name options

• Real-Time Workshop file
name (no extension)

On new Code Generation pane
and renamed:

• Function packaging
• Function name options
• Function name
• File name options
• File name (no extension)

Compatibility Considerations
In the Help browser Contents pane, Embedded Coder is now listed with the products for MATLAB,
because Embedded Coder now supports both MATLAB Coder and Simulink Coder workflows.

Data Management Enhancements and Changes
• “Memory Section Enhancements” on page 26-5
• “No Longer Able to Set RTWInfo or CustomAttributes Property of Simulink Data Objects”

on page 26-5
• “Parts of Data Class Infrastructure Not Available” on page 26-5
• “No Longer Generating Pragma for Data Defined with Built-In Storage Class ExportedGlobal,

ImportedExtern, or ImportedExternPointer” on page 26-6

R2011a

26-4

• “Simulink.CustomParameter and Simulink.CustomSignal Data Classes To Be Deprecated in a
Future Release” on page 26-6

Memory Section Enhancements

• Pragmas are now added to data and function declarations (prior to R2011a they were added to
definitions only); at compile time, this makes the compiler aware of memory locations for
functions and data, potentially optimizing generated code

• New function category is available for shared utilities on the Code Generation > Memory
Sections pane: Shared utility

• Referenced models can have a memory section that is different from that of the top model for the
InitTerm and Execute function categories

No Longer Able to Set RTWInfo or CustomAttributes Property of Simulink Data Objects

You cannot set the RTWInfo or CustomAttributes property of a Simulink data object from the
MATLAB Command Window or a MATLAB script. Attempts to set these properties generate an error.

Although you cannot set RTWInfo or CustomAttributes, you can still set subproperties of RTWInfo
and CustomAttributes.

Compatibility Considerations
Operations from the MATLAB Command Window or a MATLAB script, which set the data object
property RTWInfo or CustomAttributes, generate an error.

For example, a MATLAB script might set these properties by copying a data object as shown below:

a = Simulink.Parameter;
b = Simulink.Parameter;
b.RTWInfo = a.RTWInfo;
b.RTWInfo.CustomAttributes = a.RTWInfo.CustomAttributes;
 .
 .
 .

To copy a data object, use the object's deepCopy method.

a = Simulink.Parameter;
b = a.deepCopy;
.
.
.

Parts of Data Class Infrastructure Not Available

Simulink has been generating warnings for usage of the following data class infrastructure features
for several releases. As of R2011a, the features are not supported.

• Custom storage classes not captured in the custom storage class registration file
(csc_registration) – warning displayed since R14SP2

• Built-in custom data class attributes BitFieldName and FileName+IncludeDelimiter –
warning displayed since R2008b

 Check bug reports for issues and fixes

26-5

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bq26g3q-1.html#bss4awq-1

Instead of... Use...
BitFieldName StructName
FileName+IncludeDelimiter HeaderFile

• Initial value of MPT data objects inside mpt.CustomRTWInfoSignal – warning displayed since
R2006a

Compatibility Considerations
• When you use a removed feature, Simulink now generates an error.
• When loading a MAT-file that uses an unsupported feature, the load operation suppresses the

generated error such that it is not visible. In addition, MATLAB silently deletes data that had been
associated with the unsupported feature. To prevent loss of data when loading a MAT-file, load and
resave the file with R2010b or earlier.

No Longer Generating Pragma for Data Defined with Built-In Storage Class ExportedGlobal,
ImportedExtern, or ImportedExternPointer

The code generator no longer generates a pragma around definitions or declarations for data that
has the following built-in storage classes:

• ExportedGlobal
• ImportedExtern
• ImportedExternPointer

Prior to R2011a, based on model configuration parameters for specifying memory sections and the
built-in storage class defined for data, the code generator would do the following:

For Built-In Storage Class... Generate pragma Around...
ExportedGlobal Data definition and declaration
ImportedExtern Data declaration
ImportedExternPointer Data declaration

The code generator now treats data with these built-in storage classes like custom storage classes
with no memory section specified.

Compatibility Considerations
To work around this change, select a custom storage class that uses the memory section of interest
for the data.

Simulink.CustomParameter and Simulink.CustomSignal Data Classes To Be Deprecated in a
Future Release

In a future release, data classes Simulink.CustomParameter and Simulink.CustomSignal will
no longer be supported because they are equivalent to Simulink.Parameter and
Simulink.Signal.

R2011a

26-6

Compatibility Considerations
If you use the data class Simulink.CustomParameter or Simulink.CustomSignal, Simulink
posts a warning that identifies the class and describes one or more techniques for eliminating it. You
can ignore these warnings in R2011a, but consider making the described changes now because the
classes will be removed in a future release.

AUTOSAR Enhancements
The following enhancements are available in R2011a.

Calibration Parameters

Previously, the software supported only calibration parameters that were defined by a calibration
component. These parameters could be accessed by all AUTOSAR Software Components. The
AUTOSAR standard also specifies an internal calibration parameter that is defined and accessed by
only one AUTOSAR Software Component. The software now supports:

• AUTOSAR internal calibration parameters, including the import and export of initial values of
these parameters.

• A bus object data type (AUTOSAR record type) to import and export both kinds of calibration
parameters.

For more information, see Calibration Parameters and Configure Calibration Parameters.

Multiple Runnables from Virtual Subsystems

Previously, if a wrapper subsystem had virtual subsystems containing function-call subsystems, you
could not export the function-call subsystems as AUTOSAR runnables from the wrapper subsystem
level. Now, within a wrapper subsystem, you can group function-call subsystems into virtual
subsystems and generate runnables for these function-call subsystems. See Configure Multiple
Runnables and Export AUTOSAR Software Component.

Support for Code Descriptor Elements

The AUTOSAR standard specifies that the XML description of an AUTOSAR Software Component
implementation must contain code descriptor elements to describe generated source files and include
header files. This feature allows AUTOSAR authoring tools that import software components to
automate the building process for source code.

Previously, the software did not generate the software component implementation file
(modelname_implementation.arxml) with these code descriptor elements. Now, when you build a
Simulink model for an AUTOSAR target, the software generates a CODE-DESCRIPTORS element
within the SWC_IMPLEMENTATION element. The CODE-DESCRIPTORS element contains XFILE
elements that provide descriptions of the generated code.

For example, if you build the model rtwdemo_autosar_counter, the generated file
rtwdemo_autosar_counter_implementation.arxml has the following SWC_IMPLEMENTATION
element:
....
<SWC-IMPLEMENTATION>
 <SHORT-NAME>rtwdemo_autosar_counter</SHORT-NAME>
 <CODE-DESCRIPTORS>
 <CODE>

 Check bug reports for issues and fixes

26-7

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsa24_3-1.html#bsa24_3-8
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brrkabz-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brrj__2-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnl_r7.html#brrj__2-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnmasw.html#brkgi52-1

 <SHORT-NAME>Code</SHORT-NAME>
 <TYPE>SRC</TYPE>
 <XFILES>
 <XFILE>
 <SHORT-NAME>rtwdemo_autosar_counter_c</SHORT-NAME>
 <CATEGORY>GeneratedFile</CATEGORY>
 <URL>rtwdemo_autosar_counter_autosar_rtw\rtwdemo_autosar_counter.c</URL>
 <TOOL>Embedded Coder</TOOL>
 <TOOL-VERSION>5.6</TOOL-VERSION>
 </XFILE>
 <XFILE>
 <SHORT-NAME>rtwdemo_autosar_counter_h</SHORT-NAME>
 <CATEGORY>GeneratedFile</CATEGORY>
 <URL>rtwdemo_autosar_counter_autosar_rtw\rtwdemo_autosar_counter.h</URL>
 <TOOL>Embedded Coder</TOOL>
 <TOOL-VERSION>5.6</TOOL-VERSION>
 </XFILE>
 ...
 </XFILES>
 </CODE>
 </CODE-DESCRIPTORS>
 <CODE-GENERATOR>Embedded Coder 5.6 (R2011a) 26-Aug-2010</CODE-GENERATOR>
 <PROGRAMMING-LANGUAGE>C</PROGRAMMING-LANGUAGE>
</SWC-IMPLEMENTATION>
....

SIL and PIL Enhancements
Code Execution Profiling

You can collect execution time measurements in a specified base workspace variable during a
software-in-the-loop (SIL) or processor-in-the-loop (PIL) simulation. At the end of the simulation, you
can view or analyze the measurements within the MATLAB environment. This feature allows you to
collect an execution time profile for each task within your generated code.

The software supports code execution profiling for all types of SIL or PIL simulations except the SIL
block.

For more information, see Code Execution Profiling.

PIL Block Parameter Tuning

R2011a supports parameter tuning for the PIL block, which allows you to change tunable workspace
parameters between or during simulations without regenerating code. This feature also includes
support for tunable structure parameters. For more information, see I/O Support and Tunable
Parameters and SIL/PIL.

Top-Model SIL/PIL and PIL Block Parameter Initialization

R2011a supports automatic definition and initialization of parameters with imported storage classes.
For more information, see I/O Support and Imported Data Definitions.

Model Block Parameter Tuning and Model Initialization

Previously, the software did not support the following features for Model block SIL/PIL:

• Simplified initialization mode
• Tunable structure parameters

R2011a

26-8

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bst4d2j.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brydbkh
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brydbkh
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_0r-1

R2011a now supports these features. For more information, see Configuration Parameters Support,
I/O Support, and Tunable Parameters and SIL/PIL.

Code Generation Enhancements
Improved Code for Data Store Memory In-place Assignment

Previously, the generated code for a Data Store Memory block used data copies to perform data store
assignments. The generated code now eliminates the data copies and performs an in-place
assignment. This improvement generates less code, uses less memory, and provides faster execution.

Improvements to Target Function Library Replacements

Enhancements to Target Function Library Replacements (TFL) include:

• If multiple TFL replacements occur within a function, temporary variables are now reused instead
of creating extra temporary variables. This enhancement reduces the stack size during TFL
replacement.

• During TFL replacement, if unnecessary temporary variables are introduced when block output is
not the returned value of the function but one of the input arguments, code generation now
removes the temporary variable. This enhancement improves execution speed and requires less
memory.

For more information, see Introduction to Code Replacement Libraries.

Improved Loop Fusion

Code generation now includes the following:

• An improved loop fusion algorithm that reduces data copies. This enhancement decreases stack
size, ROM consumption, and code generation time.

• Selectively fuses loops when the loop count is larger than the Loop unrolling threshold. In these
cases, loop unrolling allows the code generator to perform more optimizations. In addition, the
code generator groups the statements together to assign values to the elements of a signal or
parameter array, which improves data access and code readability.

Improved Array Indexing

The generated code is optimized for more efficient array indexing. When a complex instruction is
used repeatedly in an array index, the instruction is replaced with a temporary variable to perform
the calculation more efficiently. This enhancement improves execution speed and reduces code size.

Improvement on Matrix Parameter Pooling

For matrix parameters with the same flattened value, the generated code now pools the matrix
parameters even when they have different shapes. This enhancement reduces ROM consumption.

Readability Improvements Involving Data References

For references to the root inport and outport, as well as DWork, unnecessary parentheses are
removed from the generated code. This enhancement produces more readable code.

 Check bug reports for issues and fixes

26-9

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut_93-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brut__a-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brr9tb5-12.html#brydbkh
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#brc_o1j-1
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/gui/bstq6gp-1.html#bq9_kyz-1

Code Generation Verification (CGV) API Updates
Support for Adding Multiple Callback Functions

In R2011a, the cgv.CGV class includes new methods to add callback functions. These methods replace
the cgv.CGV.addCallback method which added only a pre-execution callback function. Now, the
new methods allow CGV to invoke callback functions at several stages of the cgv.CGV.run execution.
The new methods are:

• cgv.CGV.addHeaderReportFcn adds a callback function invoked before executing input data in the
cgv.CGV object.

• cgv.CGV.addPreExecReportFcn adds a callback function invoked before executing each input data
file in the cgv.CGV object.

• cgv.CGV.addPreExecFcn adds a callback function invoked before executing each input data file in
the cgv.CGV object.

• cgv.CGV.addPostExecReportFcn adds a callback function invoked after executing each input data
file in the cgv.CGV object.

• cgv.CGV.addPostExecFcn adds a callback function invoked after executing each input data file in
the cgv.CGV object.

• cgv.CGV.addTrailerReportFcn adds a callback function invoked after executing input data in the
cgv.CGV object.

New Functionality Added to the cgv.CGV Class

The cgv.CGV class now includes the following methods:

• cgv.CGV.activateConfigSet activates the configuration set of a model.
• cgv.CGV.addBaseline adds a file of baseline data for comparison.
• cgv.CGV.copySetup creates a copy of a cgv.CGV object.
• cgv.CGV.setMode specifies the mode of execution (sim, sil, or pil).
• cgv.CGV.copySetup returns the status of the execution of the cgv.CGV object.

The cgv.CGV class now includes the following properties:

• Name
• Description

Compatibility Considerations
Previously, the cgv.CGV class included parameters that you set to perform automatic configuration
checks of your model. In R2011a, cgv.CGV class does not performs automatic configuration checks.
Instead, you can use the cgv.Config class to perform a manual configuration check of your model.
Before calling cgv.CGV.run, perform a manual configuration check of your model. Otherwise, an
error might occur later in the process. For more information, see Programmatic Code Generation
Verification.

Changes to the cgv.CGV class parameters are listed in the following table.

R2011a

26-10

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgvclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.run.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addheaderreportfcn.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpreexecreportfcn.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpreexecfcn.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpostexecreportfcn.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addpostexecfcn.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addtrailerreportfcn.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.activateconfigset.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.addbaseline.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.copysetup.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.setmode.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.cgv.copysetup.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.configclass.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br9mwb6-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br9mwb6-1.html

Parameter What Happens When
You Use Parameter?

Use This Parameter
Instead

Compatibility
Considerations

LogMode removed from
cgv.CGV

Errors LogMode parameter in
cgv.Config

To check your model
before running CGV, pass
the LogMode parameter to
the constructor for
cgv.Config. Then call
the cgv.Config.configModel
method to adjust the
model configuration.

Processor removed from
cgv.CGV

Errors Processor parameter in
cgv.Config

To check your model
before running CGV, pass
the Processor parameter
to the constructor for
cgv.Config. Then call
the cgv.Config.configModel
method to adjust the
model configuration.

SaveModel removed from
cgv.CGV

Errors SaveModel parameter in
cgv.Config

To check your model
before running CGV, pass
the SaveModel parameter
to the constructor for
cgv.Config. Then call
the cgv.Config.configModel
method to adjust the
model configuration.

ConfigModel removed
from cgv.CGV

Warns if set to off

Errors if set to on

cgv.Config.configModel
method

To check your model
before running CGV,
replace the
cgv.CGVConfigModel
parameter with a call to
the cgv.Config.configModel
method

CheckInterface
parameter from cgv.CGV

Warns if set to off

Errors if set to on

CheckOutports
parameter in cgv.Config

To check your model
before running CGV, pass
the CheckOutports
parameter to the
constructor for
cgv.Config. Then call
the cgv.Config.configModel
method to adjust the
model configuration.

 Check bug reports for issues and fixes

26-11

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/cgv.config.configmodel.html

Parameter What Happens When
You Use Parameter?

Use This Parameter
Instead

Compatibility
Considerations

tasking and custom
values removed from the
Connectivity parameter
of cgv.CGV

Errors pil, a new value for the
cgv.CGV Connectivity
parameter

Replace calls to the
cgv.CGV constructor
using the parameter-value
arguments,
('Connectivity',
'tasking') or
('Connectivity',
'custom'), with
('Connectivity,
'pil').

Changes to the cgv.Config class parameters are listed in the following table:

Parameter What Happens When You Use
Parameter?

Compatibility Considerations

CheckOutports parameter added
to cgv.Config

Defaults to on. Compiles the model.
Then checks that the model outport
configuration is compatible with the
cgv.CGV object.

If your script fixes errors reported
by cgv.Config, you can set
CheckOutports to off.

LogMode parameter from
cgv.Config

Change in behavior If you do not give a value for
LogMode, logging changes are not
made to the configuration
parameters.

MISRA-C Code Generation Objective
The Code Generation Advisor now includes a new objective for MISRA-C:2004 guidelines. To set the
new objective, open the Configuration Parameters dialog box and select the Code Generation pane.
In the Code Generation Advisor section, click the Set objectives button to open the Code Generation
Advisor dialog box. In the Available objectives list, select MISRA-C:2004 guidelines and click
the select button (arrow pointing right) to move the objective to the Selected objectives list. For
more information on setting objectives, see Application Objectives.

New Model Advisor Check for Code Efficiency of Lookup Table Blocks
The Simulink Model Advisor includes the following new check for code efficiency of lookup table
blocks: Identify lookup table blocks that generate expensive out-of-range checking code. By default,
the following blocks generate code that checks for out-of-range breakpoint inputs:

• 1-D Lookup Table
• 2-D Lookup Table
• n-D Lookup Table
• Prelookup

Similarly, the Interpolation Using Prelookup block generates code that checks for out-of-range index
inputs. Running this Model Advisor check helps you identify lookup table blocks that generate out-of-
range checking code for breakpoint or index inputs.

R2011a

26-12

https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ug/br1kmvm-1.html
https://www.mathworks.com/help/releases/R2012a/toolbox/rtw/ref/braj1_6-1.html#bstpknv-1
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/1dlookuptable.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/2dlookuptable.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/ndlookuptable.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/prelookup.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/interpolationusingprelookup.html

For more information about the Model Advisor, see Consulting the Model Advisor.

Enhanced Code Generation Optimization
The Optimize using specified minimum and maximum values code generation option now takes
into account the minimum and maximum values specified for:

• A Simulink.Parameter object provided that it is used on its own. It does not use these
minimum and maximum values if the object is part of an expression. For example, if a Gain block
has a gain parameter specified as K1, where K1 is defined as a Simulink.Parameter object in
the base workspace, the optimization takes the minimum and maximum values of K1 into account.
However, if the Gain block has a gain parameter of K1+5 or K1+K2+K3, where K2 and K3 are also
Simulink.Parameter objects, the optimization does not use the minimum and maximum values
of K1, K2 or K3.

• Design ranges specified on block outputs in a conditionally-executed subsystem, except for the
block outputs that are directly connected to an Outport block.

For more information, see Optimize Generated Code Using Specified Minimum and Maximum Values.

Target Function Library Replacement Based on Computation Method
for Reciprocal Sqrt, Sine, and Cosine
Target function libraries (TFLs) now support the ability to control replacement of certain math
functions using their computation method as a distinguishing attribute. For example,

• The rSqrt block can be configured to use either of two computation methods, Newton-Raphson or
Exact.

• The Trigonometric Function block, with Function set to sin or cos, can be configured to use
either of two approximation methods, CORDIC or None.

You can configure TFL table entries to replace these functions for one or all of the available
computation methods. For example, you could replace only Newton-Raphson instances of the rSqrt
function.

For more information, see Replace Math Functions Based on Computation Method.

Target Function Library Support for abs, min, max, and sign functions
Embedded Coder software now supports target function library customization control for fixed-point
abs, min, max, and sign functions.

For more information, see Register Code Replacement Libraries.

C++ Encapsulation Allowed for Referenced Models in For Each
Subsystems
In previous releases, due to a code generation limitation, code could not be generated for a For Each
Subsystem block under the following conditions:

• The For Each Subsystem block directly or indirectly contains a Model block.

 Check bug reports for issues and fixes

26-13

https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/f4-141979.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsnwrhl.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#bsziga7-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/brc_o1j.html#brc_pba-1

• The Model block references a model for which C++ encapsulation is selected.

R2011a removes this limitation. You can now generate code for a For Each Subsystem in which a
referenced model uses C++ encapsulation.

Improved Code Generation for Portable Word Sizes
In the software-in-the-loop (SIL) simulation work flow, the model option Enable portable word sizes
allows you to take code intended for a specific target platform and compile and run the same code on
a MATLAB host platform that uses different processor word sizes. R2011a enhances the code
generated for portable word sizes by inserting explicit casts to help protect against integral
promotion differences and other behavior differences between host and target. This potentially can
reduce the incidence of numerical differences due to host/target behavior differences. For more
information, see Configure Hardware Implementation Settings for SIL and Portable Word Sizes
Limitations.

Improved Comments in the Generated Code
R2011a provides improvements to comment generation for better readability and understanding of
the generated code. Specifically, comments are located closer to the referring code and reflect the
intent of the code. An end comment is now included at the end of a control flow block of code. For
information on customizing comments in the generated code, see Configure Code Comments in
Embedded System Code.

Replacement Data Types and Simulation Mode for Referenced Models
To replace built-in data type names with user-defined data type names in the generated code for a
referenced model, you must set the Simulation mode parameter for the Model block to one of the
following:

• Normal
• Software-in-the-loop (SIL)
• Processor-in-the-loop (PIL)

For more information, see Data Types and Referenced Model Simulation Modes.

Changes for Embedded IDEs and Embedded Targets
• “Feature Support for Embedded IDEs and Embedded Targets” on page 26-15
• “Execution Profiling during PIL Simulation” on page 26-15
• “Location of Blocks for Embedded Targets” on page 26-15
• “Location of Demos for Embedded IDEs and Embedded Targets” on page 26-16
• “Multicore Deployment with Rate-Based Multithreading” on page 26-17
• “Windows-Based Code Generation and Remote Build On Linux Target (BeagleBoard)”

on page 26-17
• “Changes to Frame-Based Processing” on page 26-17
• “New Support for Analog Devices Blackfin BF50x and BF51x Processors” on page 26-18

R2011a

26-14

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html#brr9t4r-6
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br86vhn.html#brr9t4r-6
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f26784
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br5qpiq.html#f26784
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/br542nf.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/ug/bsp24op-1.html

• “Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-A8, and Cortex-A9 Processors”
on page 26-19

• “Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI” on page 26-19
• “Support for Texas Instruments Delfino C2834x Processors” on page 26-19
• “Ending Support for Altium TASKING in a Future Release” on page 26-20
• “Ending Support for Freescale MPC5xx in a Future Release” on page 26-20
• “Ending Support for Infineon C166 in a Future Release” on page 26-20
• “Removed Methods and Arguments” on page 26-20

Feature Support for Embedded IDEs and Embedded Targets

The Embedded Coder software provides the following features as implemented in the former Target
Support Package and former Embedded IDE Link products:

• Automation Interface
• Processor-in-the-Loop (PIL) Simulation
• Execution Profiling
• Execution Profiling during PIL Simulation
• Stack Profiler
• External Mode
• Schedulers and Timing
• Makefile Generation (XMakefile)
• Target Function Library (TFL) Optimization
• Multicore Deployment for Rate Based Multithreading

Note You can only use these features in the 32-bit version of your MathWorks products. To use these
features on 64-bit hardware, install and run the 32-bit versions of your MathWorks products.

Execution Profiling during PIL Simulation

During Processor-in-the-loop (PIL) simulation, you can profile synchronous tasks in code running on
the target. For more information, see Execution Profiling during PIL Simulation

Location of Blocks for Embedded Targets

Blocks from the former Target Support Package product and Embedded IDE Link product now reside
under Embedded Coder in the Embedded Targets block library, as shown.

 Check bug reports for issues and fixes

26-15

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bsyqw3q-1.html#bsyqw3q-1ecpdp

Embedded Targets includes the following types of blocks:

• Host Communication
• Operating Systems

• Embedded Linux
• VxWorks

• Processors

• Analog Devices Blackfin
• Analog Devices SHARC
• Analog Devices TigerSHARC
• Freescale MPC55xx MPC74xx
• Freescale MPC5xx
• Infineon C166
• Texas Instruments C2000
• Texas Instruments C5000
• Texas Instruments C6000

Location of Demos for Embedded IDEs and Embedded Targets

Demos from the former Target Support Package product and Embedded IDE Link product now reside
under Simulink Coder product help. Click the expandable links, as shown.

R2011a

26-16

Multicore Deployment with Rate-Based Multithreading

You can deploy rate-based multithreading applications to multicore processors running Embedded
Linux and

VxWorks. This feature improves performance by taking advantage of multicore hardware resources.

Also see the Running Target Applications on Multicore Processors user's guide topic.

Windows-Based Code Generation and Remote Build On Linux Target (BeagleBoard)

You can generate a makefile project on a Windows host machine, transfer the makefile project to an
remote target running Linux, such as a BeagleBoard, and then build the executable on the remote
target.

Changes to Frame-Based Processing

Signal processing applications often process sequential samples of data at once as a group, rather
than one sample at a time. MathWorks documentation refers to the former as frame-based processing
and the latter as sample-based processing. A frame is a collection of samples of data, sequential in
time. To perform frame-based processing in MathWorks products, you must have a DSP System
Toolbox license.

Historically, Simulink-family products that can perform frame-based processing propagate frame-
based signals throughout a model. The frame status is an attribute of the signals in a model, just as

 Check bug reports for issues and fixes

26-17

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ug/bspewvw-1.html#bszx1ja-1

data type and dimensions are attributes of a signal. The Simulink engine propagates the frame
attribute of a signal with a frame bit, which can either be on or off. When the frame bit is on, Simulink
interprets the signal as frame-based, and displays it as a double line, rather than as a single line.

Beginning in R2010b, MathWorks started to change the handling of frame-based processing
significantly. In the future, signal attributes will not include frame status. Instead, individual blocks
will control whether they treat data inputs as frames or as samples.

To transition to this new paradigm, blocks that can perform sample- and frame-based processing
contain a new Input processing parameter that specifies the processing behavior. You can set Input
processing to Columns as channels (frame based) or Elements as channels (sample
based). The third option, Inherited (this choice will be removed - see release
notes), is a temporary selection. This third option helps you migrate your existing models from the
old paradigm to the new paradigm.

In R2011a, the following Embedded Coder blocks received a new Input processing parameter:

• C62X Real Forward Lattice All-Pole IIR
• C62X Complex FIR
• C62X General Real FIR
• C62X Real IIR
• C64X Real Forward Lattice All-Pole IIR

Compatibility Considerations
When you load an existing model in R2011a, blocks with the new Input processing parameter shows
a setting of Inherited (this choice will be removed - see release notes). This
setting enables your existing models to work as expected until you upgrade them. Upgrade your
models as soon as possible.

To upgrade your existing models, use the slupdate function. This function detects blocks that have
Input processing set to Inherited (this choice will be remove - see release
notes). The function asks you whether to upgrade each block. If you select yes, the function detects
the status of the frame bit on the input port of the block. If the frame bit is 1 (frames), the function
sets the Input processing parameter to Columns as channels (frame based). If the bit is 0
(samples), the function sets the parameter to Elements as channels (sample based).

A future release will remove the frame bit and the Inherited (this choice will be removed
- see release notes) option. At that time, if you have not updated the model, the software
automatically sets the Input processing parameter. The software uses the library default setting of
the block to select either Columns as channels (frame based) or Elements as channels
(sample based). If the library default setting does not match the parameter setting in your model,
your model will produce unexpected results. Additionally, after the removal of the frame bit, you will
no longer be able to upgrade your models using the slupdate function. Therefore, upgrade your
existing modes using slupdate as soon as possible.

New Support for Analog Devices Blackfin BF50x and BF51x Processors

You can now generate code for the following embedded processors when you use Embedded Coder
software:

• BF504

R2011a

26-18

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xrealforwardlatticeallpoleiir.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xcomplexfir.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xgeneralrealfir.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c62xrealiir.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c64xrealforwardlatticeallpoleiir.html
https://www.mathworks.com/help/releases/R2012a/toolbox/simulink/slref/slupdate.html

• BF504F
• BF506F
• BF512
• BF514
• BF516
• BF518

Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-A8, and Cortex-A9
Processors

You can use new Target Function Libraries (TFLs) to generate efficient fixed-point code for the ARM
Cortex-M3, Cortex-A8, and Cortex-A9 processors. These TFLs include GCC compiler extensions and
intrinsic functions that optimize the code Embedded Coder generates for these processors.

Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI

Support for Green Hills MULTI software now includes versions 5.0.6 and 5.1.6.

Support for Texas Instruments Delfino C2834x Processors

You can now generate code for the following embedded processors when you use Embedded Coder
software with Texas Instruments Code Composer Studio software:

• C28341
• C28342
• C28343
• C28344
• C28345
• C28346

The new C2834x (c2834xlib) block library contains the following blocks:

• C2000 CAN Calibration Protocol
• C280x/C2802x/C2803x/C28x3x/c2834x GPIO Digital Input
• C280x/C2802x/C2803x/C28x3x/c2834x GPIO Digital Output
• C280x/C2802x/C2803x/C28x3x/C2834x I2C Receive
• C280x/C2802x/C2803x/C28x3x/C2834x I2C Transmit
• C280x/C2802x/C2803x/C28x3x/c2834x SCI Receive
• C280x/C2802x/C2803x/C28x3x/c2834x SCI Transmit
• C280x/C2802x/C2803x/C28x3x/c2834x SPI Receive
• C280x/C2802x/C2803x/C28x3x/c2834x SPI Transmit
• C280x/C2802x/C2803x/C28x3x/c2834x Software Interrupt Trigger
• C28x Watchdog
• C280x/C2803x/C28x3x/c2834x eCAN Receive
• C280x/C2803x/C28x3x/c2834x eCAN Transmit
• C280x/C2802x/C2803x/C28x3x/c2834x eCAP

 Check bug reports for issues and fixes

26-19

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/bqnb76d-1.html#bsv7x_z-1
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c2000cancalibrationprotocol.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xgpiodigitalinput.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xgpiodigitaloutput.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xi2creceive.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xi2ctransmit.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xscireceive.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xscitransmit.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xspireceive.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xspitransmit.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xsoftwareinterrupttrigger.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c28xwatchdog.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2803xc28x3xc2834xecanreceive.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2803xc28x3xc2834xecantransmit.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xecap.html

• C280x/C2802x/C2803x/C28x3x/c2834x ePWM
• C280x/C2803x/C28x3x/c2834x eQEP

Ending Support for Altium TASKING in a Future Release

Support for the Altium TASKING IDE will end in a future release of the Embedded Coder product.

Ending Support for Freescale MPC5xx in a Future Release

Support for the Freescale MPC5xx processor family will end in a future release of the Embedded
Coder product.

Ending Support for Infineon C166 in a Future Release

Support for the Infineon C166 processor family will end in a future release of the Embedded Coder
product.

Removed Methods and Arguments

Deprecated the type property for the Code Composer Studio IDE object. For example, entering the
following text generates an error message:

infolist = IDE_Obj.list(type)

Changes to ver Function Product Arguments
The following changes have been made to ver function arguments related to embedded code
generation products:

• The new argument 'embeddedcoder' returns information about the installed version of the
Embedded Coder product.

• The argument 'ecoder', which previously returned information about the installed version of the
Real-Time Workshop Embedded Coder product, no longer works. The software displays a “not
found” warning.

For more information about using the function, see the ver documentation.

Compatibility Considerations
If a script calls the ver function with the 'ecoder' argument, update the script appropriately. For
example, you can update the ver call to use the 'embeddedcoder' argument.

New and Enhanced Demos
The following demos have been added in R2011a:

Demo... Shows How You Can...
coderdemo_tfl Use target function libraries (TFLs) to replace operators and

functions in code generated by MATLAB Coder.

R2011a

26-20

https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2802xc2803xc28x3xc2834xepwm.html
https://www.mathworks.com/help/releases/R2012a/toolbox/ecoder/ref/c280xc2803xc28x3xc2834xeqep.html
https://www.mathworks.com/help/releases/R2012a/techdoc/ref/ver.html

Demo... Shows How You Can...
rtwdemo_code_coverage_script Generate model coverage and code coverage reports, and

use these reports to compare model coverage and code
coverage results for parts of a model.

rtwdemo_pmsmfoc_script Perform system-level simulation and algorithmic code
generation using Field-Oriented Control for a Permanent
Magnet Synchronous Machine.

The following demos have been enhanced in R2011a:

Demo... Now...
vipstabilize_fixpt_beagleboard Uses the new Video Capture block to simulate or capture a

video input signal in the Video Stabilization demo.

 Check bug reports for issues and fixes

26-21

matlab:vipstabilize_fixpt_beagleboard

Check bug reports for issues and fixes
Software is inherently complex and is not free of errors. The output of a code generator might contain
bugs, some of which are not detected by a compiler. MathWorks reports critical known bugs brought
to its attention on its Bug Report system at www.mathworks.com/support/bugreports/. In the search
bar, type the phrase "Incorrect Code Generation" to obtain a report of known bugs that produce code
that might compile and execute, but still produce wrong answers. To save a search, click Save
Search.

The bug reports are an integral part of the documentation for each release. Examine periodically all
bug reports for a release, as such reports may identify inconsistencies between the actual behavior of
a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation strategy to
identify potential bugs in your design, code, and tools.

R2011a

26-22

https://www.mathworks.com/support/bugreports/

	R2023a
	Code Generation from MATLAB Code
	instrumentCode: Add instrumentation to code you already generated for SIL or PIL execution
	Analyze coverage of C/C++ code during SIL and PIL simulations
	Generate execution time profile for custom code during SIL and PIL simulations
	Debugging for PIL execution
	Code Profile Analyzer
	Generate C/C++ code with annotations to suppress known MISRA C: 2012 and AUTOSAR C++14 violations
	Reduction of violations for AUTOSAR C++14 rules in generated code

	Model Architecture and Design
	Unused variable and macro elimination for Variant blocks in generated code
	Improve code readability of variant blocks and variant parameters by placing utassert statements in a separate function
	Group variant parameter values in a single structure array in generated code
	Model Advisor checks for component deployment using a service interface configuration

	Code Interface Configuration and Integration
	Component timer service interface enhancements
	Improve code generated for functions that include blocks that request time values by specifying target platform clock resolution
	Use code definitions from packages in service interface configurations
	Generate code using built-in FFTW library
	Coexisting code mapping configurations for data and service interfaces
	Convert subsystems with service interface mappings to referenced models
	Automatic deployment type for models with a service interface code configuration
	Automatic code suggestions and completions for code mappings programming interface

	Code Generation
	Example models attached to examples and renamed
	Replacement of Simulink data types with C99 data types
	Code interface report improvements for service interfaces
	C++ code generation support for models configured with service interfaces and nonreusable function code interface packaging
	Optimized C code for reusable subsystems
	Code replacement validation check detects unspecified rounding modes for multiplication
	Embedded Coder features available in Simulink Online
	Functionality being removed or changed

	Deployment
	Embedded Coder Support Package for Linux Applications
	Calibration file customization
	TLC function FULLFILE for full path of the file
	Support of coder.asap2.export API for DDS Blockset Models
	Code Descriptor API service interface enhancements
	Functionality being removed or changed
	Embedded Coder Support Package for STMicroelectronics STM32 Processors: Support for STM32L4xx, STM32L5xx, and STM32WBxx-based boards
	Embedded Coder Support Package for STMicroelectronics STM32 Processors: Support for CAN Read, CAN Write, FDCAN Read, FDCAN Write, SPI Receive, SPI Transmit, SPI Controller Transfer, and Digital to Analog Converter blocks
	Embedded Coder Support Package for STMicroelectronics STM32 Processors: Support for I2S Audio Out, I2S Mic In, TCP Receive, TCP Send, UDP Receive, and UDP Send blocks

	Performance
	Code Profile Analyzer
	Display of profiling results in Simulink Editor
	View additional code execution profiling results in Code view
	Stack usage profiles for child functions of tasks
	Memory allocation for execution-time profiling with XCP external mode simulations
	SIMD code for integer operations for ARM Cortex-A
	Generate SIMD code for FIR Interpolation and FIR Decimation blocks
	Improved C code for models using parfor-loops
	Data store buffer reuse for referenced models irrespective of inplace specifications
	Enhanced global data store reuse in the presence of referenced models
	Change to reuse referenced model buffers model configuration parameter settings
	Data copy reduction for referenced model buffers reuse optimization
	Improve code efficiency by using code efficiency tools and techniques

	Verification
	Debugging for PIL simulations
	Initialization of model workspace parameters for Model block SIL/PIL simulations
	Specify whether to open Code View automatically

	R2022b
	Code Generation from MATLAB Code
	Removal of initialized but unused class properties in generated C/C++ code
	Reduction of violations for MISRA C:2012 and AUTOSAR C++14 rules in generated code

	Model Architecture and Design
	Deploy models as components that include comprehensive service interface support
	Control interface of generated code using data and service interface configurations in Embedded Coder Dictionary
	Component service interface support for callable entry-point functions
	Component service interface support for target platform data receiver and data sender services
	Component service interface support for target platform data transfer service
	Component service interface support for target platform timer service
	Component service interface support for target platform parameter tuning and measurement services
	Modeling guidelines and Model Advisor checks for component deployment using a service interface configuration

	Code Interface Configuration and Integration
	Map model elements to service interfaces
	Dimension preservation of multidimensional arrays for GetSet and access function storage classes
	Support for root level inports and outports as pointer members in C++ generated code
	Functionality being removed or changed

	Code Generation
	Select code interface configuration using new configuration parameter
	Generate an example main program parameter not available for models configured with a service interface configuration
	Generated C++11 example main program simplified
	Include requirement comments in the generated code
	Files and folders for target platform services
	Code interface report for service interfaces
	Generate code for Reusable custom storage classes with symbolic dimension inputs
	New $X naming rule token
	Example models attached to examples and renamed
	New Simulink Model Advisor check for numeric efficiency
	Code replacement validation detects ambiguous overflow and rounding modes

	Deployment
	Retrieve metadata about service interface by using code descriptor programming interface
	Target Language Compiler search functions for regular expressions
	Introducing Embedded Coder Support Package for Linux Applications
	Calibration File Customization

	Performance
	Data Store Memory block reuse in reusable subsystems inside While Iterator subsystems
	Removed redundant multirate block output buffers
	Buffer reuse optimization for referenced models
	Improved cache efficiency of generated code containing loop distribution, interchange, and reversal
	Generate SIMD code for Discrete FIR Filter block
	Improved function argument generation eliminates extra global variable assignment
	SIMD code for bitwise and shift operations
	Code replacement for lookup tables that support differently sized table and breakpoint objects
	Code execution profiling for models that use GRT system target files
	Task scheduling visualization with XCP external mode simulations
	Optimized bandwidth usage during XCP external mode profiling

	Verification
	SIL or PIL block workflow
	Reusable subsystems with input signals that map to const variables

	R2022a
	Code Generation from MATLAB Code
	Removal of unused class properties in generated C/C++ code
	Reduction of violations for MISRA C:2012, MISRA C++:2008, and AUTOSAR C++14 rules in generated code
	Stack usage profiling for code generated from MATLAB code
	Identification of performance bottlenecks in generated code

	Model Architecture and Design
	Symbolic dimension inputs for Squeeze block
	Embedded Coder Dictionary interface improvements

	Code Interface Configuration and Integration
	Control code interface generated for models by specifying deployment types
	Changes to class namespaces and default class name in C++ generated code
	Calibration file customization
	Memory section mapping for grouped entry-point functions

	Code Generation
	Regular expression token decorators to modify certain tokens
	Improved comments for code that initializes instance-specific values for model arguments
	New parentheses level for MISRA standard compliance and code readability
	Improved code readability by adding "U" suffix to unsigned integer constants
	Changes to initialization
	AUTOSAR C++14 Rule A12-4-2 violation resolution
	AUTOSAR C++14 Rule A12-0-1 violation resolution
	Removed redundant S-function output buffer
	C++ Code Generation for client-server interfaces
	C++ code generation for new Message Triggered Subsystem and Message Polling Subsystem blocks to control event-triggered execution of messages
	CustomSymbolStrUtil parameter available for C++ and AUTOSAR code generation
	Functionality being removed or changed

	Deployment
	TLC function STRNREP for string replacement
	Configuration Parameter dialog box no longer lists VxWorksExample as a setting for parameter Target operating system
	Texas Instruments C2000: Support for Texas Instruments F28003x processor
	Texas Instruments C2000: Support for F28M35x (C28x), F28M36x (C28x), and ARM Cortex-M3 Core
	Embedded Coder Support Package for STMicroelectronics Discovery Boards renamed to Embedded Coder Support Package for STMicroelectronics STM32 Processors
	Support for STMicroelectronics STM32F7xx, STM32G4xx, and STM32H7xx-based Boards

	Performance
	SIMD code for reduction operations
	Code replacement for circular buffer index for Delay blocks
	Code replacement for lookup tables by using index search algorithm parameter
	Code generation by inlining redundant function calls
	Stack usage profiling for code generated from Simulink models
	Identification of performance bottlenecks in generated code
	Code execution profiling for multiple Model blocks

	Verification
	Unit-testing atomic subsystem code in AUTOSAR software component
	Functionality being removed or changed

	R2021b
	Code Generation from MATLAB Code
	Communication I/O information display during SIL or PIL execution
	Visualization of task scheduling
	Reduction of violations for MISRA C++:2008 and AUTOSAR C++14 rules in generated code

	Model Architecture and Design
	Built-in storage class for multi-instance data
	Symbolic dimension inputs for Bitwise Operator, Saturation, and Data Type Propagation blocks

	Code Interface Configuration and Integration
	Storage class with pointer data access in Embedded Coder Dictionary
	Unstructured Embedded Coder Dictionary storage class application to model reference root I/O
	Embedded Coder Dictionary storage class application to signals and parameters with symbolic dimensions
	Changes to model hierarchy requirements
	Calibration file customization
	TLC code storage classes in default mapping
	Configure additional properties from the Code Mappings editor
	View In Bus Element and Out Bus Element blocks in a hierarchy in the Code Mappings editor
	Configuring C/C++ function prototypes for subsystems not recommended
	Reusable storage class in Code Mappings editor
	Generated C++ model class name can be the model name

	Code Generation
	Accessibility of step entry-point functions generated for models designed for multitasking and concurrency streamlined
	Code view for MATLAB Function block
	Enhanced code to reduce MISRA C:2012 Rule 10.3 and Directive 4.1 violations
	Changes to generated C++ header files
	const member functions for C++ class interface
	Minimized variable visibility for C++ code
	Image data by using OpenCV class cv::Mat
	Shared types and parameters storage in same header file
	Bidirectional traceability in Code view by default

	Deployment
	New TLC variable OverrideSampleERTMain for disabling generation of example main program
	Texas Instruments C2000: Code generation support for Configurable Logic Block (CLB) and CLB X-Bar in Embedded Coder Support Package for Texas Instruments C2000 Processors
	Texas Instruments C2000: External Mode Simulation Using XCP on CAN Interface
	Support for STMicroelectronics STM32F4xx-based Boards

	Performance
	Generation of SIMD code by using new configuration parameter
	Image Processing Toolbox functions enhanced with multithreading and algorithm improvements
	Reduced data copies for models that have Bus Creator blocks
	SIMD optimization for more integer data types
	Root outport initialization code performance improvements
	Readability improvement for root outport initialization code
	Optimize code by unrolling parallel for-loops
	Improved common subexpression elimination
	Optimized SIMD code that performs fused multiply add operations
	Redundant data copies elimination by reusing S-function block buffers
	Optimized code for models containing referenced models
	Nonstatic data class member initialization of instance-specific parameters
	Code replacement for trigonometric functions that use lookup table approximation

	Verification
	Communication I/O information display during SIL or PIL simulation
	Signal and state logging for SIL and PIL simulations
	LDRA tool suite code coverage analysis

	R2021a
	Code Generation from MATLAB Code
	Multiple signature for software-in-the-loop (SIL) and processor-in-the-loop (PIL) execution
	Reduction of violations for MISRA C++:2008 and AUTOSAR C++14 rules in generated code
	Format generated code by using clang-format

	Model Architecture and Design
	Step entry-point functions generated for rate-based and concurrent execution models declared in model.h

	Code Interface Configuration and Integration
	C++ class interface configuration by using a code mappings workflow
	Instance specific parameter support for C++ class interfaces
	Auto data initialization for new storage classes
	Dimension preservation of multidimensional arrays for Simulink.Bus object
	Calibration file generation
	Code configuration for data dictionary defaults
	ASAP2 system target file being removed
	Functionality being removed or changed

	Code Generation
	Enhanced generated code to reduce MISRA C:2012 Rule 12.2 violations
	Removal of typedef from C++ struct definitions
	Braced variable initialization for C++ 11 library
	Code generation and SIL or PIL simulations for protected models from R2018b and later releases

	Performance
	Code execution profiling information in Code view
	Visualization of task scheduling
	Removal of instrumentation overhead from execution-time profiling by using target package
	Enhanced code for models containing mask blocks or Data Store Memory blocks
	GCC ARM Cortex-A code replacement library contains other ARM libraries
	Multithreading capabilities for more Image Processing Toolbox functions
	Improved cache performance of generated code containing distributed loop nests
	Improved expression folding in generated code
	Improved root outport buffer reuse to reduce data copies
	Reduced data copies for blocks with bus inputs and outputs

	Verification
	PIL target connectivity with debugger
	Unit-tests for generated code from subsystems within code from parent model
	Code view in SIL/PIL Manager

	R2020b
	Model Architecture and Design
	Determine programmatically if model or data dictionary contains Embedded Coder Dictionary
	Symbolic dimension inputs for Add, Subtract, Sum of Elements, and Sum blocks
	Improved readability for preprocessor conditionals in generated code
	Memory section configurations for atomic subsystems

	Code Interface Configuration and Integration
	Streamlined model data configuration for code generation
	Dimension preservation of multidimensional arrays for individual model elements
	Custom data type configuration and modification
	Functionality being removed or changed

	Code Generation
	Static code metrics for C99 and C++ libraries
	Code generation using multiple code replacement libraries
	Static reusable subsystem functions for C++ class interface
	Name mangling of functions inside MATLAB Function block code
	Generated code enhanced to reduce MISRA C:2012 Rule 13.5 violations
	Generate static code metrics report programmatically
	Code generation and SIL or PIL simulations for protected models from R2018b and later releases
	Cross-release code integration for non-finite numbers in shared utility code
	Enhanced traceability between variables and modeling elements in Code view
	Same name error message for Simulink.Bus object and data in C++ code
	Standardization of header guards in header files

	Deployment
	Texas Instruments C2000: Support of UDP and Hardware Interrupt Blocks for F2838x (ARM Cortex-M4) Processor in Embedded Coder Support Package for Texas Instruments C2000 Processors
	Texas Instruments C2000: Support Code Generation for SDFM Module in F2807x, F2837x, F28004x and F2838x Processors for Embedded Coder Support Package for Texas Instruments C2000 Processors

	Performance
	SIMD code generated using Intel AVX-512 code replacement library
	Improved cache performance of generated code that has loop interchange
	SIMD vectorization of loops in Simulink models
	Generated code optimization through SIMD for integer data type
	Enhanced Image Processing Toolbox functions in generated code
	Distribution of execution times for generated code internal functions
	Hardware timer for code execution profiling during PIL simulations
	Caching of array elements to scalar variables reduces computations in generated code

	Verification
	Target connectivity for PIL simulations
	SIL and PIL testing of reusable library subsystems
	Signal and state logging for SIL and PIL simulations
	Removal of top-model SIL and PIL limitations
	SIL/PIL Manager settings
	Functionality being removed or changed

	R2020a
	Code Generation from MATLAB Code
	Model Architecture and Design
	Function arguments to match graphical block interface for nonreusable subsystems
	External I/O visibility for C++ class interface
	C++ message-based communication provides length argument for service functions
	Zero initialization code model configuration parameters disabled for C++ class interface

	Code Interface Configuration and Integration
	Alias property of Simulink.CoderInfo renamed Identifier
	Model type definitions within class namespace
	Dimension preservation of multidimensional arrays for Data Store Memory blocks, states, and signals
	Storage class change for model workspace parameter converted to Simulink.Parameter
	Functionality being removed or changed

	Code Generation
	std::array support in C++ code generation
	Allow Arguments for non-reusable subsystems with C++
	$R token in Memory Sections of Embedded Coder Dictionary
	Reduction in identifier collisions in model reference hierarchy
	Static code metrics in Code view without code generation report
	SIL or PIL simulations with protected model AUTOSAR code from R2018b or later
	Storage classes on signal lines
	Removal of preprocessor guards in C++ code
	Removal of configuration parameter limitations for Simulink string code generation

	Deployment
	FFT code replacement library (CRL) support for ARM Cortex-A and Cortex-M processors

	Performance
	Data Store Memory block reuse to reduce data copies in subsystems
	Buffer reuse optimization for multidimensional arrays
	Logical operators conversion to bitwise operators in generated code
	Enhanced Image Processing Toolbox functions in generated code
	Capture main code execution profiling metrics on target hardware
	Efficient code for model-reference builds in presence of function prototype control
	Symbolic dimension support for Reshape blocks

	R2019b
	Code Generation from MATLAB Code
	Customize C/C++ code file names generated from MATLAB code
	Custom type definitions from external header files
	Disable generation of initialize function
	Function profiling for SIL and PIL execution

	Model Architecture and Design
	Symbolic dimension support for Stateflow Data
	Generate C++ Code for Software Compositions with Message-Based Communication
	Cut, copy, and paste code definitions in Embedded Coder Dictionary
	Configure Embedded Coder Dictionary programmatically

	Data, Function, and File Definition
	Generated code calibration and monitoring through XCP and third-party tools
	Argument specifications not required for Function Caller blocks that invoke scoped Simulink functions
	Implicit validation occurs when configuring C function prototypes
	Map storage classes defined in Embedded Coder Dictionary to nonreusable subsystems with separate data
	Code Mappings Editor Changes
	Function rtw.asap2SetAddress extracts DWARF debug symbols from binaries compiled using MinGW compiler

	Code Generation
	Optimized C++ generated code for reusable functions
	Embedded Coder contextual tabs on the Simulink Toolstrip
	Simulink strings through standard C++ string library
	C++ static_cast in generated code
	Inline traceability for variable and type definitions

	Deployment
	Performance
	Improved Data Store Memory block reuse to reduce data copies
	SIMD vectorization for loops
	Optimized code execution speed for Ceiling, Floor, Minimum and Maximum SIMD intrinsic functions
	SIMD vectorization for loops without compile-time bounds
	SIMD for row-major operations
	Specification of upper constraint limit for symbolic dimensions
	Parameter expression saturation
	Changes to zero initialization code model configuration parameter default settings
	Enhanced code execution profiling report
	Elimination of unused writes to global variables

	Verification
	SIL/PIL Manager
	Code coverage information in Code view
	Data logging and signal viewer block support for export function models
	SIL/PIL for AUTOSAR Classic Software Components containing referenced models
	Traceability for hidden blocks

	R2019a
	Code Generation from MATLAB Code
	Custom Data Type Replacement: Specify custom data type names for MATLAB data types

	Model Architecture and Design
	Library-based code generation for reusable subsystem function interfaces
	AUTOSAR Blockset product replaces Embedded Coder Support Package for AUTOSAR Standard
	MISRA C:2012 and Secure Coding checks to improve compliance of generated code

	Data, Function, and File Definition
	Preserve array dimensions for root-level inports and outports in generated code
	Custom storage class with different code generation settings for single-instance and multi-instance data
	Code generation definitions in multiple packages from Embedded Coder Dictionary
	Storage classes with get and/or set data access functions in Embedded Coder Dictionary
	Code definitions from local and shared Embedded Coder Dictionaries
	Code packaging support for model arguments
	Model argument support for top models
	C entry-point function prototype preview and customization in the Code Mapping Editor

	Code Generation
	Code metrics information in code view
	Cross-release code import without opening previous release
	Import of code from previous release for code generation-only workflow
	Maximum line width for generated code
	Symbolic dimension support for %roll directive
	Embedded Coder contextual tabs on the Simulink Toolstrip Tech Preview

	Deployment
	Embedded Coder Support Package for PX4 Autopilots: Generate, build and deploy Simulink models on Pixhawk flight controllers
	DSP System Toolbox Support Packages for ARM Cortex -A and ARM Cortex -M Processors will be removed

	Performance
	Reusable custom storage classes across referenced models
	Parallelization of execution of for-loops
	Subsystem output with internal signals for buffer reduction
	Optimized code execution speed for Single Instruction, Multiple Data (SIMD) intrinsic division operation
	Optimized code for Switch Case blocks
	Removal of instrumentation overhead from execution-time profiling
	Improvement in execution speed through common subexpression elimination
	Data copy reduction in function calls
	Code generation for lookup table optimization

	Verification

	R2018b
	Code Generation from MATLAB Code
	Column Limit in Generated Code: Generate more readable code by controlling line wrapping
	Static Code Metrics On Demand: Run static code metrics analysis when needed after code generation
	Single Instruction, Multiple Data (SIMD) Support: Generate Intel SSE/AVX intrinsic in MATLAB Coder

	Model Architecture and Design
	Multi-Instance Code Generation: Generate multi-instance code for top and referenced models that are based on rates, exported functions, or rates and exported functions
	Code Preview in Embedded Coder Dictionary: Verify pseudocode preview as you select data, function, and memory section properties
	Embedded Coder Dictionary Mapping Control: Define storage classes that restrict mappings to parameters or signals
	Embedded Coder Dictionary Version Handling: Use and export code definitions saved in previous releases with models created in later releases
	AUTOSAR Run-Time Calibration: Map internal signals, states, and model workspace parameters to AUTOSAR component memory and internal parameters for calibration
	AUTOSAR Memory Sections: Use SwAddrMethods to control memory placement of AUTOSAR runnable functions and internal data
	AUTOSAR XML Import and Export: Round trip imported arxml file structure and control packaging of new elements
	AUTOSAR XML Import: Changes to ArTypedPerInstanceMemory and StaticMemory import behavior
	Obsolete AUTOSAR signal and state map functions removed
	MISRA C:2012 and Secure Coding Standards: Improve compliance of generated code by using updated Model Advisor checks

	Data, Function, and File Definition
	Individual Function Mappings in Code Mapping Editor: Override default function mappings with individual function mappings
	Function Interface Control: Access Configure C Step Function Interface dialog box from Code Mapping Editor in code perspective
	Function Interface Control: Configure step functions for multi-instance, rate-grouped, single-tasking models
	Shared Default Code Configurations for Data and Functions: Share default code configuration settings between models
	Storage Class on Root-Level I/O: Access global data and functions in multi-instance models

	Code Generation
	Code View in Code Perspective: View generated code directly in Code Perspective
	Data Coherency: Generate one variable for each Data Store read and write operation
	AUTOSAR Code Generation: Automatically generate AUTOSAR platform data types in C code
	Data Type Replacement: Specify replacement types for 64-bit integers
	Multi-Dimensional Arrays: Preserve array dimensions for parameters and lookup tables in generated code
	Hardware Implementation Parameters: ProdHWDeviceType and TargetHWDeviceType are case-insensitive
	Enumerated Types: Optimizations in generated code

	Deployment
	Texas Instruments C2000: Use DMA and CAN blocks for all supported C28x devices with the addition of DMA for F28x7x/F28004x and CAN for F28004x
	Code Generation Assumptions: Use standalone workflow to run checks
	Build Process: Library and header files for model reference hierarchy are not copied
	Build Process: MATLAB_INCLUDES is not required in custom template makefiles
	STM32F7 Tuning and Monitoring: Perform external mode simulation on STM32F7 for parameter tuning and signal monitoring by using XCP over TCP/IP or UART (Serial)

	Performance
	Execution-Time Profiling: Specify profiling granularity through model-wide and block-specific controls
	Global Variable Caching: Reduce access for global variable arrays with custom storage classes
	Data Copy Reduction: Eliminate unnecessary data copies for Mux blocks
	Enhanced Buffer Reuse: Buffer reuse across the boundary of an Iterator subsystem
	Code Replacement: Optimize generated code with SIMD and row-major order support and code replacement enhancements
	Inplace Optimization for Assignment Blocks: Reduce data copies for Assignment blocks
	Execution Speed: Eliminate redundant subexpressions
	Single Instruction, Multiple Data (SIMD) Intrinsics: Generate code with optimized load and store operations for multidimensional signals and square root operations
	Code Generation Report: Generate static code metrics reports faster
	Functionality Being Removed or Changed
	Cache Efficiency: Store global block signal and state data operating at the same rate in one data structure

	Verification
	SIL and PIL Simulations: Advanced custom storage classes support
	SIL and PIL Simulations: Support for imported grouped custom storage classes
	Model Block SIL and PIL: Accelerator mode SIM target is not built

	R2018a
	Code Generation from MATLAB Code
	Interactive Traceability: Visualize mapping between MATLAB code and C code
	Polyspace Integration: Verify C/C++ code generated with MATLAB Coder by using simplified workflow
	Changes to Setup for MISRA C Compliance: Disable dynamic memory allocation and set C standard math library to C99 (ISO)

	Model Architecture and Design
	Embedded Coder Dictionary: Create custom code generation definitions for data and functions
	Multi-Instance Code Generation: Apply more control when generating reusable, reentrant code
	Variant Blocks Usability Enhancement: Generate Preprocessor Conditionals by using MATLAB variables as variant controls
	MISRA C:2012 Compliance and Deviation Considerations: Guidance for evaluating your generated code for compliance with MISRA C:2012 directives and rules
	Modeling Checks: Improve compliance of generated code by using Model Advisor check for MISRA C:2012
	AUTOSAR Release 4.3: Import and export AUTOSAR XML schema version 4.3
	AUTOSAR Perspective: Map and configure software components by using Code Mapping Editor and AUTOSAR Dictionary
	AUTOSAR XML Import and Export: Round-trip ComSpecs, import bitfield CompuMethods, export interface variation points, and automate more element creation
	AUTOSAR Signal Invalidation Block: Specify invalidation policy and initial value directly as block parameters
	AUTOSAR Basic Software: Use array and bus data types with NvMServiceCaller operations
	Obsolete AUTOSAR functions removed

	Data, Function, and File Definition
	Function-Prototype Control: Configure step function name with void void interface
	Default Code Configurations for Data and Functions: Apply default code generation configurations for categories of model data and functions across a model
	GetSet Custom Storage Class Enhancement: Improved readability for an array of buses
	Local Storage Class: Preserve local variables with Localizable storage class
	Accurate Header File Extension: Generate correct #include statements for imported data types
	Macro Access: Get data through a macro that your code defines
	Tokens for Memory Sections: Use $N token instead of identifier
	Parameter Initialization: Statically initialize tunable parameters from system constants and other macros
	Model-Scoped Parameter Objects: Use FileScope to prevent name clashes between parameters in different models
	File Packaging of Generated Code for Global Simulink Function Blocks: Code for function body placed in model.c
	Identifiers: Represent name of storage class in identifier naming rules by using new token $G
	Functionality Being Removed or Changed

	Code Generation
	Code Perspective: Customize Simulink desktop for code generation workflows
	Rate Transition Block Code Customization: Separate Rate Transition block code and data from algorithm code and data
	Generated Files: Customize generated file names with new token $E
	Hardware Implementation Settings: Inaccurate values corrected
	Cross-Release Code Integration: Reuse referenced model code with instance-specific parameters
	Cross-Release Code Integration: Import and simulate AUTOSAR code
	Traceability Comments: Specify Simulink identifier in comments for Simulink blocks, Stateflow objects, and MATLAB Function blocks
	Newline Style: Customize linefeed character irrespective of the operating system
	Export Functions: Generate ScratchModel file containing a Model block

	Deployment
	Build Process: Specify toolchain for template makefile
	Build Process Status for Parallel Builds: View and interact with build process status for parallel builds of referenced model hierarchies
	TI C2000 IPC Block: Support for Inter-Processor Communications for F2837xD in TI C2000 Support Package
	C2000 F28004x: Support for peripherals in Texas Instruments C2000 Support Package
	STM32F7 Audio: Multiple channel Mic-In, Line-In, and Speaker out for STM32F769I-Discovery in STM32 Support Package
	STM32F7 External Mode: Support for TCP/IP and Serial Communication for STM32F769I-Discovery board in STM32 Support Package
	External Mode Simulation: Upload execution-time metrics through XCP transport layer

	Performance
	Single Instruction, Multiple Data (SIMD) Intrinsics: Generate code with optimized load and store operations for use with Intel processors with SSE/AVX support
	Preprocessor Conditionals: Obtain better readability of generated code for variant systems
	Buffer Reuse: Prioritize buffer reuse based on signal labels in model diagram
	Configuration Set: New location and layout for optimization model configuration parameters
	Data Copy Reduction: Generate code with fewer data copies for writes to structure fields and matrix elements and for control flow patterns
	Code Size Reduction: Eliminate identical functions in the generated code
	Code Replacement: Optimize generated code with SIMD and row-major order support and improved library header file packaging
	Execution Speed: Move invariant code containing global variables out of for loops

	Verification
	PIL Simulation: Verify initial values of global variables

	R2017b
	Code Generation from MATLAB Code
	Setup for MISRA C Compliance: Configure code generation parameters to increase compliance with MISRA C:2012 guidelines
	SIL/PIL Execution Performance: Speed up SIL or PIL execution by disabling constant input checking and global data synchronization
	Execution-Time Profiling: Display time units in code execution profiling report
	Default Case for Switch Statements: Increase generated code compliance with coding standards

	Model Architecture and Design
	Function Interfaces: Generate multi-instance functions from export-function models and control scope of Simulink functions
	AUTOSAR Compositions and Basic Software: Import AUTOSAR compositions and simulate diagnostic and memory services
	AUTOSAR Sender-Receiver Communication: Model AUTOSAR queued send and receive using Simulink messages
	MISRA C: 2012 Modeling Checks: Improve compliance of generated code by using new MISRA C: 2012 standards checks
	Modeling Support for Secure Coding Standards: Check model for compliance with secure coding requirements in CERT C, CWE, ISO/IEC TS 17961 standards to improve security of generated code
	Code Reuse: Generate reusable code for subsystems that contain data objects with imported custom storage classes

	Data, Function, and File Definition
	Storage Class for Model Workspace Parameters: Apply custom storage classes to parameter objects in a model workspace
	Custom Storage Class Simplification: Default removed from drop-down lists

	Code Generation
	Cross-Release Code Integration: Reuse code from models containing model references, global I/O, data stores, and parameters
	Cross-Release Code Integration: Run all workflow tasks from current release
	AUTOSAR Run-Time Calibration: Measure and calibrate signal and discrete state data using arTypedPerInstanceMemory
	Stateflow Element Traceability: Obtain enhanced inline traceability
	Stateflow Objects and MATLAB User Comments: Configure comments flexibly
	Enhanced Shared Utilities Naming: Customize the names of shared utility functions that are inside MATLAB Function blocks
	Checksum Length: Specify the character length of the $C token
	Code Style: Generate static keyword for locally scoped functions
	Configuration Parameters Dialog Box: View your model and code generation configuration parameters in unified dialog box with search capability
	Improved Readability of the Generated Code: Include parentheses around compound expressions containing right-shift operators

	Deployment
	AUTOSAR Support Package: Run live-script examples for AUTOSAR compositions and Basic Software
	Support Package renamed to Embedded Coder Support Package for Intel SoC Devices
	Support Package renamed to Embedded Coder Support Package for Xilinx Zynq Platform
	Removed Support for Wind River VxWorks Hardware

	Performance
	RAM Reduction: Reduce data copies in For Each subsystems and reuse buffers of different sizes
	Reusable Storage Class: Specify reusable custom storage classes anywhere on a path
	Execution Speed: Eliminate redundant subexpressions
	Execution Speed: Convert data copies to pointer assignments for more modeling patterns
	Execution Speed: Move invariant code out of for loops
	Block Reordering for Improved Execution Efficiency: Change block execution order to enable buffer reuse and loop fusion
	MATLAB Function Block Buffer Reuse: Perform inplace assignment with root I/O
	Execution-Time Profiling: Display time units in code execution profiling report and Simulation Data Inspector
	memcpy and memset Optimization: Generate more efficient code for variable-size arrays
	Data Copy Reduction: Generate fewer data copies at function call sites
	Code Replacement: Apply MustHaveZeroNetBias and SlopesMustBeTheSame properties for fixed-point operator code replacement
	Enumerated Data Types Optimization: Improve the efficiency of the generated code for enumerated data types

	Verification
	Multiple Processor SIL/PIL Testing: Perform SIL or PIL component tests on different processors simultaneously
	SIL Simulation: Simplified configuration of hardware implementation settings
	SIL/PIL Configuration: Parent model code coverage, execution-time profiling, and SIL debugging settings apply to Model blocks with Top-model code interface
	Hardware Implementation Settings: SIL checks relaxed for data type sizes and byte ordering

	R2017a
	Code Generation from MATLAB Code
	SIL and PIL execution improvements for MATLAB Coder
	Verification of PIL target connectivity configuration
	Code Replacement for MATLAB Coder: Create code replacement library entries for target implementations that require data alignment

	Model Architecture and Design
	AUTOSAR arxml File Import: Flexibly model imported periodic, asynchronous, and initialization runnables
	AUTOSAR DESC elements populate Simulink Description fields
	External mode code generation for a model containing inline variant blocks
	Code generation support for Variant Subsystems containing global signals
	Preprocessor conditionals guard content inside and outside of function-call site

	Data, Function, and File Definition
	Function Interface: Return nonvoid type for scalar output of reusable functions
	Utility to generate Simulink representations of struct and enum types defined by external C code

	Code Generation
	Cross-Release Code Integration: Reuse model reference code generated from previous releases
	Code Replacement for Cast and Multiply Operations: Detect overflow and rounding mode equivalence for increased matches and code efficiency
	More information in code generation report summary
	Code Interface Report: Includes entry-point function for code generated from Reset Function block
	Shared utility memory section associated with subfunctions
	Inline traceability for generated code
	Clear file section content from TLC file
	Identifier case control with token decorators and custom text token $U
	Name change for AUTOSAR local temporary variables
	Additional checks against MISRA C:2012 guidelines in Code Generation Advisor

	Deployment
	TI Code Composer Studio (CCS): Generate projects for CCS versions 5 and 6 with Embedded Coder Target for TI C2000
	Customize generated makefiles for S-Functions
	Release notes and workflow overview documentation added to AUTOSAR support package
	SPI and I2C blocks added to TI C2000 support package
	CCS v3.3 IDE automation support for TI C2000 has been removed
	Real-time multitasking profiling for TI C2000
	TCP and UDP blocks added to STMicroelectronics STM32F746G-Discovery board
	MATLAB Coder PIL with STMicroelectronics STM32F4-Discovery Board
	External Mode and PIL supported over TCP/IP by STMicroelectronics STM32F746G-Discovery board
	Linux Support: Connect to ARM Cortex-M processor on Linux platform
	ARM Cortex-R optimized code
	Develop a Target for ARM Cortex-R processors
	Support for Wind River VxWorks RTOS will be removed

	Performance
	Data Copy Reduction: Generate fewer data copies and use less RAM for buses, data stores, and model blocks
	Code Efficiency: Improve loop fusion for Sum of Elements blocks and generate less code for temporal logic in Stateflow
	Data copy reduction for Merge blocks
	More instances of buffer reuse for blocks and subsystems in a chain
	Improved buffer reuse due to changes in block execution order
	More efficient code for Bus Creator blocks
	Buffer reuse for Variant Source blocks

	Verification
	SIL and PIL Testing: Log signals inside exported functions and stream signals to Simulation Data Inspector during simulation
	Verification of PIL target connectivity configuration

	R2016b
	Code Generation from MATLAB Code
	Static code metrics report for C++ code
	Verification of size_t and ptrdiff_t hardware settings
	Verification of PIL target connectivity configuration
	Optimization for array indexing in loops
	Reduction of the Intel Performance Primitives (IPP) code replacement libraries (CRL)

	Model Architecture and Design
	AUTOSAR Basic Software (BSW) Services: Simulate BSW including Diagnostic Event Manager (DEM) and NVRAM Manager (NvM)
	AUTOSAR Parameters: Model STD_AXIS and COM_AXIS lookup table parameters, export SwRecordLayouts, and apply SwAddrMethods
	AUTOSAR startup, reset, and shutdown modeling
	AUTOSAR external trigger event communication
	AUTOSAR support for JMAAB model architecture
	AUTOSAR ExplicitReceiveByVal data access mode for receiver ports
	AUTOSAR ModeSenderPorts and ModeSwitchPoints for application mode management
	AUTOSAR reference element definitions for sharing among components and services
	ERT Target Code Generation: Remove unreachable reset and disable functions to reduce dead code
	Conditional compile time check for imported macros with ImportedDefine custom storage class
	Additional guarding of global data for variant systems

	Data, Function, and File Definition
	Simulink Function Code Interface: Configure generated C/C++ function interfaces for Simulink Function and Function Caller blocks
	ERT default value for configuration parameter ParameterTunabilityLossMsg

	Code Generation
	Cross-Release Code Integration: Reuse code generated from earlier releases
	Compound Operation Code Replacement: Replace "Multiply Shift Right Arithmetic" and "Multiply Divide" in generated code with a single custom operation
	ARXML import/export and C code generation for latest AUTOSAR 4.2 and 3.2 standard revisions
	AUTOSAR code replacement library enhancements
	Static code metrics report for C++ code
	Static code metrics data produced by Polyspace
	Streamlined report pane for easier model configuration
	Improved traceability between model and code
	Code replacement enhancements
	$I macro changed for argument names used as input and output
	Improved compliance with MISRA C:2012 Rules 10.1, 10.5, and 10.8
	Improved compliance with MISRA AC AGC Rule 12.6
	Use default installation folder on Windows system with ReFS file system

	Deployment
	Cortex-M7 Target Support Package: Generate code for STM32F746G-Discovery Board
	Added Embedded Coder Support Package for ARM Cortex-R Processors
	Improved External mode over serial communication
	New blocks added to TI’s C2000 support package
	Change in name and the base product for the FRDM-K64F and the FRDM-KL25Z support packages
	Support for TI's C5000 DSPs has been removed
	Support for TI’s C6000 has been removed
	Support for Wind River VxWorks RTOS will be removed
	Support for idelink_ert.tlc will be removed

	Performance
	Data Reuse and Memory Reduction: Reuse global data for nonreusable subsystems and reduce data copies with user-specified buffers
	Code Optimizations: Generate more efficient code with select-assign-iterator pattern and matrix padding operations
	Display of code execution times for model component
	More efficient code for array element assignments
	Loop fusion for nested for loops
	More efficient initialization code for root-level inports
	More efficient code for Boolean expressions

	Verification
	Verification of size_t and ptrdiff_t hardware settings
	Verification of PIL target connectivity configuration
	Signal range checking in SIL and PIL simulations
	SIL and PIL block support for Simulink Function and Function Caller blocks

	R2016a
	Code Generation from MATLAB Code
	Export data by using ExportedDefine storage class
	SIL execution returns standard output and standard error streams

	Model Architecture and Design
	Compile-Time Dimensions: Generate compiler directives (#define) for implementing signal dimensions
	Compile-Time Variants: Generate compiler directives (#if) for variant choices specified with Variant Source and Variant Sink blocks
	C++ Code Generation: Use referenced models with multitasking, export-functions, and virtual buses
	MISRA C:2012 Compliance: Check block names and Assignment blocks by using the Model Advisor
	AUTOSAR Round Trip: Automate model additions for update and merge of ARXML files
	Comment change in generated code
	Variants in AUTOSAR component modeling
	AUTOSAR DataReceivedEvents for receiver ports in ImplicitReceive data access mode
	AUTOSAR LiteralPrefix for enumerations in IncludedDataTypeSets
	Programmatic validation and synchronization of AUTOSAR model configurations

	Data, Function, and File Definition
	In/Out Arguments: Specify same variable name for in/out arguments of MATLAB Function and Model blocks
	Custom Storage Class Type AccessFunction
	Creation of custom storage classes for macros defined by compiler options
	Generation of ERT S-functions that represent variant controls as preprocessor conditionals

	Code Generation
	Default style C++ interface replaces the void-void style C++ interface
	Compiler warning limitation removed for portable word sizes in SIL simulations
	AUTOSAR arxml round trip
	Improved AUTOSAR library support for Mfx functions
	AUTOSAR target no longer supports building wrapper subsystem as AUTOSAR SW-Component
	Root model name in generated identifier for shared utility files
	Improved configuration parameter defaults for Embedded Coder targets
	Streamlined code generation panes for easier model configuration
	Build button removed from Configuration Parameters dialog box
	Improved web view for code generation report
	Dependent parameters not added to custom code generation objective
	Removal of leading underscore character in macro type definitions

	Deployment
	Hardware implementation parameters enabled by default
	MATLAB Coder PIL With ARM Cortex-A: Verify and profile ARM optimized code with Altera SoC and Xilinx Zynq hardware
	Updates to support package for Texas Instruments C2000 processors
	Support package for Freescale FRDM-K64F board
	Support for TI’s C5000 DSPs will be removed
	Support for TI’s C6000 DSPs will be removed
	Change in base product for ARM Cortex-Based VEX Microcontroller support package

	Performance
	Data Buffer Reuse: Use same variable for multiple signals in a path by using the same Reusable storage class specification
	Reuse input, output, and state of Delay block
	Initialization code occurs once after start code in model_initialize function
	Reset function improves initialization code optimization
	Removal of unnecessary rtmIsFirstInitCond flag
	Optimized code for models containing logical operator blocks
	Improved code for conditional expressions involving Boolean expressions
	memset Optimization for more scenarios
	Changes to meaning of createCRLEntry wildcard syntax for fixed-point data
	Code replacements involving root-level I/O variables and data alignment

	Verification
	SIL/PIL Data Access: Use vector Get/Set custom storage class and C++ parameter access methods
	SIL/PIL support for variant condition propagation
	SIL simulation returns standard output and standard error streams
	Linux SIL/PIL support for LDRA Testbed

	R2015aSP1
	R2015b
	Code Generation from MATLAB Code
	MATLAB Coder Storage Classes: Easily import and export data by using storage classes
	MATLAB Coder PIL With ARM Cortex-A: Verify and profile ARM optimized code with BeagleBone Black hardware
	Code generation assumptions verified during PIL execution
	Control of signed right shifts in generated code
	Detection of multiword operations

	Model Architecture and Design
	MISRA-C 2012: Comply with mandatory and required rules
	AUTOSAR 4.1.3 and 4.2: Import and export ARXML and generate code for latest AUTOSAR standard
	AUTOSAR sender-receiver modeling
	AUTOSAR client-server modeling
	AUTOSAR nonvolatile data communication modeling
	AUTOSAR component behavior modeling
	AUTOSAR COM_AXIS lookup table modeling
	Embedded Coder model templates
	Removal of uncalled Disable functions from generated code
	Enhancement to option for generating preprocessor conditionals

	Data, Function, and File Definition
	Tokenized function names for custom storage class GetSet

	Code Generation
	Embedded Coder Quick Start: Quickly configure model to generate reusable and efficient code
	Internationalization: Generate and review code containing mixed languages for different locales
	MISRA C:2012 code generation objective
	AUTOSAR arxml round-trip
	Toolchain controls for AUTOSAR code generation
	AUTOSAR RTE file generation enhanced for SIL and PIL
	Lookup table blocks with new even spacing specification generate AUTOSAR compatible IFX library routines
	Control use of signed shifts in generated code
	Code generation report with operator traceability

	Deployment
	Hardware Implementation Selection: Quickly generate code for popular embedded processors
	Code Replacement Tool uses simplified specification
	Code replacement support for new lookup table breakpoint specification
	Support for Analog Devices VisualDSP++ will be removed

	Performance
	RAM/ROM Optimization Improvements: Generate more efficient code using reusable storage class and converting data copies to pointer assignments
	Live Execution Profiling: View PIL profile results during run-time
	Enhanced support for buffer reuse at the root-level input and output ports
	More efficient code for small subsystems
	More efficient code for Simulink.Bus objects
	Enhanced local variable reuse
	Enhanced consolidation of for loops

	Verification
	Faster SIL and PIL Verification Workflow
	Code generation assumptions verified during PIL simulation
	SIL and PIL support for C++ class root-level I/O access methods
	Removal of Generate code only parameter restriction
	Removal of scheduling limitations that caused algebraic loops

	R2015a
	Code Generation from MATLAB Code
	Indent style and size control for generated C/C++ code
	Improved MISRA-C compliance for bitwise operations on signed integers
	Improved MISRA-C type cast compliance

	Model Architecture and Design
	AUTOSAR improvements including multi-runnable modeling and code efficiency
	Combined input/output arguments with function prototype control
	Improved MISRA-C compliance for bitwise operations on signed integers
	AUTOSAR multi-runnable modeling using Simulink rate-based multitasking
	Enhanced modeling with AUTOSAR system constants
	AUTOSAR CompuMethod enhancements
	Preprocessor conditionals for single variant choice

	Data, Function, and File Definition
	Control of Boolean and data type limit identifiers in generated code
	Names of built-in storage classes reserved

	Code Generation
	Simplified Code Replacement Library specification plus more replacements involving integer operations
	Improved readability for shared header file 'rtwtypes.h'
	New and enhanced Model Advisor checks for MISRA-C compliance
	Improved traceability for AUTOSAR RTE implicit read
	Configurable aliveTimeout value for AUTOSAR ports
	AUTOSAR calibration parameter export for COM_AXIS lookup tables
	Fixed-point scaling information in Code Interface Report
	Unsigned integer minimum data limit identifiers
	Default iteration variable data type

	Deployment
	Code Replacement Viewer enhanced
	Model configuration parameter considered for division operator code replacements
	Lookup table algorithm parameter specification enhancements
	Header file for Basic Linear Algebra Subroutine (BLAS) multiplication function code replacement example changed
	Code replacement detection of overflow and rounding mode equivalence
	Feature being removed in a future release

	Performance
	More efficient code involving model references, unit delays, and global data references
	Conditional compilation of Data Store Memory block memory definition and declaration
	Ternary Boolean expressions transformed into assignment statements

	Verification
	SIL/PIL for protected models and SIL source code debugging using Microsoft Visual Studio Express
	Model block SIL/PIL parameter renamed
	ERT S-Function block no longer supported for AUTOSAR
	SIL/PIL support for replacing boolean data type with int8
	SIL/PIL support for generated access methods for C++ model class root-level I/O signals

	R2014b
	Code Generation from MATLAB Code
	Processor-in-the-loop (PIL) verification and execution profiling for MATLAB code
	Software-in-the-loop verification improvements for MATLAB Coder
	Additional options for custom banners and comments in C and C++ code generated from MATLAB code
	Highlighting of potential data type issues in code generation reports

	Model Architecture and Design
	AUTOSAR targeting updates including 4.1 ARXML, client/server with Simulink Functions, multi-instance components, and IFL/IFX libraries
	AUTOSAR client and server modeling
	Global From and Goto blocks for AUTOSAR modeling
	AUTOSAR IRV branch from outport signal allowed outside runnable

	Data, Function, and File Definition
	Constant sample time limitation for AUTOSAR models
	Iteration variable in For Iterator block uses signal name
	Data type replacement specification can be used across models
	Definition file for grouped custom storage classes
	Type definition location for custom storage classes
	GetFunction and SetFunction included in checks for identifier clash

	Code Generation
	Enhanced reporting of eliminated blocks
	Improved MISRA-C type cast compliance
	Support Package for AUTOSAR Standard
	AUTOSAR help navigation enhancements
	Support for AUTOSAR Release 4.1
	Multi-instance AUTOSAR atomic software components
	AUTOSAR arxml import and export
	AUTOSAR addPackageableElement replaces add*Interface functions
	Code generation report with enhanced navigation and integrated access to code metrics data
	Updated license requirements for viewing code generation report
	Option for doxygen style comments in generated code
	Dynamic memory allocation parameters renamed
	Template makefile compatibility with execution time profiling
	Intel Performance Primitives (IPP) platform-specific code replacement libraries for cross-platform code generation

	Deployment
	Embedded Coder support packages for AUTOSAR, TI Concerto, and Freescale FRDM-KL25Z
	Relational operator replacement
	Code replacement involving vector and matrix data
	Algorithm specification for addition and subtraction operator replacement
	Improved code replacement with output type cast absorption
	Lookup table function code replacement extended to 30 dimensions
	Rounding mode support for lookup table function replacement
	Algorithm parameter value sets in code replacement table entries
	coder.replace support for functions specified with varargin input variable
	Documentation installation with hardware support package
	Support package for Altera SoC platform
	Support package for BeagleBone Black hardware
	Support for Eclipse IDE has been removed
	Support for Green Hills MULTI IDE has been removed
	Support for Texas Instruments C5000 DSPs will be removed

	Performance
	Reduced RAM and faster execution for modeling patterns including select-assign-iterate blocks, subsystem interfaces, and model references
	Global variable localization optimizations

	Verification
	Top-model code testing with Model block SIL and PIL
	SIL/PIL support for Simulink Function and Function Caller blocks
	SIL debugging support for Linux
	PIL support for test hardware approach
	SIL/PIL support for model initialization dynamic memory allocation

	R2014a
	Code Generation from MATLAB Code
	Template to customize code generation output for MATLAB Coder
	In-place function replacement with coder.replace in MATLAB
	Single-line (//) comment style available for generated code
	Software-in-the-loop verification for MATLAB Coder
	Change of default value for MATLABFcnDesc

	Model Architecture and Design
	Capability to merge AUTOSAR authoring tool changes into Simulink models as part of round-trip iterations
	AUTOSAR 4.0 static and constant memory, AUTOSAR-typed per-instance memory, and VariationPointProxy
	Specify AUTOSAR runnable symbol name distinct from short-name
	Improved AUTOSAR arxml support for measurement and calibration
	AUTOSAR data dictionary support
	Configure AUTOSAR Interface button removed from AUTOSAR Code Generation Options
	Subsystem methods of AUTOSAR arxml.importer class removed

	Data, Function, and File Definition
	Custom storage class and optimized class declarations for C++ class code generation
	Constant sample time limitations for root-level Outport blocks
	Example model rtwdemo_cppencap renamed to rtwdemo_cppclass
	Unit Delay block optimization

	Code Generation
	In-place function replacement with coder.replace in MATLAB and lookup table code replacement for Simulink
	Global variable usage available in the static code metrics report
	Single-line (//) comment style available for generated code
	Code indentation support for namespace declarations in generated code
	AUTOSAR C code generation enhancements
	Static main program module for C++ class code generation
	Error message for data type replacement and classic call interface conflict

	Deployment
	ARM Cortex-A optimized code generation using Ne10 library
	Lookup table code replacement for Simulink
	Replacement of functions that take vector and matrix arguments
	Logical data type support for arguments of replaced functions
	Code replacement data alignment for complex types
	Intel IPP (ANSI) and Intel IPP (ISO) code replacement libraries are combined
	Support for Eclipse IDE will be removed
	Support for Green Hills MULTI IDE will be removed
	Support package for ARM Cortex-A processors
	Support package for Texas Instruments C6000 processors
	Updates to support package for Texas Instruments C2000 processors
	Updates to support package for Xilinx Zynq-7000 platform
	Updates to support package for STMicroelectronics STM32F4 Discovery board
	Wind River Tornado (VxWorks 5.x) example main program option to be removed in future release

	Performance
	Additional options for reuse of global variables
	Enhanced global variable optimization options
	for loops used to initialize arrays to zero

	Verification
	Software-in-the-loop simulation for physical models
	SIL verification for subsystem code generation
	SIL and PIL support for fixed-point data type override
	SIL and PIL support for Invoke AUTOSAR Server Operation block
	SIL and PIL support for structure parameters with storage class SimulinkGlobal
	Model block SIL and PIL with export-function and asynchronous function-call models
	Model block SIL and PIL with disabled inline parameters
	SIL and PIL block improvements

	R2013b
	Code Generation from MATLAB Code
	Software-in-the-loop verification for MATLAB Coder
	Custom generated identifiers for emxArray utility functions

	Model Architecture and Design
	Enhanced modeling of AUTOSAR runnables and modes, and improved ARXML import of internal behavior
	Reorganization of Model Advisor Embedded Coder checks
	Model Advisor fixed-point checks with additional coverage and optimization awareness
	Protected model Web view
	RTW.AutosarInterface class to be removed in a future release
	Subsystem methods of arxml.importer class to be removed in a future release

	Data, Function, and File Definition
	Simplified global types file rtwtypes.h with invariant content
	C++ encapsulation support for name space control and template-based file customization
	Shared utility naming control
	Expanded support for identifier names
	Terminate function setting honored for subsystems and referenced models

	Code Generation
	Support for AUTOSAR release 4.0.3 XML and generated code
	Indent style and size control for code generation
	Subsystem functions return value in generated code
	Model reference step function void input and output arguments

	Deployment
	ARM Cortex-M optimized code with STM32F4-Discovery board example
	Wind River VxWorks 6.9 support
	Support package for Texas Instruments C2000 processors
	Coder Target pane in Configuration Parameters dialog box
	ZedBoard hardware support
	Simplified multi-instance code interface and dynamic memory allocation for ERT targets
	Addition and Subtraction Operator Code Replacement Assumes Cast-Before-Operation Behavior

	Performance
	Reusable custom storage class to reduce root I/O memory
	Subsystem functions reused independently of output connection

	Verification
	SIL and PIL support fixed-point data types wider than 32 bits
	SIL and PIL protected model support
	Code execution profiling improvements

	R2013a
	Code Generation from MATLAB Code
	Improved code replacement traceability for MATLAB code generation
	Static code metrics report for MATLAB Coder

	Model Architecture and Design
	AUTOSAR user interface and round trip ARXML file import and export improvements
	Code generation for variable-size scalar signals

	Data, Function, and File Definition
	Shortened system-generated identifier names
	Improved data initialization with custom storage classes
	Default specification for global types
	Subsystem block parameter Function packaging option renamed

	Code Generation
	Model Advisor checks for code generation

	Deployment
	Concurrent execution API to target embedded multicore platforms
	Hardware configuration relocation from Target Preferences block to Configuration Parameters dialog box
	Downloadable support and blocks for Analog Devices DSPs
	Texas Instruments C2000 Clocking Options
	Support for Texas Instruments C2802x and Texas Instruments C2803x variants
	Downloadable support and blocks for Xilinx Zynq-7000 platform
	Support ending for Eclipse IDE in a future release
	Support ending for remoteBuild method in a future release

	Performance
	Optimized function arguments for nonreusable subsystems
	Reduced data copies for tunable parameter expressions
	Removal of unused global variables

	Verification
	Debugging during SIL simulations
	Simulation of multiple SIL Model blocks in a top model
	API for testing rtiostream communications
	SIL and PIL support for targets with multicore processors
	Additional code annotation for justifying Polyspace checks
	Code execution profiling improvements
	Code-to-model traceability links for reusable subsystems in libraries

	R2012b
	Cyclomatic complexity measurement in static code metrics report
	Custom code substitution for MATLAB functions using code replacement libraries
	SIL and PIL support for signal logging, encapsulated C++, and AUTOSAR calibration parameters
	Signal logging for SIL and PIL simulations
	Use SIL and PIL simulations to verify encapsulated C++ code
	Improved SIL and PIL verification for AUTOSAR-compliant code

	AUTOSAR 4.0 nonscalar data support
	Code annotation for justifying Polyspace checks
	Texas Instruments Code Composer Studio IDE 5.1 support
	External mode support for ERT targets with static main
	Downloadable support for Green Hills MULTI
	Support for Texas Instruments C2806x processors
	Performance enhancement of Simulink data objects
	AUTOSAR software component import and export enhancements
	Import validation
	Faster import and export of arxml files
	Explicit access mode for AUTOSAR Sender and Receiver ports
	Import port-based calibration parameters

	Highlight virtual blocks in model Web view of code generation report
	Code Execution Profiling Improvements
	Updated Code Execution Profiling API
	Code Execution Profiling Supports Single Object Output

	Incremental Compilation with Changes in Code Coverage Settings

	R2012a
	AUTOSAR Enhancements
	AUTOSAR Release 4.0
	Support for Schema 2.0 Removed

	Code Efficiency Enhancements
	For Each Subsystem Loop Bound Passed by Value
	Fully Inlined S-functions from Legacy Code Tool
	Element-Wise Operations as Inputs to Intrinsic Functions

	Enhancements to Custom Storage Classes in Simulink and mpt Packages
	Code Generation Report Includes Simulink Web View
	LDRA Testbed Code Coverage Annotations in Code Generation Report
	Generated Identifiers Enhancements
	Simplified Identifiers for Model Reference Code
	Consistent Identifiers for Comparing Generated Code

	Code Replacement Enhancements
	Target Function Libraries Renamed to Code Replacement Libraries
	Enhanced Code Replacement Traceability
	Code Replacement Support for Simulink Matrix Division and Inversion Operators
	Code Replacement Support for MATLAB Coder fix, hypot, round, and sign Functions
	Integer Functions Now Return Real-World Values

	SIL and PIL Enhancements
	SIL and PIL Test Harness Files in Code Generation Report
	PIL Support for Code Coverage with LDRA Testbed
	Seamless Switching Between SIL and PIL for Top-Model and Model Block
	Enhanced Hardware Implementation Support
	Top-Model Output Limitations Removed
	Model Block SIL/PIL Support for Absolute Time

	Changes for ERT and ERT-Based Targets
	Changes for Embedded IDEs and Embedded Targets
	Support Added for GCC 4.4 on Host Computers Running Linux with Eclipse IDE
	Support Added for Using Processor-in-the-Loop (PIL) with Serial Communication Interface (SCI) for TI C2000 Processors
	Support Removed for Freescale MPC5xx
	Limitation: Parallel Builds Not Supported for Embedded Targets

	New and Enhanced Demos

	R2011b
	Static Code Metrics in Code Generation Report
	AUTOSAR Enhancements
	Import and Export of AUTOSAR Sensor/Actuator Components
	Improved Simulink Library Support for Multiple Runnables
	AUTOSAR Schema Version 3.2
	Export AUTOSAR XML as Single File

	SIL and PIL Enhancements
	Code Execution Profiling of Functions in Subsystems and Model Blocks
	Code Coverage with LDRA Testbed
	BitField and GetSet Custom Storage Classes
	Model Blocks with Variable-Size Signals
	Verification of Generated C++ Code

	Generate Multitasking Code for Concurrent Execution on Multicore Processors
	Changes for Embedded IDEs and Embedded Targets
	64-bit Version of Embedded Coder Supports Analog Devices VisualDSP++ and Texas Instruments Code Composer Studio 3.3 and 4.0
	Support Added for Wind River VxWorks 6.8
	Support Added for Serial Communications Interface with Processor-in-the-loop (PIL) for Texas Instruments™ C28035 and C28335
	New Target Function Library for Intel IPP/SSE (GNU)
	Support Added for Single Instruction Multiple Data (SIMD) with ARM Cortex-A8, ARM Cortex-A9 , and Intel Processors
	Support Removed for Altium TASKING
	Support Removed for Infineon C166
	Support Ending for Green Hills MULTI in a Future Release
	Support Ending for Freescale MPC5xx in a Future Release

	Saturation Control of Stateflow Data
	Custom Storage Class Properties for Managing Data Ownership and Definition
	Export Data Declarations to Shared Header File for Code Generation with Model Reference
	Target Function Library Code Replacement Enhancements
	Code Replacement Tool for Creating and Managing TFL Tables
	Ability to Align Data Objects to TFL-Specified Boundaries to Boost Code Performance
	Support for Replacing Element-wise Matrix Multiply

	Code Generation Enhancements
	Redundant Condition Checks
	Loop Fusion
	Invariant Condition Check Lifting
	Parameter Pooling for Stateflow and Interpreted MATLAB Function Blocks
	Readability Improvement for Reusable Subsystem Input and Output

	Enhanced Code Generation Optimization Using Minimum and Maximum Values
	New Model Advisor Check for Code Efficiency of Logic Blocks
	Control of Default Case Generation for Switch Statements in Generated Code for Stateflow Charts
	Improvement to Build Process for Conflicting Identifiers
	Update to Code Generation Verification Class cgv.Config
	License Names Not Yet Updated for Coder Product Restructuring
	New and Enhanced Demos

	R2011a
	Coder Product Restructuring
	Product Restructuring Overview
	Resources for Upgrading from Real-Time Workshop Embedded Coder
	Migration of Embedded MATLAB Coder Features to MATLAB Coder
	Migration of Embedded IDE Link and Target Support Package Features to Simulink Coder and Embedded Coder
	Interface Changes Related to Product Restructuring
	Simulink Graphical User Interface Changes

	Data Management Enhancements and Changes
	Memory Section Enhancements
	No Longer Able to Set RTWInfo or CustomAttributes Property of Simulink Data Objects
	Parts of Data Class Infrastructure Not Available
	No Longer Generating Pragma for Data Defined with Built-In Storage Class ExportedGlobal, ImportedExtern, or ImportedExternPointer
	Simulink.CustomParameter and Simulink.CustomSignal Data Classes To Be Deprecated in a Future Release

	AUTOSAR Enhancements
	Calibration Parameters
	Multiple Runnables from Virtual Subsystems
	Support for Code Descriptor Elements

	SIL and PIL Enhancements
	Code Execution Profiling
	PIL Block Parameter Tuning
	Top-Model SIL/PIL and PIL Block Parameter Initialization
	Model Block Parameter Tuning and Model Initialization

	Code Generation Enhancements
	Improved Code for Data Store Memory In-place Assignment
	Improvements to Target Function Library Replacements
	Improved Loop Fusion
	Improved Array Indexing
	Improvement on Matrix Parameter Pooling
	Readability Improvements Involving Data References

	Code Generation Verification (CGV) API Updates
	Support for Adding Multiple Callback Functions
	New Functionality Added to the cgv.CGV Class

	MISRA-C Code Generation Objective
	New Model Advisor Check for Code Efficiency of Lookup Table Blocks
	Enhanced Code Generation Optimization
	Target Function Library Replacement Based on Computation Method for Reciprocal Sqrt, Sine, and Cosine
	Target Function Library Support for abs, min, max, and sign functions
	C++ Encapsulation Allowed for Referenced Models in For Each Subsystems
	Improved Code Generation for Portable Word Sizes
	Improved Comments in the Generated Code
	Replacement Data Types and Simulation Mode for Referenced Models
	Changes for Embedded IDEs and Embedded Targets
	Feature Support for Embedded IDEs and Embedded Targets
	Execution Profiling during PIL Simulation
	Location of Blocks for Embedded Targets
	Location of Demos for Embedded IDEs and Embedded Targets
	Multicore Deployment with Rate-Based Multithreading
	Windows-Based Code Generation and Remote Build On Linux Target (BeagleBoard)
	Changes to Frame-Based Processing
	New Support for Analog Devices Blackfin BF50x and BF51x Processors
	Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-A8, and Cortex-A9 Processors
	Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI
	Support for Texas Instruments Delfino C2834x Processors
	Ending Support for Altium TASKING in a Future Release
	Ending Support for Freescale MPC5xx in a Future Release
	Ending Support for Infineon C166 in a Future Release
	Removed Methods and Arguments

	Changes to ver Function Product Arguments
	New and Enhanced Demos

